A Data-centric Profiler for Parallel Programs

Xu Liu
John Mellor-Crummey

Department of Computer Science
Rice University
Motivation

- Good data locality is important
 - high performance
 - low energy consumption

- Types of data locality
 - temporal/spatial locality
 - reuse distance
 - data layout
 - NUMA locality
 - remote v.s. local
 - memory bandwidth

- Performance tools are needed to identify data locality problems
 - code-centric analysis
 - data-centric analysis
Code-centric v.s. data-centric

- **Code-centric attribution**
 - problematic code sections
 - instruction, loop, function

- **Data-centric attribution**
 - problematic variable accesses
 - aggregate metrics of different memory accesses to the same variable

- **Code-centric + data-centric**
 - data layout match access pattern
 - data layout match computation distribution

Combination of code-centric and data-centric attributions provides insights

```c
1: for (i = 0; i < n; i++) {
2:     for(j = 0; j < n; j++) {
3:         for(k = 0; k < n; k++) {
5:         }
6:     }
7: }
```
Previous work

• Simulation methods
 – Memspy, SLO, ThreadSpotter ...
 – disadvantages
 • Memspy and SLO have large overhead
 • difficult to simulate complex memory hierarchies

• Measurement methods
 – temporal/spatial locality
 • HPCToolkit, Cache Scope
 – NUMA locality
 • Memphis, MemProf

Support both static and heap-allocated variable attributions

Identify both locality problems

GUI for intuitive analysis

Work for both MPI and threaded programs

Widely applicable
Approach

- A scalable sampling-based call path profiler which
 - performs both code-centric and data-centric attribution
 - identifies locality and NUMA bottlenecks
 - monitors MPI+threads programs running on clusters
 - works on almost all modern architectures
 - incurs low runtime and space overhead
 - has a friendly graphic user interface for intuitive analysis
Prerequisite: sampling support

• Sampling features that HPCToolkit needs
 – necessary features
 • sample memory-related events (memory accesses, NUMA events)
 • capture effective addresses
 • record precise IP of sampled instructions or events
 – optional features
 • record useful metrics: data access latency (in CPU cycle)
 • sample instructions/events not related to memory

• Support in modern processors
 – hardware support
 • AMD Opteron 10h and above: instruction-based sampling (IBS)
 • IBM POWER 5 and above: marked event sampling (MRK)
 • Intel Itanium 2: data event address register sampling (DEAR)
 • Intel Pentium 4 and above: precise event based sampling (PEBS)
 • Intel Nehalem and above: PEBS with load latency (PEBS-LL)
 – software support: instrumentation-based sampling (Soft-IBS)
HPCToolkit workflow

- Profiler: collect and attribute samples
- Analyzer: merge profiles and map to source code
- GUI: display metrics in both code-centric and data-centric views
HPCToolkit profiler

• **Record data allocation**
 – heap-allocated variables
 • overload memory allocation functions: malloc, calloc, realloc, ...
 • determine the allocation call stack
 • record the pair (allocated memory range, call stack) into a map
 – static variables
 • read symbol tables of the executable and dynamic libraries in use
 • identify the name and memory range for each static variable
 • record the pair (memory range, name) in a map

• **Record samples**
 – determine the calling context of the sample
 – update the precise IP
 – attribute to data (allocation call path or static variable name) according to effective address touched by instruction
• Data-centric attribution for each sample
 – create three CCTs
 – look up the effective address in the map
 • heap-allocated variables
 – use the allocation call path as a prefix for the current context
 – insert in first CCT
 • static variables
 – copy the name (as a CCT node) as the prefix
 – insert in second CCT
 • unknown variables
 – insert in third CCT
• Record per-thread profiles
HPCToolkit analyzer

- Merge profiles across threads
 - begin at the root of each CCT
 - merge variables next
 - variables have the same name or allocation call path
 - merge sample call paths finally
GUI: intuitive display

Call site of allocation

Allocation call path
Assess bottleneck impact

- Determine memory bound v.s. CPU bound
 - metric: latency/instruction (>0.1 cycle/instruction → memory bound)

 \[l_{\text{ins}} = \frac{\text{latency}}{\#\text{ins}} = \frac{\text{latency}}{\#\text{mem}} \times \frac{\#\text{mem}}{\#\text{ins}} \]

 - average latency per memory access

 - percentage of memory instructions

Sphot: 0.097
S3D: 0.02

- Identify problematic variables and memory accesses
 - metric: latency

 for a variable or a program region:

<table>
<thead>
<tr>
<th>(l_{\text{ins}})</th>
<th>latency</th>
<th>optimization strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>low</td>
<td>no optimization needed</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>optimization would yield little benefit</td>
</tr>
<tr>
<td>high</td>
<td>low</td>
<td>low priority for optimization</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>high priority for optimization</td>
</tr>
</tbody>
</table>
Experiments

- **AMG2006**
 - MPI+OpenMP: 4 MPI × 128 threads
 - sampling method: MRK on IBM POWER 7
- **LULESH**
 - OpenMP: 48 threads
 - sampling method: IBS on AMD Magny-Cours
- **Sweep3D**
 - MPI: 48 MPI processes
 - sampling method: IBS on AMD Magny-Cours
- **Streamcluster and NW**
 - OpenMP: 128 threads
 - sampling method: MRK on IBM POWER 7
Optimization results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Optimization</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG2006</td>
<td>match data with computation</td>
<td>24% for solver</td>
</tr>
<tr>
<td>Sweep3D</td>
<td>change data layout to match access patterns</td>
<td>15%</td>
</tr>
<tr>
<td>LULESH</td>
<td>1. interleave data allocation</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>2. change data layout</td>
<td></td>
</tr>
<tr>
<td>Streamcluster</td>
<td>interleave data allocation</td>
<td>28%</td>
</tr>
<tr>
<td>NW</td>
<td>interleave data allocation</td>
<td>53%</td>
</tr>
</tbody>
</table>
Overhead

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Execution time</th>
<th>Native</th>
<th>With profiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG2006</td>
<td>551s</td>
<td>604s (+9.6%)</td>
<td></td>
</tr>
<tr>
<td>Sweep3D</td>
<td>88s</td>
<td>90s (+2.3%)</td>
<td></td>
</tr>
<tr>
<td>LULESH</td>
<td>17s</td>
<td>19s (+12%)</td>
<td></td>
</tr>
<tr>
<td>Streamcluster</td>
<td>25s</td>
<td>27s (+8.0%)</td>
<td></td>
</tr>
<tr>
<td>NW</td>
<td>77s</td>
<td>80s (+3.9%)</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

• HPCToolkit capabilities
 – identify data locality bottlenecks
 – assess the impact of data locality bottlenecks
 – provide guidance for optimization

• HPCToolkit features
 – code-centric and data-centric analysis
 – widely applicable on modern architectures
 – work for MPI+thread programs
 – intuitive GUI for analyzing data locality bottlenecks
 – low overhead and high accuracy

• HPCToolkit utilities
 – identify CPU bound and memory bound programs
 – provide feedback to guide data locality optimization