Profiling Dynamically
Compiled Java

TiaNewhall

newhal | @s. w sc. edu

Computer Sciences
University of Wisconsin
1210 W. Dayton St.
Madison, WI 53706

http://www.cs.wisc.edu/~newhall

Why Java?

[1 Javaisisslow, but it is being used for all
kinds of things

* Web-based computing
* Meta-computing (Globus, Javelin, Charlotte)

* High performance numeric applications
(NPAC, JNT, JAMA)

 Parallel computing
(JPVM, JPVM, Java-MPI, HPJava, Titanium)

[1 JavaVM’s are getting faster
* HotSpot as fast as equivalent C++

© 1999 Tia Newhall — 2 of 16— Profiling Dynamically Compiled Java

Dynamically Compiled Java

Interpret : Directly execute

Java AP byte-codes }

Java dynComp VM
Platform (OS/Arch)

[1 Java application changes form at run-time

[1 Even in native code form, an application
method interacts with Java VM

© 1999 Tia Newhall — 3 of 16— Profiling Dynamically Compiled Java

Performance measurement
important...oh yeah, prove it

[1 Our hypothesis
e dynamic compilation might not be the only answe

[1 Tested 3 application kernels on Sun’s
ExactVM dynamic compiler

e Platform?2 release of JDK

[1 ExactVM’s run-time compiling heuristic:
o If a method contains a loop, compile it immediate
* else, wait until a method is called 15 times

© 1999 Tia Newhall — 4 of 16— Profiling Dynamically Compiled Java

Test Applications

[1 Application kernels test cases where we
suspect dynamic compilation may not win

* method’s whose time not dominated by
Interpreting byte-code (/O or synchronization)

e method’s whose native code form still has a lot
of interaction with Java VM (object creates)

e small method functions

[1 A mainloop method calls methods
Implementing one of the three cases

© 1999 Tia Newhall -5 of 16— Profiling Dynamically Compiled Java

execution time (seconds)

1000

Results

100 -

—
o
|

0.1

© 1999 Tia Newhall

iterations

— 6 of 16—

obj DC
—=—obj Interp
—-—I/0 DC
—~—1I/0 Interp

small DC

small Interp

Profiling Dynamically Compiled Java

What did we learn?

[1 There s something going on in this
execution that we would like to see...

e performance measures with native code form
and byte-code form of a method function

e did run-time compilation help? why not?

e Java VM Interactions with native code form of a
method

e Wwhat are these interactions?

* how much do they affect the application’s
execution?

© 1999 Tia Newhall — 7 of 16— Profiling Dynamically Compiled Java

Paradyn-J

[1 Profiles dynamically compiled Java
e sSimulate dynamic compilation
e wrapper calls byte-code & JNI native versions

[] Performance data that:

 explicitly describes interactions between the
VM and the Java application

e assoclated with multiple execution forms of
Java application methods

* describes run-time costs of dynamically
compiling a Java method

© 1999 Tia Newhall — 8 of 16— Profiling Dynamically Compiled Java

Let's see what we can do...

Byte- Native Byte Native Byte

code code code

Tota CPU 235 Total 566 037 CPU 49pus 6.7us
/O time

Ob|.aeate 157 Totdl 001 00U Mehod 2.91s

over head CPU call cog

© 1999 Tia Newhall -9 of 16— Profiling Dynamically Compiled Java

Performance tuning study

[1 Java neural network application

23 classes and 15,800 lines of Java source
Time Histogram Display CF

File Actions View

Phase: Glohal

3:00 3:20 3:40

Min:sec
cpu <fAPCodesArtificialMeuralMetworkLeammer.classiupdateWeights_interp{Lmnl. My Hashtahle;)V
cpu =fAPCodefMibannl_g.sofJava_ArtificialMeuralMetworkLeamer_updateWeights 1native=

© 1999 Tia Newhall — 10 of 16— Profiling Dynamically Compiled Java

A method that doesn't benefit
from run-time compilation

Time Histogram Display C/:?a ra
i

CPUs
1.0
0.9 \
0.6 '
||| ‘ ‘ M ‘ ‘M "‘| y
O
0.4 | ‘ | | ‘ | H ‘ | “ ‘ || 0
'| | \ \ || | ||
} 'l'\ ' | H' Hit
0.0 l
1:40 £:00 22 £:40
cpu_inclusive </4 ralHet u : Learner.classfcalculateHiddenLayer_interp{)v=
cpu_inclusive =fA Java ificialMeuralMetworkLeamer calculateHiddenLayer 1nati
PAN

Why not?

[1 VM still handles all memory management

Time Histogram Display ﬁra
Fiexar yn

?§ | \’\J‘ ’\J‘n’\f* T M\”’ il I g

ety classicalculateHidden er inte W
va Prtiﬁt:lalr-leu Heh sorkLeamer_calcu I teHumen ayer_1na

How can we use this data to
tune the Java application?

[] remove some object creates

Original Total time 24.76 secs
Tuned Total time 22.23 secs

L] improved method’s performance by 10%

© 1999 Tia Newhall — 13 of 16— Profiling Dynamically Compiled Java

Applying tuning to a real
dynamically compiled execution

[1 Run tuned version on real Java dynamic
compiler (Sun’s ExactVM)

original tuned change
21.09 18.97 10%

[Why does this make sense?
e simulation adds extra overheads not in ExactVM
* Object creation overheads about the same

© 1999 Tia Newhall — 14 of 16— Profiling Dynamically Compiled Java

What about the VM?

[] Tunethe VM routines responsible for
handling object creates in the Java
application

[1 Tune the dynamic compiler’s run-time
compiling heuristics

e characteristics of method that make i1t a bad
candidate

e Incorporating profile data into the heuristics

© 1999 Tia Newhall — 15 of 16— Profiling Dynamically Compiled Java

Conclusions

Javals hereto stay
More sophisticated VM'’s will ensure this

Performance measurement of dynamically
compiled Java is complicated

[1 Paradyn-J provides data that

e |lets us see inside the dynamic compiler to see
how It executes the application

e characterizes the VM'’s performance Iin terms
of the application code it dynamically compiles

© 1999 Tia Newhall — 16 of 16— Profiling Dynamically Compiled Java

