
3URILOLQJ�'\QDPLFDOO\
&RPSLOHG�-DYD

Tia Newhall

newhall@cs.wisc.edu

Computer Sciences
University of Wisconsin

1210 W. Dayton St.
Madison, WI 53706

http://www.cs.wisc.edu/~newhall

– 2 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

:K\�-DYD"
❑ Java is is slow, but it is being used for all

kinds of things
• Web-based computing

• Meta-computing (Globus, Javelin, Charlotte)

• High performance numeric applications
(NPAC, JNT, JAMA)

• Parallel computing
(jPVM, JPVM, Java-MPI, HPJava, Titanium)

❑ Java VM’s are getting faster
• HotSpot as fast as equivalent C++

– 3 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

-DYD�$3�QDWLYH
FRGH

'LUHFWO\�H[HFXWH

�-DYD�$3�E\WH�FRGHV

�3ODWIRUP��26�$UFK�

�-DYD�G\Q&RPS�90

,QWHUSUHW

'\QDPLFDOO\�&RPSLOHG�-DYD

❑ Java application changes form at run-time

❑ Even in native code form, an application
method interacts with Java VM

– 4 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

3HUIRUPDQFH�PHDVXUHPHQW
LPSRUWDQW���RK�\HDK��SURYH�LW

❑ Our hypothesis
• dynamic compilation might not be the only answer

❑ Tested 3 application kernels on Sun’s
ExactVM dynamic compiler
• Platform2 release of JDK

❑ ExactVM’s run-time compiling heuristic:
• if a method contains a loop, compile it immediately

• else, wait until a method is called 15 times

– 5 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

7HVW�$SSOLFDWLRQV
❑ Application kernels test cases where we

suspect dynamic compilation may not win
• method’s whose time not dominated by
interpreting byte-code (I/O or synchronization)

• method’s whose native code form still has a lot
of interaction with Java VM (object creates)

• small method functions

❑ A mainloop method calls methods
implementing one of the three cases

– 6 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

5HVXOWV

���

�

��

���

����

��
�

��
��

�

��
��

��
��

��
��

�
��

��
��

��
��

LWHUDWLRQV

H[
HF

XW
LR
Q�
WL
P
H�
�V
HF

RQ
GV

�

REM�'&

REM�,QWHUS

,�2�'&

,�2�,QWHUS

VPDOO�'&

VPDOO�,QWHUS

– 7 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

:KDW�GLG�ZH�OHDUQ"
❑ There is something going on in this

execution that we would like to see...
• performance measures with native code form
and byte-code form of a method function

•did run-time compilation help? why not?

• Java VM interactions with native code form of a
method

•what are these interactions?

•how much do they affect the application’s
execution?

– 8 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

3DUDG\Q�-
❑ Profiles dynamically compiled Java

• simulate dynamic compilation

• wrapper calls byte-code & JNI native versions

❑ Performance data that:
• explicitly describes interactions between the
VM and the Java application

• associated with multiple execution forms of
Java application methods

• describes run-time costs of dynamically
compiling a Java method

– 9 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

/HW·V�VHH�ZKDW�ZH�FDQ�GR���

Method with object
creates

I/O intensive method Small methods

Byte-
code

Native Byte-
code

Native Byte-
code

Total CPU 2.35 Total
I/O time

5.65 0.37 CPU 4.9 µs 6.7µs

Obj. create
overhead

1.57 Total
CPU

0.01 0.04 Method
call cost

2.5µs

– 10 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

3HUIRUPDQFH�WXQLQJ�VWXG\
❑ Java neural network application

23 classes and 15,800 lines of Java source

– 11 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

$�PHWKRG�WKDW�GRHVQ·W�EHQHILW
IURP�UXQ�WLPH�FRPSLODWLRQ

– 12 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

:K\�QRW"
❑ VM still handles all memory management

– 13 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

+RZ�FDQ�ZH�XVH�WKLV�GDWD�WR
WXQH�WKH�-DYD�DSSOLFDWLRQ"

❑ remove some object creates

➯ improved method’s performance by 10%

���� 20.8

���� 18.7

7RWDO�WLPH�������VHFV

7RWDO�WLPH�������VHFV

2ULJLQDO

7XQHG

– 14 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

$SSO\LQJ�WXQLQJ�WR�D�UHDO
G\QDPLFDOO\�FRPSLOHG�H[HFXWLRQ
❑ Run tuned version on real Java dynamic

compiler (Sun’s ExactVM)

❑ Why does this make sense?
• simulation adds extra overheads not in ExactVM

• object creation overheads about the same

original tuned change
21.09 18.97 10%

– 15 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

:KDW�DERXW�WKH�90"
❑ Tune the VM routines responsible for

handling object creates in the Java
application

❑ Tune the dynamic compiler’s run-time
compiling heuristics
• characteristics of method that make it a bad
candidate

• incorporating profile data into the heuristics

– 16 of 16– Profiling Dynamically Compiled Java© 1999 Tia Newhall

&RQFOXVLRQV
❑ Java is here to stay

❑ More sophisticated VM’s will ensure this

❑ Performance measurement of dynamically
compiled Java is complicated

❑ Paradyn-J provides data that
• lets us see inside the dynamic compiler to see
how it executes the application

• characterizes the VM’s performance in terms
of the application code it dynamically compiles

