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Why Java?

[1 Javaisisslow, but it is being used for all
kinds of things

* Web-based computing
* Meta-computing (Globus, Javelin, Charlotte)

* High performance numeric applications
(NPAC, JNT, JAMA)

 Parallel computing
(JPVM, JPVM, Java-MPI, HPJava, Titanium)

[1 JavaVM’s are getting faster
* HotSpot as fast as equivalent C++
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Dynamically Compiled Java

Interpret : Directly execute

Java AP byte-codes }

Java dynComp VM
Platform (OS/Arch)

[1 Java application changes form at run-time

[1 Even in native code form, an application
method interacts with Java VM
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Performance measurement
important...oh yeah, prove it

[1 Our hypothesis
e dynamic compilation might not be the only answe

[1 Tested 3 application kernels on Sun’s
ExactVM dynamic compiler

e Platform?2 release of JDK

[1 ExactVM’s run-time compiling heuristic:
o If a method contains a loop, compile it immediate
* else, wait until a method is called 15 times
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Test Applications

[1 Application kernels test cases where we
suspect dynamic compilation may not win

* method’s whose time not dominated by
Interpreting byte-code (/O or synchronization)

e method’s whose native code form still has a lot
of interaction with Java VM (object creates)

e small method functions

[1 A mainloop method calls methods
Implementing one of the three cases
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What did we learn?

[1 There s something going on in this
execution that we would like to see...

e performance measures with native code form
and byte-code form of a method function

e did run-time compilation help? why not?

e Java VM Interactions with native code form of a
method

e Wwhat are these interactions?

* how much do they affect the application’s
execution?
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Paradyn-J

[1 Profiles dynamically compiled Java
e sSimulate dynamic compilation
e wrapper calls byte-code & JNI native versions

[] Performance data that:

 explicitly describes interactions between the
VM and the Java application

e assoclated with multiple execution forms of
Java application methods

* describes run-time costs of dynamically
compiling a Java method

© 1999 Tia Newhall — 8 of 16— Profiling Dynamically Compiled Java



Let's see what we can do...
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Performance tuning study

[1 Java neural network application

23 classes and 15,800 lines of Java source
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A method that doesn't benefit
from run-time compilation
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Why not?

[1 VM still handles all memory management
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How can we use this data to
tune the Java application?

[] remove some object creates

Original Total time 24.76 secs
Tuned Total time 22.23 secs

L] improved method’s performance by 10%
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Applying tuning to a real
dynamically compiled execution

[1 Run tuned version on real Java dynamic
compiler (Sun’s ExactVM)

original  tuned change
21.09 18.97 10%

[ Why does this make sense?
e simulation adds extra overheads not in ExactVM
* Object creation overheads about the same
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What about the VM?

[] Tunethe VM routines responsible for
handling object creates in the Java
application

[1 Tune the dynamic compiler’s run-time
compiling heuristics

e characteristics of method that make i1t a bad
candidate

e Incorporating profile data into the heuristics
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Conclusions

Javals hereto stay
More sophisticated VM'’s will ensure this

Performance measurement of dynamically
compiled Java is complicated

[1 Paradyn-J provides data that

e |lets us see inside the dynamic compiler to see
how It executes the application

e characterizes the VM'’s performance Iin terms
of the application code it dynamically compiles
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