
ie

nce Tools

ylie
isc.edu)

ent
on
A

C)
.)

Project Alumni:

Mark Callaghan, Jon Cargille
Marcelo Gonçalves, Bruce Irvin

Oscar Naìm, Sunlung Suen
Ling Zheng
Copyright © 1999 Barton P. Miller & Brian J. N. Wyl

1

Paradyn Parallel Performa

Barton P. Miller &Brian J. N. W
(bart@cs.wisc.edu , wylie@cs.w

paradyn@cs.wisc.edu
http://www.cs.wisc.edu/~paradyn

Computer Sciences Departm
University of Wisconsin-Madis
Madison, WI 53706-1685, US

Students:

Trey Cain, Chris Chambreau,
Karen Karavanic, Dan Nash,
Tia Newhall, Phil Roth,
Brandon Schendel, Chris Serra,
Ariel Tamches, Zhichen Xu,
Vic Zandy; Bryan Buck (UMD)

Associated Researchers:

Jeff Brown (LANL)
Karsten Decker (CSCS/SCS
Carlos Figueira (USB-Venez

Ian Foster (ANL)
Jeff Hollingsworth (UMD)

Douglas Pase (IBM)

Paradyn technology: Dynamic Instrumentation

mentation and control!

mentation in the application

tion nor relinking

ently needed

nd callsites) re-written
rk (known as a “base

tions overwritten in the

t specification based on
-trampolines daisy-chained

ription Language (MDL)

erhead/intrusiveness
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

2

A machine-independent interface to machine-level instru

❏ On-the-fly insertion, removal and modification of instru
program, during its execution.

• No need for expensive (often impossible) recompila

• Instrumentation only inserted when and where curr
(and removed afterwards)

❏ Selected instrumentation points (function entry, exits a
and/or patched to jump to an instrumentation framewo
trampoline”) which now contains the relocated instruc
original function.

❏ Instrumentation snippets synthesized from an abstrac
primitives and predicates, inserted into their own mini
from the base trampoline.

❏ Expressive metric definitions through the Metric Desc

❏ Dynamic monitoring and control of instrumentation ov

Paradyn technology: Performance Consultant

ution bottlenecks!

tion:

PU utilization, memory, ...)

, module, function, tag, ...)

ernel, checkpointing, ...)

ssible bottlenecks makes

ion time

 instrumentation requests

nsidered hypotheses to the

nalysis and visualizations
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

3

Automated, portable, scalable decision support for exec

❏ Answers three key questions about a program’s execu

• Why is it slow or inefficient? (synchronization, I/O, C

• Where is this occurring? (machine, process, thread

• When does it occur? (initialization, computational k

❏ Regular structure created specifying the causes of po
automated searches possible

• Hypotheses based on user-specified thresholds:
e.g., synchronization blocking time < 25% of execut

• Evaluating bottleneck hypotheses triggers dynamic
(activating and deactivating instrumentation)

❏ Instrumentation costs relate the number of actively co
instrumentation overhead and execution perturbation

❏ Identifies a focus or foci for more in-depth execution a

Performance Consultant search in progress ...
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

4

Current Research: Improved Performance Consultant

t searches:
resting) functions...

nstrumentation:
of interest

trics:

e metrics

es in the code hierarchy,”
_notes/mcheyney_grays.ps.gz

e-scale parallel systems,”
onf. on Supercomputing
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

5

Problem:

• Code/module/function hierarchy too wide for efficien
(system) libraries have 1000s of (unexecuted/uninte

• Module instrumentation not cheaper than function i
all functions must be instrumented in each module

• Exclusive metrics more expensive than inclusive me
entry + exit(s) plus before and after every call site

• Search unrelated to actual program execution

New approach:

• Search based on dynamic call graph, using inclusiv

References:

• “A new scheme for Performance Consultant search
Matthew Cheyney, http://www.cs.wisc.edu/~paradyn/PW98

• “Dynamic control of performance monitoring on larg
Jeffrey K. Hollingsworth and Barton P. Miller, Int’l C
(ICS’93, Tokyo, Japan), July 1993

Current Research: Experiment Management

e multi-dimensional space):
g, etc.

ment of performance data

 runs

ecution analyses

eta-computer environment:

 tuning,” Karen L. Karavanic
se, CA, USA), Nov. 1997
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

6

Problem:

• Performance data available from multiple runs (hug
simulations, benchmarking, tuning, regression testin

Approach:

• Provide infrastructure for manipulation and manage

• Automatically compare execution data from multiple

• Faster bottleneck location initiated from historical ex

• Useful for typical software development. Crucial in m
a “laboratory notebook” for performance studies.

References:

• “Experiment management support for performance
and Barton P. Miller, Proceedings of SC’97 (San Jo

• New report/paper in preparation

• karavan@cs.wisc.edu

Current Research: Fine-grained, adaptive instrumentation

unction+callsite level)

 jump sequences

mp patching)

y operating system kernels,”
perating Systems Design
SA), Feb. 1999

d application tuning,”
review

 Zhichen Xu, Barton P.
anta, GA, USA), May 1999
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

7

Problem:

• Instrumentation is currently only medium-grained (f

• Instrumentation trampolines are multiple instruction

• Inapplicable for instrumenting OS kernels

Approach:

• Fine-grained instrumentation (block level, atomic ju

• Dynamic generation of customized/optimized code

References:

• “Fine-grained dynamic instrumentation of commodit
Ariel Tamches and Barton P. Miller, 3rd Symp. on O
and Implementation (OSDI’99, New Orleans, LA, U

• “Using dynamic kernel instrumentation for kernel an
Ariel Tamches and Barton P. Miller, currently under

• “Dynamic instrumentation of threaded applications,”
Miller and Oscar Naìm, accepted for PPoPP’99 (Atl

• tamches@cs.wisc.edu , zhichen@cs.wisc.edu

Current Research: Dynamic Instrumentation API

nstAPI
tatee code analysis,

d insertion into mutatee

L), etc.

ools activities

n effort:
, Madison, WI, USA)

 code generation,”
jects/dyninstAPI/

m instrumentation,”
R. Gonçalves, Oscar Naìm,
lel Architectures and
 Nov. 1997
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

8

Approach:

• Provide basic substrate for building new tools: DynI
• Library of C++ classes for machine-independent mu

execution control, and run-time code generation an

• Collaboration with University of Maryland, IBM (DPC

• Basis for CSCS/U.Basel’s FIRST and TUM’s OCM t

• Form the basis for an emerging open standardizatio
next meeting during Paradyn Week (26 March 1999

References:

• “An Application Program Interface (API) for runtime
Jeffrey K. Hollingsworth, http://www.cs.umd.edu/pro

• “MDL: A language and compiler for dynamic progra
Jeffrey K. Hollingsworth, Barton P. Miller, Marcelo J.
Zhichen Xu and Ling Zheng, 5th Int’l Conf. on Paral
Compilation Techniques (San Francisco, CA, USA),

• hollings@cs.umd.edu

Paradyn status

long-running, large-scale,
ous, distributed applications!

ynInstAPI v1.2 (Sep. 1998)

owsNT (x86), AIX (RS6000)

nix (Alpha)

harge for research use

ools,” Barton P. Miller,
 Hollingsworth,
hapadam and Tia Newhall,
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

9

Paradyn is a research prototype for analyzing complex,
multi-language, multiple process/processor, heterogene

❏ Latest released versions: Paradyn v2.1 (May 1998); D

• Supported platforms: Solaris (SPARC & x86), Wind

• Ports in progress: Linux (x86), Irix (MIPS), Digital U

• Programs: C, Fortran, PVM, MPI, ...

❏ Distribution of sources, binaries and manuals free of c

References:

• “The Paradyn Parallel Performance Measurement T
Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchit
IEEE Computer 28, 11, pp.37-46, (Nov. 1995)

• http://www.cs.wisc.edu/~paradyn/

• paradyn@cs.wisc.edu

Possible APART goals/achievements

ific/numerical computing!

 and information servers,
ance characteristics

tic performance analysis
 distributed applications
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

10

❏ Set a research agenda bigger than (traditional) scient

• Exponential growth in distributed database systems
which have complex and poorly-understood perform

❏ Demonstrate the applicability of automated & automa
in the wider context of industrially-relevant parallel and

	Students:
	Trey Cain, Chris Chambreau, Karen Karavanic, Dan Nash, Tia Newhall, Phil Roth, Brandon Schendel, ...
	Associated Researchers:
	Jeff Brown (LANL) Karsten Decker (CSCS/SCSC) Carlos Figueira (USB-Venez.) Ian Foster (ANL) Jeff H...
	Project Alumni:
	Mark Callaghan, Jon Cargille Marcelo Gonçalves, Bruce Irvin Oscar Naìm, Sunlung Suen Ling Zheng
	Paradyn Parallel Performance Tools
	Barton P. Miller & Brian J. N. Wylie (bart@cs.wisc.edu , wylie@cs.wisc.edu)
	paradyn@cs.wisc.edu http://www.cs.wisc.edu/~paradyn
	Computer Sciences Department University of Wisconsin-Madison Madison, WI 53706-1685, USA

	Paradyn technology: Dynamic Instrumentation
	A machine-independent interface to machine-level instrumentation and control!
	On-the-fly insertion, removal and modification of instrumentation in the application program, dur...
	• No need for expensive (often impossible) recompilation nor relinking
	• Instrumentation only inserted when and where currently needed (and removed afterwards)

	Selected instrumentation points (function entry, exits and callsites) re-written and/or patched t...
	Instrumentation snippets synthesized from an abstract specification based on primitives and predi...
	Expressive metric definitions through the Metric Description Language (MDL)
	Dynamic monitoring and control of instrumentation overhead/intrusiveness

	Paradyn technology: Performance Consultant
	Automated, portable, scalable decision support for execution bottlenecks!
	Answers three key questions about a program’s execution:
	• Why is it slow or inefficient? (synchronization, I/O, CPU utilization, memory, ...)
	• Where is this occurring? (machine, process, thread, module, function, tag, ...)
	• When does it occur? (initialization, computational kernel, checkpointing, ...)

	Regular structure created specifying the causes of possible bottlenecks makes automated searches ...
	• Hypotheses based on user-specified thresholds: e.g., synchronization blocking time < 25% of exe...
	• Evaluating bottleneck hypotheses triggers dynamic instrumentation requests (activating and deac...

	Instrumentation costs relate the number of actively considered hypotheses to the instrumentation ...
	Identifies a focus or foci for more in-depth execution analysis and visualizations

	Performance Consultant search in progress ...
	Current Research: Improved Performance Consultant
	Problem:
	• Code/module/function hierarchy too wide for efficient searches: (system) libraries have 1000s o...
	• Module instrumentation not cheaper than function instrumentation: all functions must be instrum...
	• Exclusive metrics more expensive than inclusive metrics: entry + exit(s) plus before and after ...
	• Search unrelated to actual program execution

	New approach:
	• Search based on dynamic call graph, using inclusive metrics

	References:
	• “A new scheme for Performance Consultant searches in the code hierarchy,” Matthew Cheyney, http...
	• “Dynamic control of performance monitoring on large-scale parallel systems,” Jeffrey K. Holling...

	Current Research: Experiment Management
	Problem:
	• Performance data available from multiple runs (huge multi-dimensional space): simulations, benc...

	Approach:
	• Provide infrastructure for manipulation and management of performance data
	• Automatically compare execution data from multiple runs
	• Faster bottleneck location initiated from historical execution analyses
	• Useful for typical software development. Crucial in meta-computer environment: a “laboratory no...

	References:
	• “Experiment management support for performance tuning,” Karen L. Karavanic and Barton P. Miller...
	• New report/paper in preparation
	• karavan@cs.wisc.edu

	Current Research: Fine-grained, adaptive instrumentation
	Problem:
	• Instrumentation is currently only medium-grained (function+callsite level)
	• Instrumentation trampolines are multiple instruction jump sequences
	• Inapplicable for instrumenting OS kernels

	Approach:
	• Fine-grained instrumentation (block level, atomic jump patching)
	• Dynamic generation of customized/optimized code

	References:
	• “Fine-grained dynamic instrumentation of commodity operating system kernels,” Ariel Tamches and...
	• “Using dynamic kernel instrumentation for kernel and application tuning,” Ariel Tamches and Bar...
	• “Dynamic instrumentation of threaded applications,” Zhichen Xu, Barton P. Miller and Oscar Naìm...
	• tamches@cs.wisc.edu, zhichen@cs.wisc.edu

	Current Research: Dynamic Instrumentation API
	Approach:
	• Provide basic substrate for building new tools: DynInstAPI
	• Library of C++ classes for machine-independent mutatee code analysis, execution control, and ru...
	• Collaboration with University of Maryland, IBM (DPCL), etc.
	• Basis for CSCS/U.Basel’s FIRST and TUM’s OCM tools activities
	• Form the basis for an emerging open standardization effort: next meeting during Paradyn Week (2...

	References:
	• “An Application Program Interface (API) for runtime code generation,” Jeffrey K. Hollingsworth,...
	• “MDL: A language and compiler for dynamic program instrumentation,” Jeffrey K. Hollingsworth, B...
	• hollings@cs.umd.edu

	Paradyn status
	Paradyn is a research prototype for analyzing complex, long-running, large-scale, multi-language,...
	Latest released versions: Paradyn v2.1 (May 1998); DynInstAPI v1.2 (Sep. 1998)
	• Supported platforms: Solaris (SPARC & x86), WindowsNT (x86), AIX (RS6000)
	• Ports in progress: Linux (x86), Irix (MIPS), Digital Unix (Alpha)
	• Programs: C, Fortran, PVM, MPI, ...

	Distribution of sources, binaries and manuals free of charge for research use

	References:
	• “The Paradyn Parallel Performance Measurement Tools,” Barton P. Miller, Mark D. Callaghan, Jona...
	• http://www.cs.wisc.edu/~paradyn/
	• paradyn@cs.wisc.edu

	Possible APART goals/achievements
	Set a research agenda bigger than (traditional) scientific/numerical computing!
	• Exponential growth in distributed database systems and information servers, which have complex ...

	Demonstrate the applicability of automated & automatic performance analysis in the wider context ...

