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Measuring Cache Effects by Region

l Simple base/bound register
– Duplicate cache related performance counters
– Each counter set collects info in own base/bounds
– Difficult to convince chip makers to include
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Approximating in Software

l Use a software cache simulator
– Instrument applications to keep statistics

l Useful without hardware if fast enough
– Need to instrument all load/stores, could be slow

l Demonstrates potential benefits
– Even if slow, tells us if hardware would be useful
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Cache Simulator

l Used existing simple cache simulator
– Instruments application using ATOM

• Calls cache simulator at loads/stores
• Cycle count updated at each basic block

– No need to change application source code
• Optionally make a call to start measurement

l Added multiple performance counters
– Each counter set has base/bounds
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Memory Hotspot Search

l Goal: identify region causing most misses
l Use n-way search

– Start with all memory split n ways and narrow down
– Sample counters at regular intervals and readjust
– Question: how does n affect the results?

l Tested on SPEC95 benchmark applications
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Search Results

application variable % of misses 2-way 10-way
RX 23.59 x
RY 23.57 x
DD 9.71 x

tomcatv

D 9.60 x
H 7.72
UOLD 7.70 x
VOLD 7.70 x
UNEW 7.69 x
PNEW 7.69 x
POLD 7.69 x

swim

P 7.64 x
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Search Results Continued
application variable % of misses 2-way 10-way

U 43.35
W1 11.47 x x
B 9.82 x

su2cor

W2 9.04 x
U 41.76

mgrid
R 40.88 x x
B 21.23
A 21.22 xapplu
C 21.22 x
htab 66.49 x

compress codetab 25.81 x
ijpeg jpeg_com… 3.92 x x
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Arrays Crossing Search Boundaries

l An array may span two or more regions
– Not enough misses in single region for detection
– This is the problem with su2cor

hotter
array

hot array(s)
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Search Time
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Misses vs. Time: Compress
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Misses vs. Time: Applu
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Instrumentation Costs
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Implementing with the Dyninst API

l What we need
– Determine instruction type (load/store)
– Get effective address of load/store target
– Basic block information

l What Dyninst will let us do
– Allow application to initialize at normal speed
– More selective instrumentation
– Ability to add other axes (like Paradyn)

• Show which function is causing cache problem
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Conclusion

l Region miss information is useful
– Automatic search can efficiently find arrays

l Simple algorithm has problems with...
– Phases
– Arrays spanning search regions

l More counters are more useful
– 10-way search gets better results than 2-way
– More counters doesn’t mean faster solution

l Cost of software instrumentation is high
– Due to executing cache simulator every load/store
– Much less instrumentation needed with hardware
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Future Work

l Port simulator and search to Dyninst API
– Need additional Dyninst features

l Asses value of counters in hardware
– Simulate slowdown

l More sophisticated algorithms
– Deal with phases
– Better handling of dynamically allocated memory

• Rearrange allocation for measurement

l More sophisticated instrumentation
– Filter load/store instructions
– Use hardware counters


