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Paradyn technology: Dynamic Instrumentation A

A machine-independent interface to machine-level instrumentation and control!

0 On-the-fly insertion, removal and modification of instrumentation in the application
program, during its execution.

« No need for expensive (often impossible) recompilation nor relinking

 Instrumentation only inserted when and where currently needed
(and removed afterwards)

00 Selected instrumentation points (function entry, exits and callsites) re-written
and/or patched to jJump to an instrumentation framework (known as a “base
trampoline”) which now contains the relocated instructions overwritten in the
original function.

O Instrumentation snippets synthesized from an abstract specification based on
primitives and predicates, inserted into their own mini-trampolines daisy-chained
from the base trampoline.

0 Expressive metric definitions through the Metric Description Language (MDL)
0 Dynamic monitoring and control of instrumentation overhead/intrusiveness
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Paradyn technology: Performance Consultant

Automated, portable, scalable decision support for execution bottlenecks!

0 Answers three key questions about a program’s execution:
« Why is it slow or inefficient? (synchronization, I/O, CPU utilization, memory, ...)
« Where is this occurring? (machine, process, thread, module, function, tag, ...)
« When does it occur? (initialization, computational kernel, checkpointing, ...)

0 Regular structure created specifying the causes of possible bottlenecks makes
automated searches possible

« Hypotheses based on user-specified thresholds:
e.g., synchronization blocking time < 25% of execution time

« Evaluating bottleneck hypotheses triggers dynamic instrumentation requests
(activating and deactivating instrumentation)

O Instrumentation costs relate the number of actively considered hypotheses to the
instrumentation overhead and execution perturbation

O Identifies a focus or foci for more in-depth execution analysis and visualizations
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Performance Consultant search in progress

The Performance Consultant

Searches

Current Search: Global Phase
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Current Research: Improved Performance Consultant

Problem:;

- Code/module/function hierarchy too wide for efficient searches:
(system) libraries have 1000s of (unexecuted/uninteresting) functions...

« Module instrumentation not cheaper than function instrumentation:
all functions must be instrumented in each module of interest

« EXxclusive metrics more expensive than inclusive metrics:
entry + exit(s) plus before and after every call site

« Search unrelated to actual program execution

New approach:
« Search based on dynamic call graph, using inclusive metrics

References:

« “A new scheme for Performance Consultant searches in the code hierarchy,’
Matthew Cheyney, http://www.cs.wisc.edu/~paradyn/PW98_notes/mcheyney grays.ps.gz

- “Dynamic control of performance monitoring on large-scale parallel systems,’
Jeffrey K. Hollingsworth and Barton P. Miller, Int'l Conf. on Supercomputing
(ICS’93, Tokyo, Japan), July 1993
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Current Research: Experiment Management A
Problem:
« Performance data available from multiple runs (huge multi-dimensional space):
simulations, benchmarking, tuning, regression testing, etc.
Approach:
« Provide infrastructure for manipulation and management of performance data
« Automatically compare execution data from multiple runs
« Faster bottleneck location initiated from historical execution analyses
« Useful for typical software development. Crucial in meta-computer environment:
a “laboratory notebook” for performance studies.
References:
« “Experiment management support for performance tuning,” Karen L. Karavanic
and Barton P. Miller, Proceedings of SC’97 (San Jose, CA, USA), Nov. 1997
« New report/paper in preparation
« karavan@cs.wisc.edu
/
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Current Research: Fine-grained, adaptive instrumentation A
Problem:
« Instrumentation is currently only medium-grained (function+callsite level)
 Instrumentation trampolines are multiple instruction jump sequences
« Inapplicable for instrumenting OS kernels

Approach:
« Fine-grained instrumentation (block level, atomic jump patching)
« Dynamic generation of customized/optimized code

References:

« “Fine-grained dynamic instrumentation of commodity operating system kernels,”
Ariel Tamches and Barton P. Miller, 3rd Symp. on Operating Systems Design
and Implementation (OSDI’'99, New Orleans, LA, USA), Feb. 1999

« “Using dynamic kernel instrumentation for kernel and application tuning,”
Ariel Tamches and Barton P. Miller, currently under review

- “Dynamic instrumentation of threaded applications,” Zhichen Xu, Barton P.
Miller and Oscar Naim, accepted for PPoPP’99 (Atlanta, GA, USA), May 1999

« tamches@cs.wisc.edu , zhichen@cs.wisc.edu
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Current Research: Dynamic Instrumentation API

Approach:
« Provide basic substrate for building new tools: DyninstAPI

 Library of C++ classes for machine-independent mutatee code analysis,
execution control, and run-time code generation and insertion into mutatee

« Collaboration with University of Maryland, IBM (DPCL), etc.
« Basis for CSCS/U.Basel’'s FIRST and TUM’s OCM tools activities
« Form the basis for an emerging open standardization effort:
next meeting during Paradyn Week (26 March 1999, Madison, WI, USA)
References:

- “An Application Program Interface (API) for runtime code generation,”
Jeffrey K. Hollingsworth, http://www.cs.umd.edu/projects/dyninstAPI/

« “MDL: A language and compiler for dynamic program instrumentation,”
Jeffrey K. Hollingsworth, Barton P. Miller, Marcelo J. R. Gongalves, Oscar Naim,
Zhichen Xu and Ling Zheng, 5th Int'l Conf. on Parallel Architectures and
Compilation Techniques (San Francisco, CA, USA), Nov. 1997

 hollings@cs.umd.edu
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Paradyn status

Paradyn is a research prototype for analyzing complex, long-running, large-scale,
multi-language, multiple process/processor, heterogeneous, distributed applications!

00 Latest released versions: Paradyn v2.1 (May 1998); DyninstAPI v1.2 (Sep. 1998)
« Supported platforms: Solaris (SPARC & x86), WindowsNT (x86), AIX (RS6000)
« Ports in progress: Linux (x86), Irix (MIPS), Digital Unix (Alpha)
« Programs: C, Fortran, PVM, MPI, ...

O Distribution of sources, binaries and manuals free of charge for research use

References:

- “The Paradyn Parallel Performance Measurement Tools,” Barton P. Miller,
Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth,
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam and Tia Newhall,
IEEE Computer 28, 11, pp.37-46, (Nov. 1995)

 http://www.cs.wisc.edu/~paradyn/
« paradyn@cs.wisc.edu
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Possible APART goals/achievements

[0 Set a research agenda bigger than (traditional) scientific/numerical computing!

« Exponential growth in distributed database systems and information servers,
which have complex and poorly-understood performance characteristics

0 Demonstrate the applicability of automated & automatic performance analysis
in the wider context of industrially-relevant parallel and distributed applications
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