4 N
Paradyn Parallel Performance Tools
Barton P. Miller & Brian J. N. Wylie
(bart@cs.wisc.edu , wylie@cs.wisc.edu
paradyn@cs.wisc.edu
http://www.cs.wisc.edu/~paradyn
Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706-1685, USA
Students: Associated Researchers: Project Alumni:
Trey Cain, Chris Chambreau, Jeff Brown (LANL) Mark Callaghan, Jon Cargille
Karen Karavanic, Dan Nash, Karsten Decker (CSCS/SCSC)Marcelo Gongalves, Bruce Irvin
Tia Newhall, Phil Roth, Carlos Figueira (USB-Venez.) Oscar Naim, Sunlung Suen
Brandon Schendel, Chris Serra, lan Foster (ANL) Ling Zheng
Ariel Tamches, Zhichen Xu, Jeff Hollingsworth (UMD)
Vic Zandy; Bryan Buck (UMD) Douglas Pase (IBM)
- /

szara
yn

Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

UNIVERSITY OF

: WISCONSIN

M A DI S O N

Paradyn technology: Dynamic Instrumentation A

A machine-independent interface to machine-level instrumentation and control!

0 On-the-fly insertion, removal and modification of instrumentation in the application
program, during its execution.

« No need for expensive (often impossible) recompilation nor relinking

 Instrumentation only inserted when and where currently needed
(and removed afterwards)

00 Selected instrumentation points (function entry, exits and callsites) re-written
and/or patched to jJump to an instrumentation framework (known as a “base
trampoline”) which now contains the relocated instructions overwritten in the
original function.

O Instrumentation snippets synthesized from an abstract specification based on
primitives and predicates, inserted into their own mini-trampolines daisy-chained
from the base trampoline.

0 Expressive metric definitions through the Metric Description Language (MDL)
0 Dynamic monitoring and control of instrumentation overhead/intrusiveness

N /
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie UNIVERSITY OF
c/%*ra 2 WISCONSIN

n M ADIS O N

\

Paradyn technology: Performance Consultant

Automated, portable, scalable decision support for execution bottlenecks!

0 Answers three key questions about a program’s execution:
« Why is it slow or inefficient? (synchronization, I/O, CPU utilization, memory, ...)
« Where is this occurring? (machine, process, thread, module, function, tag, ...)
« When does it occur? (initialization, computational kernel, checkpointing, ...)

0 Regular structure created specifying the causes of possible bottlenecks makes
automated searches possible

« Hypotheses based on user-specified thresholds:
e.g., synchronization blocking time < 25% of execution time

« Evaluating bottleneck hypotheses triggers dynamic instrumentation requests
(activating and deactivating instrumentation)

O Instrumentation costs relate the number of actively considered hypotheses to the
instrumentation overhead and execution perturbation

O Identifies a focus or foci for more in-depth execution analysis and visualizations

/

n M ADIS O N

Copyright © 1999 Barton P. Miller & Brian J. N. Wylie UNIVERSITY OF
c/%*ra 3 WISCONSIN

Performance Consultant search in progress

The Performance Consultant

Searches

Current Search: Global Phase

CPUbound tested true for /Code/partition.c/p_makekAG Mdachine MMemory/Process,/SyncObject
CPUbound tested true for /Code/random.cfMormBand,/kMachine Memaory,/Process,Synclbject
CPUbound tested true for fCode/random.c/Machine/basil/MMemory /Process, Synclhbject
CPUbound tested true for /Code/graph.c,/Machine/basil /iMemory,/Process,/SyncObject
CPUbound tested true for /Code/partition.c,/Machinefbasil MMemory,/Process,SyncObject

TopLevelypathesis
[CPUbound

bubba.c —_— e

DEFAULT MODULE W

[partiton.

channel.c DEFAULT_MODULE | partition.c B |
|

hah 1

anneal.c channel.c

p_new

outchan.c graph.c

p_init

franiom ¢ | PTY

p_ovetap

p_hconst

libm.s0.1 | | outchan.c

p_whichset

A

|CPUbuund::andefpartition.cfp_makeMG,fMachine,a‘Memow,fPrncess,a'SyncObject

Pause

Mever Evaluated

Unknown

uninstrumented

False wiinstrumenied, shadow nods

Wiy Axis Refinement

YWilhere Axis Refinement

/

Copyright © 1999 Barton P. Miller & Brian J. N. Wylie

ara 4

UNIVERSITY OF

WISCONSIN

M A D S O N

Current Research: Improved Performance Consultant

Problem:;

- Code/module/function hierarchy too wide for efficient searches:
(system) libraries have 1000s of (unexecuted/uninteresting) functions...

« Module instrumentation not cheaper than function instrumentation:
all functions must be instrumented in each module of interest

« EXxclusive metrics more expensive than inclusive metrics:
entry + exit(s) plus before and after every call site

« Search unrelated to actual program execution

New approach:
« Search based on dynamic call graph, using inclusive metrics

References:

« “A new scheme for Performance Consultant searches in the code hierarchy,’
Matthew Cheyney, http://www.cs.wisc.edu/~paradyn/PW98_notes/mcheyney grays.ps.gz

- “Dynamic control of performance monitoring on large-scale parallel systems,’
Jeffrey K. Hollingsworth and Barton P. Miller, Int'l Conf. on Supercomputing
(ICS’93, Tokyo, Japan), July 1993

/

Copyright © 1999 Barton P. Miller & Brian J. N. Wylie UNIVERSITY OF
c/%*ra 5 WISCONSIN

n M ADIS O N

\

Current Research: Experiment Management A
Problem:
« Performance data available from multiple runs (huge multi-dimensional space):
simulations, benchmarking, tuning, regression testing, etc.
Approach:
« Provide infrastructure for manipulation and management of performance data
« Automatically compare execution data from multiple runs
« Faster bottleneck location initiated from historical execution analyses
« Useful for typical software development. Crucial in meta-computer environment:
a “laboratory notebook” for performance studies.
References:
« “Experiment management support for performance tuning,” Karen L. Karavanic
and Barton P. Miller, Proceedings of SC’97 (San Jose, CA, USA), Nov. 1997
« New report/paper in preparation
« karavan@cs.wisc.edu
/

n M ADTIS O N

Copyright © 1999 Barton P. Miller & Brian J. N. Wylie UNIVERSITY OF
C/;)ara 6 WISCONSIN

-

\

Current Research: Fine-grained, adaptive instrumentation A
Problem:
« Instrumentation is currently only medium-grained (function+callsite level)
 Instrumentation trampolines are multiple instruction jump sequences
« Inapplicable for instrumenting OS kernels

Approach:
« Fine-grained instrumentation (block level, atomic jump patching)
« Dynamic generation of customized/optimized code

References:

« “Fine-grained dynamic instrumentation of commodity operating system kernels,”
Ariel Tamches and Barton P. Miller, 3rd Symp. on Operating Systems Design
and Implementation (OSDI’'99, New Orleans, LA, USA), Feb. 1999

« “Using dynamic kernel instrumentation for kernel and application tuning,”
Ariel Tamches and Barton P. Miller, currently under review

- “Dynamic instrumentation of threaded applications,” Zhichen Xu, Barton P.
Miller and Oscar Naim, accepted for PPoPP’99 (Atlanta, GA, USA), May 1999

« tamches@cs.wisc.edu , zhichen@cs.wisc.edu

/

Copyright © 1999 Barton P. Miller & Brian J. N. Wylie UNIVERSITY OF
c/%*ra 7 WISCONSIN

n M ADIS O N

Current Research: Dynamic Instrumentation API

Approach:
« Provide basic substrate for building new tools: DyninstAPI

 Library of C++ classes for machine-independent mutatee code analysis,
execution control, and run-time code generation and insertion into mutatee

« Collaboration with University of Maryland, IBM (DPCL), etc.
« Basis for CSCS/U.Basel’'s FIRST and TUM’s OCM tools activities
« Form the basis for an emerging open standardization effort:
next meeting during Paradyn Week (26 March 1999, Madison, WI, USA)
References:

- “An Application Program Interface (API) for runtime code generation,”
Jeffrey K. Hollingsworth, http://www.cs.umd.edu/projects/dyninstAPI/

« “MDL: A language and compiler for dynamic program instrumentation,”
Jeffrey K. Hollingsworth, Barton P. Miller, Marcelo J. R. Gongalves, Oscar Naim,
Zhichen Xu and Ling Zheng, 5th Int'l Conf. on Parallel Architectures and
Compilation Techniques (San Francisco, CA, USA), Nov. 1997

 hollings@cs.umd.edu

N /
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie UNIVERSITY OF
c/%*ra 8 WISCONSIN

n M ADIS O N

Paradyn status

Paradyn is a research prototype for analyzing complex, long-running, large-scale,
multi-language, multiple process/processor, heterogeneous, distributed applications!

00 Latest released versions: Paradyn v2.1 (May 1998); DyninstAPI v1.2 (Sep. 1998)
« Supported platforms: Solaris (SPARC & x86), WindowsNT (x86), AIX (RS6000)
« Ports in progress: Linux (x86), Irix (MIPS), Digital Unix (Alpha)
« Programs: C, Fortran, PVM, MPI, ...

O Distribution of sources, binaries and manuals free of charge for research use

References:

- “The Paradyn Parallel Performance Measurement Tools,” Barton P. Miller,
Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth,
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam and Tia Newhall,
IEEE Computer 28, 11, pp.37-46, (Nov. 1995)

 http://www.cs.wisc.edu/~paradyn/
« paradyn@cs.wisc.edu

/
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie UNIVERSITY OF
c/%*ra 9 WISCONSIN

\

n M ADIS O N

Possible APART goals/achievements

[0 Set a research agenda bigger than (traditional) scientific/numerical computing!

« Exponential growth in distributed database systems and information servers,
which have complex and poorly-understood performance characteristics

0 Demonstrate the applicability of automated & automatic performance analysis
in the wider context of industrially-relevant parallel and distributed applications

Y /
Copyright © 1999 Barton P. Miller & Brian J. N. Wylie UNIVERSITY OF
C/;’qra . WISCONSIN

n M ADIS O N

	Students:
	Trey Cain, Chris Chambreau, Karen Karavanic, Dan Nash, Tia Newhall, Phil Roth, Brandon Schendel, ...
	Associated Researchers:
	Jeff Brown (LANL) Karsten Decker (CSCS/SCSC) Carlos Figueira (USB-Venez.) Ian Foster (ANL) Jeff H...
	Project Alumni:
	Mark Callaghan, Jon Cargille Marcelo Gonçalves, Bruce Irvin Oscar Naìm, Sunlung Suen Ling Zheng
	Paradyn Parallel Performance Tools
	Barton P. Miller & Brian J. N. Wylie (bart@cs.wisc.edu , wylie@cs.wisc.edu)
	paradyn@cs.wisc.edu http://www.cs.wisc.edu/~paradyn
	Computer Sciences Department University of Wisconsin-Madison Madison, WI 53706-1685, USA

	Paradyn technology: Dynamic Instrumentation
	A machine-independent interface to machine-level instrumentation and control!
	On-the-fly insertion, removal and modification of instrumentation in the application program, dur...
	• No need for expensive (often impossible) recompilation nor relinking
	• Instrumentation only inserted when and where currently needed (and removed afterwards)

	Selected instrumentation points (function entry, exits and callsites) re-written and/or patched t...
	Instrumentation snippets synthesized from an abstract specification based on primitives and predi...
	Expressive metric definitions through the Metric Description Language (MDL)
	Dynamic monitoring and control of instrumentation overhead/intrusiveness

	Paradyn technology: Performance Consultant
	Automated, portable, scalable decision support for execution bottlenecks!
	Answers three key questions about a program’s execution:
	• Why is it slow or inefficient? (synchronization, I/O, CPU utilization, memory, ...)
	• Where is this occurring? (machine, process, thread, module, function, tag, ...)
	• When does it occur? (initialization, computational kernel, checkpointing, ...)

	Regular structure created specifying the causes of possible bottlenecks makes automated searches ...
	• Hypotheses based on user-specified thresholds: e.g., synchronization blocking time < 25% of exe...
	• Evaluating bottleneck hypotheses triggers dynamic instrumentation requests (activating and deac...

	Instrumentation costs relate the number of actively considered hypotheses to the instrumentation ...
	Identifies a focus or foci for more in-depth execution analysis and visualizations

	Performance Consultant search in progress ...
	Current Research: Improved Performance Consultant
	Problem:
	• Code/module/function hierarchy too wide for efficient searches: (system) libraries have 1000s o...
	• Module instrumentation not cheaper than function instrumentation: all functions must be instrum...
	• Exclusive metrics more expensive than inclusive metrics: entry + exit(s) plus before and after ...
	• Search unrelated to actual program execution

	New approach:
	• Search based on dynamic call graph, using inclusive metrics

	References:
	• “A new scheme for Performance Consultant searches in the code hierarchy,” Matthew Cheyney, http...
	• “Dynamic control of performance monitoring on large-scale parallel systems,” Jeffrey K. Holling...

	Current Research: Experiment Management
	Problem:
	• Performance data available from multiple runs (huge multi-dimensional space): simulations, benc...

	Approach:
	• Provide infrastructure for manipulation and management of performance data
	• Automatically compare execution data from multiple runs
	• Faster bottleneck location initiated from historical execution analyses
	• Useful for typical software development. Crucial in meta-computer environment: a “laboratory no...

	References:
	• “Experiment management support for performance tuning,” Karen L. Karavanic and Barton P. Miller...
	• New report/paper in preparation
	• karavan@cs.wisc.edu

	Current Research: Fine-grained, adaptive instrumentation
	Problem:
	• Instrumentation is currently only medium-grained (function+callsite level)
	• Instrumentation trampolines are multiple instruction jump sequences
	• Inapplicable for instrumenting OS kernels

	Approach:
	• Fine-grained instrumentation (block level, atomic jump patching)
	• Dynamic generation of customized/optimized code

	References:
	• “Fine-grained dynamic instrumentation of commodity operating system kernels,” Ariel Tamches and...
	• “Using dynamic kernel instrumentation for kernel and application tuning,” Ariel Tamches and Bar...
	• “Dynamic instrumentation of threaded applications,” Zhichen Xu, Barton P. Miller and Oscar Naìm...
	• tamches@cs.wisc.edu, zhichen@cs.wisc.edu

	Current Research: Dynamic Instrumentation API
	Approach:
	• Provide basic substrate for building new tools: DynInstAPI
	• Library of C++ classes for machine-independent mutatee code analysis, execution control, and ru...
	• Collaboration with University of Maryland, IBM (DPCL), etc.
	• Basis for CSCS/U.Basel’s FIRST and TUM’s OCM tools activities
	• Form the basis for an emerging open standardization effort: next meeting during Paradyn Week (2...

	References:
	• “An Application Program Interface (API) for runtime code generation,” Jeffrey K. Hollingsworth,...
	• “MDL: A language and compiler for dynamic program instrumentation,” Jeffrey K. Hollingsworth, B...
	• hollings@cs.umd.edu

	Paradyn status
	Paradyn is a research prototype for analyzing complex, long-running, large-scale, multi-language,...
	Latest released versions: Paradyn v2.1 (May 1998); DynInstAPI v1.2 (Sep. 1998)
	• Supported platforms: Solaris (SPARC & x86), WindowsNT (x86), AIX (RS6000)
	• Ports in progress: Linux (x86), Irix (MIPS), Digital Unix (Alpha)
	• Programs: C, Fortran, PVM, MPI, ...

	Distribution of sources, binaries and manuals free of charge for research use

	References:
	• “The Paradyn Parallel Performance Measurement Tools,” Barton P. Miller, Mark D. Callaghan, Jona...
	• http://www.cs.wisc.edu/~paradyn/
	• paradyn@cs.wisc.edu

	Possible APART goals/achievements
	Set a research agenda bigger than (traditional) scientific/numerical computing!
	• Exponential growth in distributed database systems and information servers, which have complex ...

	Demonstrate the applicability of automated & automatic performance analysis in the wider context ...

