
Paradyn Week ‘99© 1999 Ariel Tamches March 25, 1999

Fine-Grained Dynamic
Instrumentation of Commodity

Operating System Kernels

Ariel Tamches Barton P. Miller
{tamches,bart}@cs.wisc.edu

Computer Sciences Department

University of Wisconsin

1210 W. Dayton Street

Madison, WI 53706-1685

USA

–2 of 24– Paradyn Week ‘99March 25, 1999

The Vision
A unified infrastructure for dynamicdynamic OS’s

Fine-grained runtime code instrumentation for:
– Performance measurement

– Tracing

– Testing (e.g., code coverage)

– Debugging: conditional breaks, access checks

– Optimizations: specialization, code
reorganization

– Extensibility

–3 of 24– Paradyn Week ‘99March 25, 1999

Motivation: Measurement
• Measurement primitives

– Counts, elapsed cycles, cache miss cycles (on-chip
counters)

• Instrument kernel to self-measure as it runs

• Predicates
– Specific code path; when a process is running, etc.

• Many interesting routines in the kernel:
– Scheduling: preempt, disp, swtch

– VM management: hat_chgprot, hat_swapin

– Network: tcp_lookup, tcp_wput, ip_csum_hdr, hmeintr

–4 of 24– Paradyn Week ‘99March 25, 1999

Time Spent Demuxing TCP
Packets

tcp_lookup()tcp_lookup()

Start timer
displaced code

time_tcp_lookuptime_tcp_lookup

stop timerstop timer

start timerstart timer

Patch AreaPatch Area

Data AreaData Areaif curr pid==123if curr pid==123

if curr pid==123if curr pid==123

displaced codedisplaced code

displaced codedisplaced code

–5 of 24– Paradyn Week ‘99March 25, 1999

Motivation: Optimization
• Performance measurement shows slow code?

Pick from a cookbook of on-line optimizations
– Specialization

• Instrument function to find common params

• Generate specialized function

• Install (old version jumps to new if condition met)

• Can predicate specialization (e.g. a specific process)

– Reorganize code to improve i-cache
• Instrument function to measure icache miss cycles

• Then instrument to find cold basic blocks

• Generate “outlined” function & install

–6 of 24– Paradyn Week ‘99March 25, 1999

Motivation: Specialization
• Profile:

kmem_alloc()kmem_alloc()
get size parameter
numcalls[size]++;
displaced code

get size parameter
numcalls[size]++;
displaced code

• Decision: examine hash table

• Generate specialized version:
– choose fixed value & run constant propagation

– expect unconditional branches & dead code

numcalls[]
hash tab le
numcalls[]
hash tab le

–7 of 24– Paradyn Week ‘99March 25, 1999

Motivation: Specialization
• Splice in the specialized version:

kmem_alloc()kmem_alloc()
if size==value then
displaced code
if size==value then
displaced code

specialized
version

specialized
version

• Patch calls to kmem_alloc

– Detect constant values for size, where possible

– If specialized version appropriate, patch call
• No overhead in this case

–8 of 24– Paradyn Week ‘99March 25, 1999

Technology to Make it Happen
KernInst: fine-grained dynamic kernelKernInst: fine-grained dynamic kernel

instrumentationinstrumentation

•• InsertsInserts runtime-generated code into kernel

•• Dynamic: everything at runtimeDynamic: everything at runtime
– no recompile, reboot, or even pause

•• Fine-grainedFine-grained: insert at instruction granularity

•• Runs on unmodified commodityRuns on unmodified commodity kernelkernel
– Solaris on UltraSparc

–9 of 24– Paradyn Week ‘99March 25, 1999

Dynamic Instrumentation

some_kernel_func()some_kernel_func()

instruc1instruc1
instruc2instruc2
branchbranch
instruc4instruc4

instruc19instruc19
instruc20instruc20

Code PatchCode PatchCode Patch

runtime-generated coderuntime-generated coderuntime-generated code

equivalent of instruc3equivalent of instruc3

branchbranch

• Insert any code, almost anywhere (fine-fine-
grainedgrained), entirely at runtime (dynamicdynamic)

Net effect: desired code isNet effect: desired code is
inserted inserted before instruc3before instruc3

–10 of 24– Paradyn Week ‘99March 25, 1999

Our System: KernInstKernInst

Patch HeapPatch Heap Data HeapData Heap

Kernel SpaceKernel Space

Instrumentation requestInstrumentation request

ioctl()ioctl()

kerninstdkerninstd

/dev/kerninst/dev/kerninst

Kerninst Tools
(kernel profiler, tracer, optimizer,...)

Kerninst ToolsKerninst Tools
(kernel profiler, tracer, optimizer,...)(kernel profiler, tracer, optimizer,...)

–11 of 24– Paradyn Week ‘99March 25, 1999

How KernInst Works

kerninstd startup:kerninstd startup:
– Installs the KernInst driver, /dev/kerninst/dev/kerninst

– Allocates patch and data heaps, and reads kernel
symbol table (with assistance from /dev/kerninst)

– Parses kernel code into CFG
• Finds all kernel code, organized as basic blocks

– Finds unused registers
• Inserted code will use these registers (avoid spills)

• From an interprocedural data-flow analysis on the CFG

– Fast: 15 seconds

–12 of 24– Paradyn Week ‘99March 25, 1999

How KernInst Works (2)
• To splice in instrumentation code, kerninstd:

– Allocates code patchcode patch

– Fills code patch with instrumentation code,
overwritten instruction, and a jump back

– Overwrites instruction at instrumentation point
with a branch to the code patch

• Writing to kernel memory
– /dev/kmem works for most of the kernel

– Have /dev/kerninst map into D-TLB for nucleus

–13 of 24– Paradyn Week ‘99March 25, 1999

Execution sequence: (ORIG1, NEW2)(ORIG1, NEW2)
• Cannot pause kernel to check for hazard

• Splicing must replace only oneonly one instruction!

ORIG 1
ORIG 2
ORIG 1
ORIG 2

Kernel thread
is preempted

here

Kernel thread
is preempted

here
NEW 1
NEW 2
NEW 1
NEW 2

Thread is
(still)

preempted
here

Thread is
(still)

preempted
here

crash!crash!

Code Splicing Hazard

AfterAfterAfterBeforeBeforeBefore

Jumping to the patch using two instructions:

–14 of 24– Paradyn Week ‘99March 25, 1999

Code Splicing: Reach Problem
• Tough to reach patch with just 1 instruction!

– Usually too far from the instrumentation point.

– SPARC branch instruction has only +/- 8MB
displacement (ba,a)(ba,a)

• General solution: springboardsspringboards

SpringboardSpringboard

Code Patch
(as usual)

Code Patch
(as usual)

Long jump
(using as many
insns as needed)

Long jump
(using as many
insns as needed)

instrucinstruc
instrucinstruc

branchbranch
instrucinstruc

–15 of 24– Paradyn Week ‘99March 25, 1999

Springboard Heap
• Chunks of scratch space throughout kernel

– So every instruction is close to a springboard

– Overwrite module initialization and termination
routines

• Ideal: located throughout the kernel

• _init and _fini on SVR4

• Turn off module unloading so they’re not called

– Also overwrite boot time routines
• _start and main

–16 of 24– Paradyn Week ‘99March 25, 1999

Web Proxy Server Measurement
• Simple kernel measurement tool

– Number of calls made to a kernel function

– Number of kernel threads executing within a
kernel function (“concurrency”)

• Squid v1.1.22 http proxy server
– Caches HTTP objects in memory and on disk

– We used KernInst to understand the cause of
two Squid disk I/O bottlenecks.

–17 of 24– Paradyn Week ‘99March 25, 1999

Web Proxy Server Measurement
• Profile of the kernel open() routine

• Called 20-25 times/sec; taking 40% of time!

–18 of 24– Paradyn Week ‘99March 25, 1999

• open() calling vn_create; has 2 sub-bottlenecks:
–– lookuppnlookuppn (a.k.a. namei): path name translation (20%)

–– ufs_createufs_create: file create on local disk (20%)

–19 of 24– Paradyn Week ‘99March 25, 1999

File Creation Bottleneck
• How Squid manages its on-disk cache:

– 1 file per cached HTTP object

– A fixed-size hierarchy of cache files

– Stale cache files overwritten

• lookuppn bottleneck
– Too many files overwhelms DNLC

• File creation bottleneck
– When overwriting a stale cache file: truncates first

– UFS semantics: meta-data changed synchronouslysynchronously

–20 of 24– Paradyn Week ‘99March 25, 1999

File Creation Optimization
• Overwrite cache file; truncate only if needed

• What took 20% now takes 6%

–21 of 24– Paradyn Week ‘99March 25, 1999

What’s Up Next
• Improved measurements

– New metrics: mutex waiting time, branch
mispredict stall time, icache stall time

– Measure individual basic blocks

– Measure for specific processes
• Instrument the kernel’s context switch handler

• Automated runtime optimizations
– Specialization, outlining

–22 of 24– Paradyn Week ‘99March 25, 1999

What’s Up Next
• Safety and security (Zhichen Xu)

– Now: must be root

– Future (Zhichen Xu): allow untrusted
instrumentation code

• x86/Solaris port (Vic Zandy)
– As before, overwrite just 1 instruction

• The catch: tough given variable-length instructions

• Prefer a 5 byte jump instruction. Use when
overwriting an instruction at least that long.

• For overwriting smaller instructions: INT 3

–23 of 24– Paradyn Week ‘99March 25, 1999

Conclusion
Fine-grained dynamic kernel instrumentation

is feasible on an unmodifiedunmodified commodity OS

A single infrastructureA single infrastructure for
– Profiling, debugging, code coverage

– Optimizations

– Extensibility

The foundation for an evolving OSThe foundation for an evolving OS
Measures and constantly adapts itself to runtime

usage patterns

For papers: visit Paradyn web pageFor papers: visit Paradyn web page

–24 of 24– Paradyn Week ‘99March 25, 1999

The Big Picture

