
1University of Maryland

Toward Measuring Memory Hierarchy
Effects by Region

Bryan Buck
Jeffrey K. Hollingsworth

© Copyright 1998, Jeffrey K. Hollingsworth, All Rights Reserved.

2University of Maryland

Measuring Cache Effects by Region

l Simple base/bound register
– Duplicate cache related performance counters
– Each counter set collects info in own base/bounds
– Difficult to convince chip makers to include

CPU cache memory

performance
counters

base

bound

count

...
base

bound

count

(assumes
counters can
use virtual,
not physical
addresses)

3University of Maryland

Approximating in Software

l Use a software cache simulator
– Instrument applications to keep statistics

l Useful without hardware if fast enough
– Need to instrument all load/stores, could be slow

l Demonstrates potential benefits
– Even if slow, tells us if hardware would be useful

4University of Maryland

Cache Simulator

l Used existing simple cache simulator
– Instruments application using ATOM

• Calls cache simulator at loads/stores
• Cycle count updated at each basic block

– No need to change application source code
• Optionally make a call to start measurement

l Added multiple performance counters
– Each counter set has base/bounds

5University of Maryland

Memory Hotspot Search

l Goal: identify region causing most misses
l Use n-way search

– Start with all memory split n ways and narrow down
– Sample counters at regular intervals and readjust
– Question: how does n affect the results?

l Tested on SPEC95 benchmark applications

hot

cold

6University of Maryland

Search Results

application variable % of misses 2-way 10-way
RX 23.59 x
RY 23.57 x
DD 9.71 x

tomcatv

D 9.60 x
H 7.72
UOLD 7.70 x
VOLD 7.70 x
UNEW 7.69 x
PNEW 7.69 x
POLD 7.69 x

swim

P 7.64 x

7University of Maryland

Search Results Continued
application variable % of misses 2-way 10-way

U 43.35
W1 11.47 x x
B 9.82 x

su2cor

W2 9.04 x
U 41.76

mgrid
R 40.88 x x
B 21.23
A 21.22 xapplu
C 21.22 x
htab 66.49 x

compress codetab 25.81 x
ijpeg jpeg_com… 3.92 x x

8University of Maryland

Arrays Crossing Search Boundaries

l An array may span two or more regions
– Not enough misses in single region for detection
– This is the problem with su2cor

hotter
array

hot array(s)

9University of Maryland

Search Time

0

2

4

6

8

10

12

b
ill

io
n

cy
cl

es

to
m

ca
tv

sw
im

su
2c

o
r

m
g

ri
d

ap
p

lu

co
m

p
re

ss

ijp
eg

2-way
10-way

10University of Maryland

Misses vs. Time: Compress

0
5,000

10,000
15,000

20,000
25,000

30,000
35,000

40,000
45,000

50,000

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

sample interval (25 million cycles each)

m
is

se
s

codetab comp_text_buffer orig_text_buffer htab

11University of Maryland

Misses vs. Time: Applu

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

0 8 16 24 32 40 48 56 64 72 80 88 96

sample interval (25 million cycles each)

m
is

se
s A, B, C

U
RSD

12University of Maryland

Instrumentation Costs

0

20

40

60

80

100

120

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

to
m

ca
tv

sw
im

su
2c

o
r

m
g

ri
d

ap
p

lu

co
m

p
re

ss

ijp
eg

cycle count load/store 2-way search 10-way search

13University of Maryland

Implementing with the Dyninst API

l What we need
– Determine instruction type (load/store)
– Get effective address of load/store target
– Basic block information

l What Dyninst will let us do
– Allow application to initialize at normal speed
– More selective instrumentation
– Ability to add other axes (like Paradyn)

• Show which function is causing cache problem

14University of Maryland

Conclusion

l Region miss information is useful
– Automatic search can efficiently find arrays

l Simple algorithm has problems with...
– Phases
– Arrays spanning search regions

l More counters are more useful
– 10-way search gets better results than 2-way
– More counters doesn’t mean faster solution

l Cost of software instrumentation is high
– Due to executing cache simulator every load/store
– Much less instrumentation needed with hardware

15University of Maryland

Future Work

l Port simulator and search to Dyninst API
– Need additional Dyninst features

l Asses value of counters in hardware
– Simulate slowdown

l More sophisticated algorithms
– Deal with phases
– Better handling of dynamically allocated memory

• Rearrange allocation for measurement

l More sophisticated instrumentation
– Filter load/store instructions
– Use hardware counters

