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The Vision
A unified infrastructure for dynamicdynamic OS’s

Fine-grained runtime code instrumentation for:
– Performance measurement

– Tracing

– Testing (e.g., code coverage)

– Debugging: conditional breaks, access checks

– Optimizations: specialization, code
reorganization

– Extensibility
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Motivation: Measurement
• Measurement primitives

– Counts, elapsed cycles, cache miss cycles (on-chip
counters)

• Instrument kernel to self-measure as it runs

• Predicates
– Specific code path; when a process is running, etc.

• Many interesting routines in the kernel:
– Scheduling: preempt, disp, swtch

– VM management: hat_chgprot, hat_swapin

– Network: tcp_lookup, tcp_wput, ip_csum_hdr, hmeintr
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Time Spent Demuxing TCP
Packets

tcp_lookup()tcp_lookup()

Start timer
displaced code

time_tcp_lookuptime_tcp_lookup

stop timerstop timer

start timerstart timer

Patch AreaPatch Area

Data AreaData Areaif curr pid==123if curr pid==123

if curr pid==123if curr pid==123

displaced codedisplaced code

displaced codedisplaced code
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Motivation: Optimization
• Performance measurement shows slow code?

Pick from a cookbook of on-line optimizations
– Specialization

• Instrument function to find common params

• Generate specialized function

• Install (old version jumps to new if condition met)

• Can predicate specialization (e.g. a specific process)

– Reorganize code to improve i-cache
• Instrument function to measure icache miss cycles

• Then instrument to find cold basic blocks

• Generate “outlined” function & install
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Motivation: Specialization
• Profile:

kmem_alloc()kmem_alloc()
get size parameter
numcalls[size]++;
displaced code

get size parameter
numcalls[size]++;
displaced code

• Decision: examine hash table

• Generate specialized version:
– choose fixed value & run constant propagation

– expect unconditional branches & dead code

numcalls[]
hash tab le
numcalls[]
hash tab le
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Motivation: Specialization
• Splice in the specialized version:

kmem_alloc()kmem_alloc()
if size==value then
displaced code
if size==value then
displaced code

specialized
version

specialized
version

• Patch calls to kmem_alloc

– Detect constant values for size, where possible

– If specialized version appropriate, patch call
• No overhead in this case
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Technology to Make it Happen
KernInst: fine-grained dynamic kernelKernInst: fine-grained dynamic kernel

instrumentationinstrumentation

•• InsertsInserts runtime-generated code into kernel

•• Dynamic: everything at runtimeDynamic: everything at runtime
– no recompile, reboot, or even pause

•• Fine-grainedFine-grained: insert at instruction granularity

•• Runs on unmodified commodityRuns on unmodified commodity kernelkernel
– Solaris on UltraSparc
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Dynamic Instrumentation

some_kernel_func()some_kernel_func()

instruc1instruc1
instruc2instruc2
branchbranch
instruc4instruc4

instruc19instruc19
instruc20instruc20

Code PatchCode PatchCode Patch

runtime-generated coderuntime-generated coderuntime-generated code

equivalent of instruc3equivalent of instruc3

branchbranch

• Insert any code, almost anywhere (fine-fine-
grainedgrained), entirely at runtime (dynamicdynamic)

Net effect: desired code isNet effect: desired code is
inserted inserted before instruc3before instruc3
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Our System: KernInstKernInst

Patch HeapPatch Heap Data HeapData Heap

Kernel SpaceKernel Space

Instrumentation requestInstrumentation request

ioctl()ioctl()

kerninstdkerninstd

/dev/kerninst/dev/kerninst

Kerninst Tools
(kernel profiler, tracer, optimizer,...)

Kerninst ToolsKerninst Tools
(kernel profiler, tracer, optimizer,...)(kernel profiler, tracer, optimizer,...)
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How KernInst Works

kerninstd startup:kerninstd startup:
– Installs the KernInst driver, /dev/kerninst/dev/kerninst

– Allocates patch and data heaps, and reads kernel
symbol table (with assistance from /dev/kerninst)

– Parses kernel code into CFG
• Finds all kernel code, organized as basic blocks

– Finds unused registers
• Inserted code will use these registers (avoid spills)

• From an interprocedural data-flow analysis on the CFG

– Fast: 15 seconds
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How KernInst Works (2)
• To splice in instrumentation code, kerninstd:

– Allocates code patchcode patch

– Fills code patch with instrumentation code,
overwritten instruction, and a jump back

– Overwrites instruction at instrumentation point
with a branch to the code patch

• Writing to kernel memory
– /dev/kmem works for most of the kernel

– Have /dev/kerninst map into D-TLB for nucleus
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Execution sequence: (ORIG1, NEW2)(ORIG1, NEW2)
• Cannot pause kernel to check for hazard

• Splicing must replace only oneonly one instruction!

ORIG 1
ORIG 2
ORIG 1
ORIG 2

Kernel thread
is preempted

here

Kernel thread
is preempted

here
NEW 1
NEW 2
NEW 1
NEW 2

Thread is
(still)

preempted
here

Thread is
(still)

preempted
here

crash!crash!

Code Splicing Hazard

AfterAfterAfterBeforeBeforeBefore

Jumping to the patch using two instructions:
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Code Splicing: Reach Problem
• Tough to reach patch with just 1 instruction!

– Usually too far from the instrumentation point.

– SPARC branch instruction has only +/- 8MB
displacement (ba,a)(ba,a)

• General solution: springboardsspringboards

SpringboardSpringboard

Code Patch
(as usual)

Code Patch
(as usual)

Long jump
(using as many
insns as needed)

Long jump
(using as many
insns as needed)

instrucinstruc
instrucinstruc

branchbranch
instrucinstruc
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Springboard Heap
• Chunks of scratch space throughout kernel

– So every instruction is close to a springboard

– Overwrite module initialization and termination
routines

• Ideal: located throughout the kernel

• _init and _fini on SVR4

• Turn off module unloading so they’re not called

– Also overwrite boot time routines
• _start and main
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Web Proxy Server Measurement
• Simple kernel measurement tool

– Number of calls made to a kernel function

– Number of kernel threads executing within a
kernel function (“concurrency”)

• Squid v1.1.22 http proxy server
– Caches HTTP objects in memory and on disk

– We used KernInst to understand the cause of
two Squid disk I/O bottlenecks.
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Web Proxy Server Measurement
• Profile of the kernel open() routine

• Called 20-25 times/sec; taking 40% of time!
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• open() calling vn_create; has 2 sub-bottlenecks:
–– lookuppnlookuppn (a.k.a. namei): path name translation (20%)

–– ufs_createufs_create: file create on local disk (20%)
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File Creation Bottleneck
• How Squid manages its on-disk cache:

– 1 file per cached HTTP object

– A fixed-size hierarchy of cache files

– Stale cache files overwritten

• lookuppn bottleneck
– Too many files overwhelms DNLC

• File creation bottleneck
– When overwriting a stale cache file: truncates first

– UFS semantics: meta-data changed synchronouslysynchronously
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File Creation Optimization
• Overwrite cache file; truncate only if needed

• What took 20% now takes 6%
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What’s Up Next
• Improved measurements

– New metrics: mutex waiting time, branch
mispredict stall time, icache stall time

– Measure individual basic blocks

– Measure for specific processes
• Instrument the kernel’s context switch handler

• Automated runtime optimizations
– Specialization, outlining
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What’s Up Next
• Safety and security (Zhichen Xu)

– Now: must be root

– Future (Zhichen Xu): allow untrusted
instrumentation code

• x86/Solaris port (Vic Zandy)
– As before, overwrite just 1 instruction

• The catch: tough given variable-length instructions

• Prefer a 5 byte jump instruction.  Use when
overwriting an instruction at least that long.

• For overwriting smaller instructions: INT 3
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Conclusion
Fine-grained dynamic kernel instrumentation

is feasible on an unmodifiedunmodified commodity OS

A single infrastructureA single infrastructure for
– Profiling, debugging, code coverage

– Optimizations

– Extensibility

The foundation for an evolving OSThe foundation for an evolving OS
Measures and constantly adapts itself to runtime

usage patterns

For papers: visit Paradyn web pageFor papers: visit Paradyn web page
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The Big Picture


