
1University of Maryland

Improving the Type System and
Variable Access in the Dyninst API

Jeff Hollingsworth
John Davis

© Copyright 1999, Jeffrey K. Hollingsworth, All Rights Reserved.

2University of Maryland

Need for Type Support in Dyninst

l Access to local (stack variables)
l Complex types

– non-integer scalars
– structures
– arrays

l Correctness debugging

3University of Maryland

Type Related Classes

l BPatch_type
– getName - returns the symbolic name
– getSize - returns the size of the type
– getComponents - returns the fields of struct/union
– type - returns data class (structure, union, array, …)
– getType - return the type of the pointer, array element
– getLow, getHigh - returns bounds for arrays
– isCompatible(Bpatch_type *t2) -

test compatibility of two types

l BPatch_field
– getName - returns the field’s name
– getType - returns the Bpatch_type of the field
– getOffset - returns the first byte of the field

4University of Maryland

Interaction with other Classes

l BPatch_variableExpr
– getType - returns the type of the variable

l BPatch_image and BPatch_module
– findType - looks up a type

l BPatch_function and BPatch_point
– findVariable - looks up a variable in a local scope

5University of Maryland

Implementation

l Use Compiler debugger info (stab records)
– access to user defined types
– information about local variables
– type information for all variables
– line number to text segment address mapping

l Incremental parsing
– parse stabs for a module on first use

l dyninst User can define types
– allows the creation of new types for patched code

6University of Maryland

Stab Records May Not be Available
l Reasons for lack of Stabs

– Programs are “stripped”
– individual modules may not be compiled for

debugging

l User type construction reduces problem
– users can create “required” types
– can define types for

• global variables: often know address
• parameters: named by position
• define structs and array types

– setType method of variableExpr

l Local variable access
– not possible without stabs

7University of Maryland

Type Checking

l Ensures that snippets are type compatible
– can disable type checking at any time

l Based on structural equivalence
– rules:

• scalars: same type
• structures: each field must be compatible
• unions: each field must be compatible
• pointers: each points to a compatible type

– allows more flexibility for missing types

l Error Reporting
– snippets lack line numbers

8University of Maryland

Example of Structural Equivalence

l Patched code using a parameter struct
– If debug info is guaranteed to be available:

• code can access type, and refer to field
• full type checking is possible

– If debug info might be available:
• can’t depend on program’s definition of struct
• patch code create structure that is identical to

program’s version
• permits type checking if debug info available

– If debug info is not aviable
• patch code creates structure
• no parameter type checking possible

9University of Maryland

API Example
// find all variables defined in an image
BPatch_Vector<BPatch_variableExpr *> vars =

appImage->getGlobalVariables()

for (i=0; i < vars->size(); i++) {
BPatch_variableExpr *v = (*vars)[i];
switch (v->getType()->type()) {

 case BPatch_scalar:
 printf(“%s is a scalar of type %s\n”, v->getName(),

v->getType()->getName());
 case BPatch_structure:

 FieldVector *fields = v->getType()->getComponents();
 for (j=0; j < fields->size(); j++) {

Bpatch_field *f = (*fields)[j];
printf(“field %s is of type %s\n”, f->getName(),

f->getType()->getName());
 } } }

10University of Maryland

Non-integer Scalars

l Key types
– floats - requires generating floating point expressions
– different sized integers - 16, 32, and 64 bits are needed

l Code Generation Issues
– register management

• floats require different registers
• 64 bit integers often need 32 bit register pairs

– expression generation
• many instruction types needed
• platform specific code for all supported platforms

11University of Maryland

Re-working Dyninst Code Generation

l Goals
– support floats and ints other than 32 bit
– enable a peephole optimizer
– allow better register allocation

l New register abstraction
– aware of types: int, floats, paired registers
– allow “virtual registers” for register optimization

l Table driven instruction selection
– eases support of multiple types
– allows description of complex instruction

• example: increment memory

12University of Maryland

New Dyninst Utility

l TCL-based command line tool
– provides access to most dyninst features
– easier to program for simple applications
– can be used as a simple command-line debugger

• fast conditional breakpoints
• dynamic addition of printfs

l Command Summary
– declare: create a new variable in the application
– cbreak: insert conditional breakpoint
– print: show contents of application data structures
– at: insert a code snippet into the application
– load, run, exit: process creation and manipulation

13University of Maryland

TCL Command Example

% load application
% declare int counter
% at main entry { counter = 0; }
% at importantFunc entry { counter++; }
% at main exit {

printf(“function called %d times\n”, counter);
 }
% run

14University of Maryland

Status

l Stab Parsing Working
– currently only GNU compilers

l Array and Structure access
– completed

l TCL Command Tool
– mostly done - demo today
– more features needed

l In Progress
– local variable access
– non-integer scalars

