
KernInst User’s Manual

Version 2.1.2

Barton P. Miller, Alexander Mirgorodskii, Michael Brim, Igor Grobman
University of Wisconsin-Madison

{bart, mirg, mjbrim, igor}@cs.wisc.edu
Bug reports to mjbrim
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 1

1 Overview

This section presents a quick overview of the KernInst software.

1.1 KernInst System Components

KernInst has several components:

• High-level (possibly with a GUI) clients that interact with the user and talk to the
lower-level component (kerninstd) to perform kernel instrumentation. These clients
are linked to the KerninstAPI library (libkerninstapi), an application programming
interface that abstracts all interaction with kerninstd and provides an easy to use set
of C++ classes for writing high-level instrumentation code. Presently, there is one
such client: kperfmon (“kernel performance monitor”).

• kerninstd, the KernInst daemon process. Kerninstd is the instrumentation server at
the heart of KernInst. GUI processes, such as kperfmon, that wish to insert instru-
mentation code into the kernel will ask kerninstd (via a remote procedure call inter-
face) to carry out an instrumentation request. Note that although kerninstd is “just”
a user process, it must be run by root.

• /dev/kerninst, the KernInst pseudo-device driver, which can be considered a part of
kerninstd. Kerninstd will invoke the driver’s assistance for certain operations that
require running from within the kernel’s address space.

1.2 Platform requirements

Presently, the kerninst components run on the following platforms:

• Sun UltraSparc-I, II or III systems1 running Solaris 7 or 8 (32- and 64-bit)

• IA-32 based systems running Linux 2.4 or 2.6

• IBM PowerPC systems running Linux 2.4 or 2.6 (64-bit)

• Uni- or multiprocessors

Kerninstd and the driver are installed and run on the machine whose kernel you
wish to instrument. kperfmon can be run on a different machine; in fact, this is encour-
aged, because it lightens the load on the machine being instrumented.

Since they’re “just” GUI’s, higher-level clients of kerninstd such as kperfmon can (in
theory) be compiled to run on any platform. Presently, however, kperfmon is only dis-
tributed as platform-specific binaries (i.e., kperfmon for IA-32 systems is distributed as
an IA-32 binary).

1. Running on an older SuperSparc cpu will not work, since both kerninstd and kperfmon access hardware
registers, such as the cycle counter, that are only present on UltraSparcs.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 2

2 Installation

This section describes installation of the various KernInst components.

2.1 Fetch a distribution

The KernInst version 2.1.2 release provides a source distribution for the supported IA-32
and PowerPC Linux platforms, kerninst-2.1.2-Linux-src.tar.gz. User interested in Kern-
Inst for Sparc/Solaris should download and use the 2.1.1 release.

In the following subsections, we use the variable $PLATFORM to refer to a specific
architecture and operating system combination. Example platforms are “sparcv9-sun-
solaris2.8” (for 64-bit Solaris 8), “sparc-sun-solaris2.7” (for 32-bit Solaris 7), “i386-
unknown-linux2.6” (for IA-32 Linux 2.6.x), and “ppc64-unknown-linux2.4” (for Pow-
erPC 64-bit Linux 2.4.x). To install KernInst on a specific platform, follow the directions
below, but substitute the appropriate platform string for the $PLATFORM variable.

After the usual “tar xzvf kerninst-2.1.2-Linux-src.tar.gz“ unpacking sequence, you
should see the kerninst-2.1.2-Linux-src directory with ten sub-directories: core, docs
(containing this file), kerninstapi, kerninstd, kerninstdriver-linux, kperfmon, scripts,
tclStuff, tcltk_libs, and util. Since release 2.1.2 is a source-only distribution, the various
KernInst components need to be built before installation. Refer to the
‘docs/BUILD_GUIDE’ file for build instructions. Once built, you may follow the follow-
ing steps for using these components.

2.2 Install the device driver
Since installing the device driver, as well as running kerninstd, may print some

debug messages to the console, it is recommended that xconsole be already running, to
capture the output in an easy to read format.

• Get a root shell.

• Change to the kerninstdriver/$PLATFORM subdirectory.

• Type “./install_script” to perform the installation.

If for any reason this script fails, you should be able to install the driver manually;
examining the install_script file will show that it is pretty trivial.2 Some debugging mes-
sages in the console are expected.

2.3 Run kerninstd

LINUX NOTE: Please see the README.symbols file for additional information on how to
provide better kernel symbol information to kerninstd before running it.

After installing the device driver successfully, you should next run kerninstd:

• Get a root shell

2. Of course, if manual installation is required, please file a bug report to mjbrim@cs.wisc.edu.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 3

• Change to the kerninstd/$PLATFORM subdirectory

• Type “./kerninstd” to run it

• On Linux 2.6 machines, you must supply the System.map file for the running kernel
via the “-system_map <filename>” argument to kerninstd. This file is most likely
stored in /boot along with the kernel image.

Although kerninstd does not contain a GUI, startup is a significant task (involving,
among other things, reading the kernel’s symbol table, parsing its code into basic blocks,
creating a control-flow graph, and performing live register analysis).

If anything goes wrong, such as an assertion failure, it is likely to be in this stage. If
this occurs, please re-run kerninstd with one flag: “-v” (verbose) and email the output3

to mjbrim@cs.wisc.edu. Furthermore, if you have built your own binaries from the
source distribution, please re-run kerninstd from within the gdb debugger (kerninstd is
presently compiled with the -g flag and no optimization, to assist this) and send a stack
trace (i.e., type “where” from within gdb after the crash4).

If everything goes right, the startup phase will take about a minute.5 There will be a
line such as “The chosen accept port number is 41647”. Remember the port number; cli-
ents (e.g., kperfmon) need to know it in order to connect to kerninstd.

To exit kerninstd cleanly at any time, type Ctrl-C (the signal will be caught and
cleanup will be done).

2.4 Run kperfmon

Preferably on another machine (to lighten the load on the kernel being measured), log in
as a regular (not root) user and run kperfmon:

• Make sure that the binaries for the visualization processes (rthist, barChart, and
tableVisi) are in the current search path, so kperfmon will be able to find them.
Double-check that they can be found by typing “which rthist” (for example) before
running kperfmon itself.

• Make sure the environment variables TK_LIBRARY and TCL_LIBRARY are set. See
the following paragraph for more info.

• Change to the “kperfmon/$PLATFORM” directory.

• Type “./kperfmon <kerninstd-machine-name> <port-#>”, where <port-#> is the
“chosen accept port number” as reported by kerninstd’s startup.

Note that kperfmon uses the Tcl and Tk toolkits for GUI purposes. Tcl/tk binaries are
not stand-alone; certain “.tcl” files are needed for tcl/tk to start up, and there must be
environment variables TCL_LIBRARY and TK_LIBRARY which contain the directory
names of these startup files. If you already have tcl/tk installed on your system, then

3. The output from running kerninstd with the ‘-v’ option is quite large. Please compress the output file with
gzip or bzip before emailing.

4. Optionally, to prevent much superfluous gdb output, type “set print static-members off” within gdb before
getting the stack trace.

5. It’s much less when kerninstd is compiled with optimization (about twenty seconds).
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 4

these variables should already be set and you can ignore the rest of this paragraph. If
not, we have shipped the necessary (freeware) files. Set the TCL_LIBRARY environment
variable to ‘kerninst-2.1.2/tcltk_libs/tcl8.4’ (use the full path name), and set
TK_LIBRARY to ‘kerninst-2.1.2/tcltk_libs/tk8.4’ (again, using the full path name).

If all goes well, kperfmon will establish a connection to kerninstd, retrieve the ana-
lyzed kernel’s state, and put up its GUI (this takes about ten to twenty seconds).

With this step successfully completed, installation is done! Assuming for the moment
that the user is interested in running existing kerninstd clients such as kperfmon (as
opposed to writing new ones), all that is left to do is discuss the features of kperfmon.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 5

3 Quick Kernel Instrumentation Tutorial

The best way to understand kperfmon is through an example. In this example, we will
count the number of procedure calls being made to the function “kmem_alloc” (which
resides in the module “genunix”) on a Sparc/Solaris machine. Instrumenting a particu-
lar piece of kernel code (presently, a function or basic block) using a certain performance
metric is done with the following steps:

• Choose one or more performance metrics by single-clicking from among the vari-
ous “Metrics” checkbuttons in the upper-left corner of the kperfmon window. For
this example, we choose “entries to”.

Choose the code that you want to instrument by navigating among the “Kernel
Code” portion of the kperfmon window. Note from Figure 1 that “Code” has a small tri-
angle after its name. This indicates that there are more detailed code resources available
for choosing

Figure 1: The kperfmon GUI on startup

, which can be revealed by double-clicking on it. (Single-clicking on “Code”

would select it for instrumentation6; double-clicking on it will not select it. If you acci-
dentally select a code resource, you can un-select it by single-clicking on it again.) Dou-

6. We do not want to instrument “Code”, because (being the root of the code tree), this resource indicates
“all kernel code”. In this example, we want to choose a specific kernel function.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 6

ble-clicking on “Code” expands its children in the resource tree, namely, all of the kernel
modules, as shown in Figure 2.

Figure 2: kperfmon after expanding “Code” to its children (all of the kernel modules)

 To get to kmem_alloc, we next need to expand the mod-

ule “genunix” by double-clicking on it. After doing this, the functions of module
genunix will be shown in their own list box. Next, we scroll in this list box (each list box
has its own scroll bar) until we find the function kmem_alloc; we then select this func-
tion by double-clicking on it, and the function’s basic blocks are reported in a list below
the selected function. The window will now appear as in Figure 3.

• If kerninstd runs on a multiprocessor system, you can select CPUs of interest by sin-
gle-clicking on the corresponding check boxes in the CPU panel. For example, if
you want to monitor the number of cache misses incurred by CPU0, you should
select the “CPU0” checkbox. The “total” check box represents metric values for the
whole system and is selected by default. Notice that if kerninstd runs on a unipro-
cessor, the CPU panel is not displayed.

• Start a “visi” (visualization process) from kperfmon by choosing an item from the
“Start a visi” pull-down menu (near the bottom left of the kperfmon window). The
visualization process will be the GUI that displays the data collected by the instru-
mentation code. For this example, we choose the histogram visi from the pull-down
menu, and its window (Figure 4) is shown on the screen.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 7

Figure 3: kperfmon window after expanding the “genunix” kernel module, scrolling its list
box until we find the function “kmem_alloc”, and selecting that function

Figure 4: The histogram visi window

• Next comes the step that will instrument the kernel! From the histogram’s window,
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 8

pull down the “Curve” menu and choose “Add...” This causes the histogram to tell
kperfmon to (1) dynamically instrument the kernel for whatever metric/code
resource combinations are presently selected, and (2) to periodically sample the
data collected by instrumentation code and ship it to the histogram for GUI display.
Collected data should immediately begin appearing in the histogram, as shown in
Figure 5.

Figure 5: Histogram visi window after some data has been collected

• This completes our kernel instrumentation example. To stop collecting data (and
more importantly, to un-instrument what had been put into the kernel), simply
close the histogram visi.

Important note: In order to run one of the “visualization tools” such as the “histo-
gram”, you’ll need to have the ‘visiClients/$PLATFORM’ directory in your path before
running kperfmon; otherwise, kperfmon will not be able to find it (Section 2.4).

Like kperfmon, the visualization tools use tcl/tk.
Note that you can exit and re-run kperfmon multiple times without exiting and

restarting kerninstd.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 9

4 Kperfmon User’s Guide

This section presents a more complete description of kperfmon than in the quick tutorial.

4.1 Making Instrumentation Requests (Selections)

An instrumentation request is a coupling of a metric (Section 4.1.1), a code resource
(Section 4.1.2), a CPU resource (only on multiprocessors, see Section 4.1.3) and option-
ally extra predicates (Section 4.1.4).

At any given time, a large number of metric/code resource/cpu resource/predicate
combinations can be selected. The set of selections is the cross product of all selected
metrics, applied to all selected resources, with the optional predicate. For example, if two
metrics are selected (say “entries to” and “walltime”), three code resources are selected
(say, “kmem_alloc”, “kmem_free”, and “kmem_reap”) and two CPUs are selected (say,
“cpu3” and “cpu5”), then 2x3x2=12 instrumentation combinations have been selected.
Choosing “add curve(s)” from the histogram visi will then add twelve curves to the his-
togram. With this is mind, it is also worthwhile to note that once selected, metrics and
resources stay selected until they are explicitly unselected (by single-clicking on the given
metric or resource a second time).

4.1.1 Metrics

As mentioned in the tutorial, each instrumentation request requires at least one metric to
be selected. A given metric contains the logic for kernel instrumentation; when given a
code resource, it generates that machine code snippet(s) to be inserted at specific kernel
addresses.

To select a metric, single-click on it (its check button will then turn blue). Once
selected, a metric stays selected until it is single-clicked on again to unselect it. Metric
selection can also be done using kperfmon’s tcl scripting interface; see Section 4.4.1.

Documentation on each metric is available on-line: clicking the middle mouse button
over any metric will pop up a window that gives useful information on what it mea-
sures, what code resources it can be combined with, and (for the curious) an overview of
the instrumentation code that it generates. An example is shown in Figure 6.

4.1.2 Resources: Kernel Code

kperfmon supports two classes of kernel resources: kernel code and CPUs7. These
selections are chosen by manipulating the “Kernel Code” and “CPU” panels of the kper-
fmon GUI. In this section, we descibe the “Kernel Code” panel.

Single-clicking on a resource will select it; the resource will be drawn recessed in the
GUI. Like a metric, a selected resource stays selected until explicitly unselected by sin-
gle-clicking on it again.

7. We hope to support other kinds of resources in the future. Consider for example, being able to couple a
metric “time blocked on” with a mutex (not code) resource “my_mutex”.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 10

Figure 6: The description of the metric vtime

Since the number of code resources is overwhelming (on my machine, for example,
there are 92 kernel modules, 9752 kernel functions, and 132250 basic blocks), it is chal-
lenging to present a GUI to allow for their selection. The solution in kperfmon organizes
resources as a tree (root, modules, functions, basic blocks). Since there is not enough
screen real estate to display 140000+ names, we hide entire sub-trees until they are
expanded with a double-click. For example, initially (Figure 1) there is only a single code
resource displayed (“Code”). The small triangle to the right of the name indicates that it
can be expanded to show further resources (in this case, the next tree level being the var-
ious kernel modules) as in Figure 2. To maximize use of screen real estate, the various
kernel modules are in a single, scrollable list box. Double-clicking on any one kernel
module will then expand the next level of that module (only), which would be the mod-
ule’s individual functions, as in Figure 3. Functions that were successfully parsed into
basic blocks by kerninstd can be expanded to show their basic blocks.

It is important to note that at least conceptually, a given metric can be coupled with
any code resource to create instrumentation. For example, coupling the “entries to” met-
ric with the resource “kmem_alloc” (of module “genunix”) gives the number of calls to
that function. Taking the next step, the same metric can be coupled with an individual
basic block to give the number of executions of that block. And conceptually, “entries to”
can be coupled with an entire kernel module (such as “genunix”) to give the number of
calls to any function in that module. However, in this case, the metric “entries to” will
disallow this combination, because the amount of kernel instrumentation required
would be overwhelming. The same applies to the base code resource, “Code”, which
would conceptually give the number of calls to any function in the kernel.

To review the hierarchy of code resources:

• Root or Code: conceptually means “the entire kernel”. Presently, all kperfmon met-
rics refuse to generate code when presented with this resource, because the amount
of instrumentation code to realize the desired measurement is prohibitive.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 11

• Kernel Module: these appear in the list box underneath Code. Kperfmon receives the
kernel modules from kerninstd on startup.8 As with the “root” resource, all kperf-
mon metrics refuse to generate the (prohibitively large amount of code) when cou-
pled with such a resource.

• Kernel Functions: a given module’s functions will appear in a list box underneath
the module. The functions will be shown sorted by kernel address.

• Basic blocks: a given function’s basic blocks will appear in the list box underneath
the function. The basic blocks will be shown sorted by kernel address. Unfortu-
nately, the only identifying information for a given basic block is its starting
address, so it is often difficult to know which basic block to choose! However, view-
ing a disassembly of a function or basic block (Section 4.3) can help.

 A Note About Fonts Used

If the fonts used in the resource hierarchy do not look good on a given installation,
they can be easily changed. Edit the file kperfmon.tcl (located in the same directory as
the kperfmon executable), change one of the lines beginning “set helv14 ...”, “set helv12
...”, “set helv10 ...”, or “set helv9 ...” (these lines will be near the beginning of the file),
and re-run kperfmon as before. Similarly, the font colors used can be changed by editing
the lines beginning “set cornflowerBlueColor” and “set pinkColor”.

 Resource Selection and Unselection Using the Keyboard

It will not take long to tire of scrolling through a module’s list box to find a specific
function. If you know the name of the kernel function, and the module that it belongs to,
you can select and unselect resources from the keyboard using kperfmon’s tcl scripting
interface; see Section 4.4.2.

4.1.3 Resources: CPUs

If kerninstd is run on a multiprocessor, kperfmon displays the “CPUs” panel. This panel
contains checkboxes for individual CPUs on the target system as well as the “total”
checkbox which represents the system as a whole. Selecting an individual CPU defines a
metric constrained to this CPU --- only events occurred on this CPU will be reported.
Selecting the “total” checkbox defines a metric aggregated across all CPUs. For example,
the “total” cpu resource applied to the “D-cache hits” metric will add up the individual
numbers of cache hits on each CPU and report a single number for the whole system.

4.1.4 Predicates

The standard coupling of a metric with a code resource can be augmented with a predi-
cate. Presently, there is a single supported predicate: process id(s). Consider the example
of the metric “entries to” coupled with the code resource “kmem_alloc()”, which will

8. Presently, if a kernel module is loaded into the kernel after starting up kerninstd, it will not be recognized.
This feature may be added in the future. In the meantime, the desired effect can be achieved by restarting
kerninstd, to force it to re-examine the contents of the kernel’s runtime symbol table.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 12

measure the number of calls made to kmem_alloc(). To measure the number of calls
made to “kmem_alloc()” just from a given process, you can enter its pid in “pid(s)” entry
widget of the kperfmon window. As always, it is up to the chosen metric to decide
whether it can instrument the particular combination of metric/resource/predicate.
Presently, every metric in kperfmon allows a pid to be entered.

Note also that more than one pid can be entered, so for example you can ask for the
number of calls to a function made by process X or Y or Z. To do so, enter a list9 of pids in
the “pid(s)” entry widget.

For those interested in technical details, the current pid is determined in instrumenta-
tion code by examining the current kernel thread’s process data structure. On Solaris,
kernel threads not belonging to a user process are always assigned a pid of 0, which is a
valid pid to enter in the “pid(s)” entry widget.

4.2 Visis

Visualization processes can be started in one of two ways: by selecting from the “start a
visi” kperfmon pull-down menu (as introduced in the tutorial), or through kperfmon’s
tcl scripting interface (Section 4.4.3).

Presently, kperfmon is shipped with three visualization processes (all, as you will no
doubt notice from the GUI logos, coming verbatim from KernInst’s sister project, Para-
dyn):

• Histogram. This is probably the most useful visi. For each metric/resource/predi-
cate selection made, a single curve is drawn showing the value (y-axis) over time
(x-axis). It is the only visi process that shows how samples change over time. The
downside is that the Histogram display can get cluttered after, say, 5 curves have
been added. Furthermore, average or total values cannot be displayed using the
Histogram.

• Barchart. This visi can display many metric/resource/predicate combinations effi-
ciently. Each resource/predicate combination is drawn, top to bottom. To the right
of a given resource/predicate combination will be one or more colored bars whose
length indicates the value (x-axis); each color corresponds to a specific metric. The
chief benefit of using the Barchart is that screen real estate is efficient, especially
when many metrics are chosen. The downside is that you cannot see values chang-
ing over time, as in the Histogram. You can, however, customize the display in sev-
eral ways by selecting from among the Barchart’s pull-down menus; the most
interesting being instantaneous (“current”) values vs. average values vs. total val-
ues.

• Table. This visi is similar to the Barchart, except that exact values are displayed on
screen. (Think of Table as a digital watch, and the Barchart as an analog one.)

The visis must be in the user’s search path. So, for example, add <base directory>/visi-
Clients/$PLATFORM to the $path environment variable before running kperfmon.

9. Both comma-separated and space-separated lists are supported.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 13

As mentioned in the tutorial, instrumentation does not take place when a visualiza-
tion is started. Kernel instrumentation takes place when the command is given to add
the current metric and resource selections to a given visi, which can be done in one of
two ways: (1) From within a visi’s GUI, select the menu item “Add curve(s)”, or (2) from
kperfmon’s tcl scripting interface, with the addCurrSelectionsToVisi command (see
Section 4.4.4). Whichever method is chosen, the kernel will get instrumented with the
currently selected metrics and resources, the visi will be informed of these pairings (so it
can update its GUI), and periodic sampling (from within kerninstd, which sends its data
to kperfmon, who then forwards it to relevant visi(s) for processing) will begin to take
place.

4.3 Debugging kperfmon and kerninstd

If you suspect a bug in kperfmon and/or kerninstd, the following widget in the kperf-
mon window can help track down a problem. Viewing a machine code disassembly of
the function(s) being instrumented is a good way to understand how KernInst works.
The two buttons in the kperfmon window under the label “Disassemble Selected
Fn/BasicBlock” are a good place to start. These buttons will disassemble every function
or basic block that is presently selected in the “Kernel Code” tree. In Figure 7, we see a
disassembly of kmem_alloc() achieved by selecting kmem_alloc() in the code tree and
then clicking on “Disassemble (orig)”.

Figure 7: Disassembly of kmem_alloc()

The disassembly window shows, on each line, the instruction’s address, a hex repre-
sentation of its raw byte code, and its disassembly. Calls to fixed-addresses (i.e., exclud-
ing calls via a register) will have the callee’s name as the title of a pull-down menu that
will allow the callee to be disassembled, selected, and unselected, respectively. To the left
of each instruction are two “+” buttons, which when clicked on, will give a live register
analysis for this instruction. Clicking on the left most button will show which registers
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 14

kerninstd thinks are killed (and thus are available for scratch usage by instrumentation
code), and which are potentially holding live values. Often on the Solaris kperfmon,
there are a pair of “killed/made live” lines; this indicates two different Sparc register
windows. Clicking on the right most “+” button will show a live register analysis for this
instruction in isolation.

The button “Disassemble(orig)” differs from “Disassemble (curr mem)” in one key
manner: the latter will disassemble from the present contents of kernel memory (and
thus, will show the effects of any dynamic instrumentation); the former will always
present a disassembly of the instructions at the moment kerninstd originally parsed
them. The current memory disassembly also does not provide live register analysis but-
tons.

The disassembly window can help debug kerninstd/kperfmon in several ways: if
you believe that instrumentation code is overwriting a register that is not free for scratch
usage, you might be able to determine that by viewing the live register analysis and the
instrumentation code itself. Viewing the instrumentation code is fairly easy: a disassem-
bly (curr mem) of a function will show that certain instruction(s) have been overwritten
with a branch to instrumentation code; simply follow that branch to determine where
instrumentation code begins.10 Once that is done, you can disassemble a specific range
of memory addresses: enter the starting address in the “From-addr:” entry widget, and
an ending address in the “To-addr:” entry widget and click on “Disassemble (kernel)”.
This will present a basic disassembly of this address range (no basic blocks boundaries
are shown, and no register analysis is done).

The “Disassemble (kerninstd)” button, only available in the Solaris kperfmon, is sim-
ilar, but it disassembles an address range in kerninstd’s, not the kernel’s, memory space.

4.4 Scripting kperfmon actions

Kperfmon has a tcl command line interface that can be accessed by typing into the shell
window from which kperfmon was started (not the kperfmon GUI window). This sec-
tion describes tcl commands that can drive kperfmon.

4.4.1 Scripting Metrics

The tcl command “metrics” can be used to select or unselect metrics within kperfmon.

metrics select “metricname” where metricname is, for example, “entries to” or
“vtime”, will select the appropriate metric. The spelling of the metric name must be
exactly the same as in the checkbuttons at the upper-left of kperfmon’s GUI window. If a
metric name contains spaces, then quotes around metricname are mandatory for correct
behavior.

10. As mentioned in our OSDI ‘99 paper, for Sparc a single branch instruction usually cannot reach the
instrumentation code, so a two-level jump scheme is usually needed: the branch instruction branches to
an intermediate locale called a springboard, which in turn takes several (usually three) instructions to
jump to the instrumentation code. Thus, a few disassemblies will be needed in practice before getting to
the instrumentation code.
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 15

metrics unselect “metricname” will unselect that metric.
metrics clear will unselect all metrics at once.
As always, remember that a metric, once selected, stays selected until explicitly unse-

lected.

4.4.2 Scripting Resources

The tcl command “resources” can be used to select or unselect resources within kperf-
mon.

resources select modname fnname where modname is, for example, genunix, and
where fnname is, for example, kmem_alloc, will select a particular resource.

resources unselect modname fnname will unselect a particular resource.
resources clear will unselect every resource currently selected.
resources select hexaddress will select a function when given any address that lies

within it. For example, resources select 0x100014ce.
As always, remember that a resource, once selected, stays selected until explicitly

unselected.

4.4.3 Scripting Starting/Closing Visis

kperfmon provides a tcl interface to starting and closing visis.

newVisi visiname will launch the visi visiname. Note that the current metric and
resource selections are not added to the visi by this command, nor does starting a visi
cause the kernel to be instrumented. visiname is the name of the visi; if it is not in the cur-
rent search path, you can use a full path name for visiname.

The newVisi command returns an integer identifier for this visi that will need to be
passed to the closeVisi and addCurrSelectionsToVisi commands, below. To remember this
identifier in a tcl script, one can assign the result integer to a tcl variable, as in

set myvisiid [newVisi rthist]

For the curious, you can view the value of this id by dumping it to stdout:
puts stdout $myvisiid

A visi can be closed with the closeVisi command, as in:
closeVisi $myvisiid

As always, closing a visi will uninstrument the kernel (assuming some instrumenta-
tion had been activated and was being sent to the visi).

4.4.4 Adding Current Metric and Resource Selections to a Visi

In a scripted session, between opening and closing a visi, you will in all likelihood want
to instrument the kernel and cause some values to be sent to the visi. Selecting metrics
and resources in a script were discussed above in Section 4.4.1 and Section 4.4.2. The
addCurrSelectionsToVisi command will gather the current metric and resource selections,
instrument the kernel, inform a visi so it may update its GUI, and begins the process of
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 16

sampling data values, which will be sent to a visi. The command takes in a single param-
eter, the visi id, as returned by the newVisi command. An example is:

addCurrSelectionsToVisi $myvisiid

4.4.5 Saving Data Values Collected by a Visi

Before closing a visi, a scripting session will probably wish to save the data values that
have been collected by the visi to some file. This is not presently implemented in kperf-
mon at the scripting level. However, this functionality is available by selecting “Save ...”
from the visi “File” menu, which will bring up a dialog box allowing you to select the
specific metric/resource combinations currently enabled in the visi for which you wish
to save values. After indicating the values you wish to save, click the “Export” button to
bring up another dialog box that allows you to choose a file name and location in which
to save the selected data.

4.4.6 Launching a Script

The above tcl commands can be typed directly into kperfmon’s command line inter-
face (which is in the shell that launched kperfmon, not kperfmon’s GUI window). A
scripted sequence of these commands can be put in a “.tcl” file, and be launched by typ-
ing the tcl source command, as in:

source myfile.tcl

Of course, at least a rudimentary knowledge of the tcl language will be required to
get much use out of scripting. The best place to start learning tcl is:

http://www.tcl.tk
KernInst User’s Guide Release 2.1.2 - January 31, 2007 Page 17

	KernInst User’s Manual
	Version 2.1.2
	Barton P. Miller, Alexander Mirgorodskii, Michael Brim, Igor Grobman University of Wisconsin-Madison
	{bart, mirg, mjbrim, igor}@cs.wisc.edu Bug reports to mjbrim
	1 Overview
	1.1 KernInst System Components
	1.2 Platform requirements

	2 Installation
	2.1 Fetch a distribution
	2.2 Install the device driver
	2.3 Run kerninstd
	2.4 Run kperfmon

	3 Quick Kernel Instrumentation Tutorial
	Figure 1: The kperfmon GUI on startup
	Figure 2: kperfmon after expanding “Code” to its children (all of the kernel modules)
	Figure 3: kperfmon window after expanding the “genunix” kernel module, scrolling its list box until we find the function “kmem_alloc”, and selecting that function
	Figure 4: The histogram visi window
	Figure 5: Histogram visi window after some data has been collected

	4 Kperfmon User’s Guide
	4.1 Making Instrumentation Requests (Selections)
	4.1.1 Metrics
	Figure 6: The description of the metric vtime

	4.1.2 Resources: Kernel Code
	A Note About Fonts Used
	Resource Selection and Unselection Using the Keyboard

	4.1.3 Resources: CPUs
	4.1.4 Predicates

	4.2 Visis
	4.3 Debugging kperfmon and kerninstd
	Figure 7: Disassembly of kmem_alloc()

	4.4 Scripting kperfmon actions
	4.4.1 Scripting Metrics
	4.4.2 Scripting Resources
	4.4.3 Scripting Starting/Closing Visis
	4.4.4 Adding Current Metric and Resource Selections to a Visi
	4.4.5 Saving Data Values Collected by a Visi
	4.4.6 Launching a Script

