
KernInst User’s Guide Pre-release October 15, 2001 Page 1

KernInst User’s Manual

Version 0.6.0

Ariel Tamches, Barton P. Miller, Alexander Mirgorodskii
University of Wisconsin-Madison
{tamches, bart, mirg}@cs.wisc.edu
Bug reports to mirg@cs.wisc.edu

KernInst User’s Guide Pre-release October 15, 2001 Page 2

1 Overview

This section presents a quick overview of the KernInst software.

1.1 KernInst System Components

KernInst has several components:

• High-level (presumably with a GUI) clients that interact with the user and talk to
the lower-level component (kerninstd) to perform kernel instrumentation. Presently,
there is one such client: kperfmon (“kernel performance monitor”).

• kerninstd, the KernInst daemon process. Kerninstd is the instrumentation server at
the heart of KernInst. GUI processes, such as kperfmon, that wish to insert instru-
mentation code into the kernel will ask kerninstd (via a remote procedure call inter-
face) to carry out an instrumentation request. Note that although kerninstd is “just”
a user process, it must be run by root.

• /dev/kerninst, the KernInst pseudo-device driver, which can be considered a part of
kerninstd. Kerninstd will invoke the driver’s assistance for certain operations that
require running from within the kernel’s address space.

1.2 Platform requirements

Presently, kerninstd (and /dev/kerninst) run on the following platforms:

• UltraSparc-I, II or III systems only1

• Uni- or multiprocessor

• Solaris 7 or 8

• 32- or 64-bit kernel

Kerninstd and the driver are installed and run on the machine whose kernel you
wish to instrument. kperfmon can be run on a different machine; in fact, this is encour-
aged, because it lightens the load on the machine being instrumented.

Since they’re “just” GUI’s, higher-level clients of kerninstd such as kperfmon can (in
theory) be compiled to run on any platform. Presently, however, kperfmon is only dis-
tributed as a sparc solaris binary (which should run on Solaris 7 or 8 machines, whether
running a 32 or 64-bit operating system).

1. Running on an older SuperSparc cpu will not work, since both kerninstd and kperfmon access hardware
registers, such as the cycle counter, that are only present on UltraSparcs.

KernInst User’s Guide Pre-release October 15, 2001 Page 3

2 Installation

This section describes installation of the various KernInst components.

2.1 Fetch a distribution

The KernInst release contains two distributions: kerninst-0.6.0-sparc.tar.gz and kerninst-
0.6.0-sparcv9.tar.gz. The former should be used on machines running the 32-bit version
of Solaris, the latter --- on the 64-bit one. To determine which file you need to download,
run the “isainfo-n” command on the target machine (the machine on which you plan to
run kerninstd). If the output mentions “sparcv9” use the sparcv9 tar file, otherwise, use
the sparc tar file.

You can run kperfmon on any Solaris platform: kperfmon from the 64-bit distribution
can run on a 32-bit machine and vice versa. However, make sure that all software com-
ponents that you use (kperfmon, kerninstd and /dev/kerninst) are from the same distri-
bution. For example, 64-bit kerninstd will not work with the 32-bit kperfmon.

Below, we use the 32-bit Solaris 7 binaries as examples. To install KernInst on the 64-
bit platform, follow the directions below, but substitute “sparcv9-sun-solaris2.7” in place
of “sparc-sun-solaris2.7” for directories. This applies to the KernInst driver (/dev/kern-
inst), kerninstd, and kperfmon. Similarly, use “sparc-sun-solaris2.8” and “sparcv9-sun-
solaris2.8” for Solaris 8 machines (although kerninstd, kperfmon and visi binaries are the
same for Solaris 7 and 8, the /dev/kerninst binaries are not).

After the usual “gzip-cd filename.tar.gz | tar xvf -“sequence, you should see the
kerninst directory with six sub-directories: doc (containing this file), kerninstd, kerninst-
driver, kperfmon, tcl, and visiClients. Steps for installing these components are enumer-
ated below.

2.2 Install the device driver

As with most device drivers, this step should only be required once on a given machine.

Since installing the device driver, as well as running kerninstd, may print some
debug messages to the console, it is recommended that xconsole be already running, to
capture the output in an easy to read format.

• Get a root shell.

• Change to the kerninstdriver/sparc-sun-solaris2.7 subdirectory.

• Type “./install_script” to perform the installation.

If for any reason this script fails, you should be able to install the driver manually;
examining the install_script file will show that it is pretty trivial.2 Some debugging mes-
sages in the console are expected.

2. Of course, if manual installation is required, please file a bug report.

KernInst User’s Guide Pre-release October 15, 2001 Page 4

2.3 Run kerninstd

After installing the device driver successfully, you should next run kerninstd:

• Get a root shell

• Change to the kerninstd/sparc-sun-solaris2.7 subdirectory

• Type “./kerninstd” to run it

Although kerninstd does not contain a GUI, startup is a significant task (involving,
among other things, reading the kernel’s symbol table, parsing its code into basic blocks,
and performing a live register analysis on it).

If anything goes wrong, such as an assertion failure, it is likely to be in this stage. If
this occurs, please re-run kerninstd with one flag: “-v”(verbose) and email the output to
mirg@cs.wisc.edu. Furthermore, if possible, please re-run kerninstd from within the gdb
debugger (kerninstd is presently compiled with the -g flag and no optimization, to assist
this) and send a stack trace (i.e., type “where” fr om within gdb after the crash3).

If everything goes right, the startup phase will take about a minute.4 There will be a
line such as “Thechosen accept port number is 41647”. Remember the port number; cli-
ents (e.g. kperfmon) need to know it in order to connect to kerninstd.

To exit kerninstd cleanly, type ^c (the signal will be caught and cleanup will be done).

2.4 Run kperfmon

Preferably on another machine (to lighten the load on the kernel being measured), log in
as a regular (not root) user and run kperfmon:

• Make sure that the binaries for the visualization processes (rthist, barChart, and
tableVisi) are in the current search path, so kperfmon will be able to find them.
Double-check that they can be found by typing “whichrthist” (for example) before
running kperfmon itself.

• Change to the “kperfmon/sparc-sun-solaris2.7” dir ectory.

• Type “./kperfmon<kerninstd-machine-name> <port-num>”, where <port-num> is
the “chosen accept port number” as reported by kerninstd’s startup.

Note that kperfmon uses the Tcl and Tk toolkits for GUI purposes. kperfmon should
have the necessary libtcl and libtk libraries statically linked, so you do not need to install
them.5 However, tcl/tk binaries are not stand-alone; certain “.tcl” files are needed for
tcl/tk to start up, and there must be environment variables TCL_LIBRARY and
TK_LIBRARY which contain the directory names of these startup files. If you already
have tcl/tk installed on your system, then these variables should already be set and you

3. Optionally, to preventmuchsuperfluousgdboutput,type“setprint static-membersoff” within gdbbefore
getting the stack trace.

4. It’s much less when kerninstd is compiled with optimization (about twenty seconds).
5. We are presently using tcl and tk version 8.3.3. If your site already has tcl/tk installed, you may prefer a

dynamically linked (and thus smaller) kperfmon binary. Let us know if this is the case.

KernInst User’s Guide Pre-release October 15, 2001 Page 5

can ignore the rest of this paragraph. If not, we have shipped the necessary (freeware)
files. Set the TCL_LIBRARY environment variable to tcl/tcl8.3 (use the full path name),
and set TK_LIBRARY to tcl/tk8.3 (again, using the full path name).

If all goes well, kperfmon will establish a connection to kerninstd, retrieve the ker-
nel’s symbol table, and put up its GUI (this takes about ten seconds).

With this step successfully completed, installation is done! Assuming for the moment
that the user is interested in running existing kerninstd clients such as kperfmon (as
opposed to writing new ones), there is no need to explain kerninstd or its driver any fur-
ther, and all that is left to do is discuss the features of kperfmon.

KernInst User’s Guide Pre-release October 15, 2001 Page 6

3 Quick Kernel Instrumentation Example

The best way to understand kperfmon is through an example. In this example, we will
count the number of procedure calls being made to the function “kmem_alloc”(which
resides in the module “genunix”). Instrumenting a particular piece of kernel code (pres-
ently, a function or basic block) using a certain performance metric is done with the fol-
lowing steps:

• Choose one or more performance metrics by single-clicking from among the vari-
ous “Metrics”checkbuttons in the upper-left corner of the kperfmon window. For
this example, we choose “entries to”.

Choose the code that you want to instrument by navigating among the “Kernel
Code” portion of the kperfmon window. Note from Figure 1 that “Code”has a small tri-
angle after its name. This indicates that there are more detailed code resources available
for choosing, which can be revealed by double-clicking on it. (Single-clicking on “Code”

would select it for instrumentation6; double-clicking on it will not select it. If you acci-
dentally select a code resource, you can un-select it by single-clicking on it again.) Dou-
ble-clicking on “Code”expands its children in the resource tree, namely, all of the kernel

Figure 1: The kperfmon GUI on startup

KernInst User’s Guide Pre-release October 15, 2001 Page 7

modules, as shown in Figure 2. To get to kmem_alloc, we next need to expand the mod-

ule “genunix” by double-clicking on it. After doing this, the functions of module
genunix will be shown in their own list box. Next, we scroll in this list box (each list box
has its own scroll bar) until we find the function kmem_alloc; we then select this func-
tion by single-clicking on it. The window will now appear as in Figure 3.

• If kerninstd runs on a multiprocessor system, you can select CPUs of interest by sin-
gle-clicking on the corresponding check boxes in the CPU panel. For example, if
you want to monitor the number of cache misses incurred by CPU0, you should
select the “CPU0”checkbox. The “total”check box represents metric values for the
whole system and is selected by default. Notice that if kerninstd runs on a unipro-
cessor, the CPU panel is not displayed.

• Start a “visi” (visualization process) from kperfmon by choosing an item from the
“Starta visi” pull-down menu (near the bottom of the kperfmon window). The
visualization process will be the GUI that displays the data collected by the instru-

6. We do not want to instrument “Code”, because (being the root of the code tree), this resource indicates
“all kernel code”. In this example, we want to choose a specific kernel function.

Figure2: kperfmon after expanding “Code” to its children (all of the kernel modules)

KernInst User’s Guide Pre-release October 15, 2001 Page 8

mentation code. For this example, we choose the histogram visi from the pull-down
menu, and its window (Figure 4) is shown on the screen.

• Next comes the step that will instrument the kernel! From the histogram’s window,
pull down the “Curve”menu and choose “Add...”This causes the histogram to tell
kperfmon to (1) dynamically instrument the kernel whatever metric/code resource
combinations are presently selected, and (2) to periodically sample the data col-
lected by instrumentation code and ship it to the histogram for GUI display. Col-
lected data should immediately begin appearing in the histogram, as shown in
Figure 5.

• This completes our kernel instrumentation example. To stop collecting data (and
more importantly, to un-instrument what had been put into the kernel), simply
close the histogram visi.

Important note: In order to run one of the “visualizationtools” such as the “histo-
gram”, you’ll need to have the “visiClients/sparc-sun-solaris2.7” directory in your path
before running kperfmon; otherwise, kperfmon will not be able to find it (Section 2.4).

Like kperfmon, the visualization tools use tcl/tk.

Figure3: kperfmon window after expanding the “genunix” kernel module, scrolling its list
box until we find the function “kmem_alloc”, and selecting that function

KernInst User’s Guide Pre-release October 15, 2001 Page 9

Note that you can exit and re-run kperfmon multiple times without exiting and
restarting kerninstd.

Figure 4: The histogram visi window

Figure 5: Histogram visi window after some data has been collected

KernInst User’s Guide Pre-release October 15, 2001 Page 10

4 Kperfmon User’s Guide

This section presents a more complete description of kperfmon than in the tutorial.

4.1 Making Instrumentation Requests (Selections)

An instrumentation request is a coupling of a metric (Section 4.1.1), a code resource
(Section 4.1.2), a CPU resource (only on multiprocessors, see Section 4.1.3) and option-
ally extra predicates (Section 4.1.4).

At any given time, a large number of metric/code resource/cpu resource/predicate
combinations can be selected. The set of selections is the cross product of all selected
metrics, applied to all selected resources, with the optional predicate. For example, if two
metrics are selected (say “callsmade to”, and “concurrency”), three code resources are
selected (say, “kmem_alloc”, “kmem_free”, and “kmem_reap”) and two CPUs are
selected (say, “cpu3” and “cpu5”), then 2x3x2=12 instrumentation combinations have
been selected. Choosing “addcurve(s)” from the histogram visi will then add twelve
curves to the histogram. With this is mind, it is also worthwhile to note that once
selected, metrics and resources stay selected until they are explicitly unselected (by single-
clicking on the given metric or resource a second time).

4.1.1 Metrics

As mentioned in the tutorial, each instrumentation request requires at least one metric to
be selected. A given metric contains the logic for kernel instrumentation; when given a
code resource, it generates that machine code snippet(s) to be inserted at specific kernel
addresses.

To select a metric, single-click on it (its check button will then turn blue). Once
selected, a metric stays selected until it is single-clicked on again to unselect it. Metric
selection can also be done using kperfmon’s tcl scripting interface; see Section 4.4.1.

Documentation on each metric is available on-line: clicking the middle mouse button
over any metric will pop up a window that gives useful information on what it mea-
sures, what code resources it can be combined with, and (for the curious) an overview of
the instrumentation code that it generates. An example is shown in Figure 6.

4.1.2 Resources: Kernel Code

kperfmon supports two classes of kernel resources: kernel code and CPUs7. These
selections are chosen by manipulating the “KernelCode” and “CPU”panels of the kper-
fmon GUI. In this section, we descibe the “Kernel Code” panel.

Single-clicking on a resource will select it; the resource will be drawn recessed in the
GUI. Like a metric, a selected resource stays selected until explicitly unselected by sin-
gle-clicking on it again.

7. We hope to support other kinds of resources in the future. Consider for example, being able to couple a
metric “time blocked on” with a mutex (not code) resource “my_mutex”.

KernInst User’s Guide Pre-release October 15, 2001 Page 11

Since the number of code resources is overwhelming (on my machine, for example,
there are 92 kernel modules, 9752 kernel functions, and 132250 basic blocks), it is chal-
lenging to present a GUI to allow for their selection. The solution in kperfmon organizes
resources as a tree (root, modules, functions, basic blocks). Since there is not enough
screen real estate to display 140000+ names, we hide entire sub-trees until they are
expanded with a double-click. For example, initially (Figure 1) there is only a single code
resource displayed (“Code”).The small triangle to the right of the name indicates that it
can be expanded to show further resources (in this case, the next tree level being the var-
ious kernel modules) as in Figure 2. To maximize use of screen real estate, the various
kernel modules are in a single, scrollable list box. Double-clicking on any one kernel
module will then expand the next level of that module (only), which would be the mod-
ule’s individual functions, as in Figure 3. Functions that were successfully parsed into
basic blocks by kerninstd can be expanded to show their basic blocks.

It is important to note that at least conceptually, a given metric can be coupled with
any code resource to create instrumentation. For example, coupling the “entriesto” met-
ric with the resource “kmem_alloc”(of module “genunix”)gives the number of calls to
that function. Taking the next step, the same metric can be coupled with an individual
basic block to give the number of executions of that block. And conceptually, “entriesto”
can be coupled with an entire kernel module (such as “genunix”)to give the number of
calls to any function in that module. However, in this case, the metric “entriesto” will
disallow this combination, because the amount of kernel instrumentation required
would be overwhelming. The same applies to the base code resource, “Code”, which
would conceptually give the number of calls to any function in the kernel.

To review the hierarchy of code resources:

• Root or Code: conceptually means “theentire kernel”. Presently, all kperfmon met-

Figure 6: The description of the metric vtime

KernInst User’s Guide Pre-release October 15, 2001 Page 12

rics refuse to generate code when presented with this resource, because the amount
of instrumentation code to realize the desired measurement is prohibitive.

• Kernel Module: these appear in the list box underneath Code. Kperfmon receives the
kernel modules from kerninstd on startup.8 The modules are sorted by kernel
address. As with the “root” resource, all kperfmon metrics refuse to generate the
(prohibitively large amount of code) when coupled with such a resource.

• Kernel Functions: a given module’s functions will appear in a list box underneath
the module. The functions will be shown sorted by kernel address.

• Basic blocks: a given function’s basic blocks will appear in the list box underneath
the function. The basic blocks will be shown sorted by kernel address. Unfortu-
nately, the only identifying information for a given basic block is its starting
address, so it is often difficult to know which basic block to choose! However, view-
ing a disassembly of a function or basic block (Section 4.3) can help.

 A Note About Fonts Used

If the fonts used in the resource hierarchy do not look good on a given installation,
they can be easily changed. Edit the file kperfmon.tcl (located in the same directory as
the kperfmon executable), change one of the lines beginning “sethelv14 ...”, “sethelv12
...”, “sethelv10 ...”, or “sethelv9 ...” (these lines will be near the beginning of the file),
and re-run kperfmon as before.

 Resource Selection and Unselection Using the Keyboard

It will not take long to tire of scrolling through a module’s list box to find a specific
function. If you know the name of the kernel function, and the module that it belongs to,
you can select and unselect resources from the keyboard using kperfmon’s tcl scripting
interface; see Section 4.4.2.

4.1.3 Resources: CPUs

If kerninstd is run on a multiprocessor, kperfmon displays the “CPUs”panel. This panel
contains checkboxes for individual CPUs on the target system as well as the “total”
checkbox which represents the system as a whole. Selecting an individual CPU defines a
metric constrained to this CPU --- only events occurred on this CPU will be reported.
Selecting the “total”checkbox defines a metric aggregated across all CPUs. For example,
the “total”cpu resource applied to the “D-cachehits” metric will add up the individual
numbers of cache hits on each CPU and report a single number for the whole system.

4.1.4 Predicates

The standard coupling of a metric with a code resource can be augmented with a predi-
cate. Presently, there is a single supported predicate: process id(s). Consider the example

8. Presently, if akernelmoduleis loadedinto thekernelafterstartingupkerninstd,it will notberecognized.
This featuremaybeaddedin thefuture.In themeantime,thedesiredeffectcanbeachievedby restarting
kerninstd, to force it to re-examine the contents of the kernel’s runtime symbol table.

KernInst User’s Guide Pre-release October 15, 2001 Page 13

of the metric “entriesto” coupled with the code resource “kmem_alloc()”, which will
measure the number of calls made to kmem_alloc(). To measure the number of calls
made to “kmem_alloc()”just from a given process, you can enter its pid in “pid(s)”entry
widget of the kperfmon window. As always, it is up to the chosen metric to decide
whether it can instrument the particular combination of metric/resource/predicate.
Presently, every metric in kperfmon allows a pid to be entered.

Note also that more than one pid can be entered, so for example you can ask for the
number of calls to a function made by process X or Y or Z.

For those interested in technical details, the current pid is determined in instrumenta-
tion code by examining the current kernel thread’s process data structure. Kernel threads
not belonging to a user process are always assigned a pid of 0 in Solaris, which is a valid
pid to enter in the “pid(s)” entry widget.

4.2 Visis

Visualization processes can be started in one of two ways: by selecting from the “starta
visi” kperfmon pull-down menu (as introduced in the tutorial), or through kperfmon’s
tcl scripting interface (Section 4.4.3).

Presently, kperfmon is shipped with three visualization processes (all, as you will no
doubt notice from the GUI logos, coming verbatim from KernInst’s sister project, Para-
dyn):

• Histogram. This is probably the most useful visi. For each metric/resource/predi-
cate selection made, a single curve is drawn showing the value (y-axis) over time
(x-axis). It is the only visi process that shows how samples change over time. The
downside is that the Histogram display can get cluttered after, say, 5 curves have
been added. Furthermore, average or total values cannot be displayed using the
Histogram.

• Barchart. This visi can display many metric/resource/predicate combinations effi-
ciently. Each resource/predicate combination is drawn, top to bottom. To the right
of a given resource/predicate combination will be one or more colored bars whose
length indicates the value (x-axis); each color corresponds to a specific metric. The
chief benefit of using the Barchart is that screen real estate is efficient, especially
when many metrics are chosen. The downside is that you cannot see values chang-
ing over time, as in the Histogram. You can, however, customize the display in sev-
eral ways by selecting from among the Barchart’s pull-down menus; the most
interesting being instantaneous (“current”) values vs. average values vs. total val-
ues.

• Table. This visi is similar to the Barchart, except that exact values are displayed on
screen. (Think of Table as a digital watch, and the Barchart as an analog one.)

The visis must be in the user’s search path. So, for example, add <base directory>/visi-
Clients/sparc-sun-solaris2.7 to the $path environment variable before running kperf-
mon.

As mentioned in the tutorial, instrumentation does not take place when a visualiza-

KernInst User’s Guide Pre-release October 15, 2001 Page 14

tion is started. Kernel instrumentation takes place when the command is given to add
the current metric and resource selections to a given visi, which can be done in one of
two ways: (1) From within a visi’s GUI, select the menu item “Addcurve(s)”, or (2) from
kperfmon’s tcl scripting interface, with the addCurrSelectionsToVisi command (see
Section 4.4.4). Whichever method is chosen, the kernel will get instrumented with the
currently selected metrics and resources, the visi will be informed of these pairings (so it
can update its GUI), and periodic sampling (from within kerninstd, which sends its data
to kperfmon, who then forwards it to relevant visi(s) for processing) will begin to take
place.

4.3 Debugging kperfmon and kerninstd

If you suspect a bug in kperfmon and/or kerninstd, the following widget in the kperf-
mon window can help track down a problem. Viewing a machine code disassembly of
the function(s) being instrumented is a good way to understand how KernInst works.
The two buttons in the kperfmon window under the label “DisassembleSelected
Fn/BasicBlock” are a good place to start. These buttons will disassemble every function
or basic block that is presently selected in the “KernelCode” tree. In Figure 7, we see a
disassembly of kmem_alloc() achieved by selecting kmem_alloc() in the code tree and
then clicking on “disassemble (curr mem)”.

The disassembly window shows, on each line, the instruction’s address, its raw bit
value, and its disassembly. Calls to fixed-addresses (i.e., excluding calls via a register)

Figure 7: Disassembly of kmem_alloc()

KernInst User’s Guide Pre-release October 15, 2001 Page 15

will have the callee’s name as the title of a pull-down menu that will allow the callee to be
disassembled, selected, and unselected, respectively. To the left of each instruction are
two “+”buttons, which when clicked on, will give a live register analysis for this instruc-
tion. Clicking on the left most button will show which registers kerninstd thinks are
killed (and thus are available for scratch usage by instrumentation code), and which are
potentially holding live values. Often, there are a pair of “killed/madelive” lines; this
indicates two different Sparc register windows. Clicking on the right most “+” button
will show a live register analysis for this instruction in isolation.

The button “Disassemble(orig)” differs from “Disassemble(curr mem)” in one key
manner: the latter will disassemble from the present contents of kernel memory (and
thus, will show the effects of any dynamic instrumentation); the former will always
present a disassembly of the instructions at the moment kerninstd originally parsed
them.

The disassembly window can help debug kerninstd/kperfmon in several ways: if
you believe that instrumentation code is overwriting a register that is not free for scratch
usage, you might be able to determine that by viewing the liver register analysis and the
instrumentation code itself. Viewing the instrumentation code is fairly easy: a disassem-
bly (curr mem) of a function will show that certain instruction(s) have been overwritten
with a branch to instrumentation code; simply follow that branch to determine where
instrumentation code begins.9 Once that is done, you can disassemble a specific range of
memory addresses: enter the starting address in the “From-addr:” entry widget, and an
ending address in the “To-addr:” entry widget and click on “Disassemble(kernel)”. This
will present a basic disassembly of this address range (no basic blocks boundaries are
shown, and no register analysis is done).

The “Disassemble(kerninstd)” button is similar, but it disassembles an address range
in kerninstd’s, not the kernel’s, memory space. This is left often needed, but can be use-
ful because kperfmon often downloads code into kerninstd; the classic example being
code to periodically sample the counter(s) and/or timer(s) that are updated by instru-
mentation code.10

4.4 Scripting kperfmon actions

Kperfmon has a tcl command line interface that can be accessed by typing into the shell
window from which kperfmon was started (not the kperfmon GUI window). This sec-
tion describes tcl commands that can drive kperfmon.

9. As mentionedin ourOSDI ‘99 paper, asinglebranchinstructionusuallycannotreachtheinstrumentation
code, so a two-level jump scheme is usually needed: the branch instruction branches to an intermediate
locale called aspringboard, which in turn takes several (usually three) instructions to jump to the instru-
mentation code. Thus, a few disassemblies will be needed in practice before getting to the instrumenta-
tion code.

10.kerninstdmmap()sthepartof thekernelspacewherecountersandtimersareallocated,to makeperiodic
sampling possible without the kernel’s knowledge or assistance.

KernInst User’s Guide Pre-release October 15, 2001 Page 16

4.4.1 Scripting Metrics

The tcl command “metrics” can be used to select or unselect metrics within kperfmon.

metrics select “ metricname” where metricname is, for example, “entriesto” or
“vtime”, will select the appropriate metric. The spelling of the metric name must be
exactly the same as in the checkbuttons at the upper-left of kperfmon’s GUI window. If a
metric name contains spaces, then quotes around metricname are mandatory for correct
behavior.

metrics unselect “ metricname” will unselect that metric.
metrics clear will unselect all metrics at once.
As always, remember that a metric, once selected, stays selected until explicitly unse-

lected.

4.4.2 Scripting Resources

The tcl command “resources” can be used to select or unselect resources within kperf-
mon.

resources select modname fnname where modname is, for example, genunix , and
where fnname is, for example, kmem_alloc , will select a particular resource.

resources unselect modname fnname will unselect a particular resource.
resources clear will unselect every resource currently selected.
resources select hexaddress will select a function when given any address that lies

within it. For example, resources select 0x100014ce.
As always, remember that a resource, once selected, stays selected until explicitly

unselected.

4.4.3 Scripting Starting/Closing Visis

kperfmon provides a tcl interface to starting and closing visis.

newVisi visiname will launch the visi visiname. Note that the current metric and
resource selections are not added to the visi by this command, nor does starting a visi
cause the kernel to be instrumented. visiname is the name of the visi; if it is not in the cur-
rent search path, you can use a full path name for visiname.

The newVisi command returns an integer identifier for this visi, which will need to be
passed to the closeVisi and addCurrSelectionsToVisi commands, below. To remember this
identifier in a tcl script, one can assign the result integer to a tcl variable, as in

set myvisiid [newVisi rthist]

For the curious, you can view the value of this id by dumping it to stdout:
puts stdout $myvisiid

A visi can be closed with the closeVisi command, as in:
closeVisi $myvisiid

As always, closing a visi will uninstrument the kernel (assuming some instrumenta-
tion had been activated and was being sent to the visi).

KernInst User’s Guide Pre-release October 15, 2001 Page 17

4.4.4 Adding Current Metric and Resource Selections to a Visi

In a scripted session, between opening and closing a visi, you will in all likelihood want
to instrument the kernel and cause some values to be sent to the visi. Selecting metrics
and resources in a script were discussed above in Section 4.4.1 and Section 4.4.2. The
addCurrSelectionsToVisi command will gather the current metric and resource selections,
instrument the kernel, inform a visi so it may update its GUI, and begins the process of
sampling data values, which will be sent to a visi. The command takes in a single param-
eter, the visi id, as returned by the newVisi command. An example is:

addCurrSelectionsToVisi $myvisiid

4.4.5 Saving Data Values Collected by a Visi (Open Issue)

Before closing a visi, a scripting session will probably wish to save the data values that
have been collected by the visi to some file. This is not presently implemented in kperf-
mon.

A different, visi-centric, approach to solving this problem, would be to design a visi
that automatically saves data when it closes. Presently, none of the three stock kperf-
mon/Paradyn visis (rthist, barChart, and tableVisi), have this feature, though if we are
lobbied hard enough, we’ll probably add it.

4.4.6 Launching a Script

The above tcl commands can be typed directly into kperfmon’s command line inter-
face (which is in the shell that launched kperfmon, not kperfmon’s GUI window). A
scripted sequence of these commands can be put in a “.tcl”file, and be launched by typ-
ing the tcl source command, as in:

source myfile.tcl

Of course, at least a rudimentary knowledge of the tcl language will be required to
get much use out of scripting. The official web site is

http://www.ajubasolutions.com

but I think that
http://dev.ajubasolutions.com

is a better place to start.

