
Paradyn Week (25 March 1999, Madison/WI)© 1999 wylie@cs.wisc.edu

Instrumentation Technology Update

Matthew Cheyney, Chris Serra
Brian J. N. Wylie
Z\OLH#FV�ZLVF�HGX

Computer Sciences Department

University of Wisconsin

1210 W. Dayton St.

Madison, WI 53706-1685

USA

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [2]

Outline

• Current instrumentation limitations

• New technologies:
•Multiple (local) instrumentation heap segments

•Function relocation & expansion

•Instrumentation of functions currently on stack

•Resolution of statically-undetermined function calls

•64-bit address/instruction awareness

• Current status

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [3]

Current instrumentation limitations I

• Address spaces are too vast for 1-inst jumps
•fast/compact jumps have insufficient reach

•multiple instruction jump sequences required

• Some available instrumentation techniques
are costly/inefficient (i.e., highly intrusive)
•use of traps (extremely inefficient on WindowsNT)

• Some functions can’t be safely instrumented
in-situ (and therefore “uninstrumentable”)
• too small, too tight (highly optimized)

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [4]

Inferior heap alternatives

• Static inferior heap [old scheme]
•single inferior heap segment

•statically allocated
• implemented as large array in DynInst runtime library

• Dynamic inferior heap [new scheme]
•multiple inferior heap segments

•dynamically allocated in application’s space
• allocated to be near instrumentation points of interest

• bring base-trampolines closer to instrumented code

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [5]

Simple inferior heap example

library code

jum
p instruction range
instrumentation heap

program code

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [6]

Multiple inferior heap example

heap segment

heap segment

library code

jum
p instruction range

program code

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [7]

Dynamic inferior heap requirements

•discovery of process’ address space mappings
• ioctl(PIOCMAP), i.e. /proc

•allocation of specific regions of virtual memory
• mmap(MAP_FIXED)

•may alternatively use malloc() to allocate space
within the application heap

• However, this still may not be enough
•multiple instruction jump sequences/footprints
may still be required!

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [8]

Function relocation & expansion

• Copy of original function relocated to heap,
selectively de-optimized, and rewritten with
extra space provided for instrumentation
•tease apart optimized call-returns (“tail-calls”)
and overlapping instrumentation point footprints
to allow each to be individually instrumented

•provide extra space for footprints which overrun
the end of the function or basic block

• Original function rewritten to branch to new

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [9]

Reasons for relocation/expansion

1. Instrumentation footprints would overlap

2. Instrumentation footprint internally
contains a branch target (i.e., crosses a basic
block boundary)

3. Instrumentation footprint would extend past
the end of function

• Previously, these would all have resulted in
functions considered “uninstrumentable”

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [10]

Relocation/expansion example

+2

+1

+1

+1
+1

0x01: inst1
0x02: call A
0x03: inst3
0x04: ?br +4
0x05: call B
0x06: inst6
0x07: ret
0x08: inst8
0x09: ?br +3
0x0A: call C
0x0B: ret
0x0C: inst12
0x0D: inst13
0x0E: call D
0x0F: inst15
0x10: ret

Original function

0x101: inst1
0x102: nop
0x103: nop
0x104: call A
0x105: inst3
0x106: ?br +5
0x107: call B
0x108: inst6
0x109: ret
0x10A: nop
0x10B: inst8
0x10C: ?br +5
0x10D: call C
0x10E: nop
0x10F: ret
0x110: nop
0x111: inst12
0x112: inst13
0x113: call D
0x114: inst15
0x115: ret
0x116: nop

Relocated
expanded
function

Type1

Type2

Type3

Type1

Type2

Footprint
overlap/conflict
analysis

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [11]

Relocation/expansion process

• During object parsing, functions marked as
“instrumentable-with-relocation/expansion”
•necessary rewriting/expansion actions noted

• Relocation/expansion of function only
performed when instrumentation requested
•allows efficient use of inferior heap space

•allows instrumentation optimization for function

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [12]

Relocation/expansion benefits

• New function can be (safely) instrumented
more thoroughly
•more points (and entire functions!) become
instrumentable, potentially even every instruction

• New function can be (safely) instrumented
more efficiently
• larger instrumentation footprints avoid the need
to use costly traps

• instrumentation can be “optimized” with function

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [13]

Rewriting requirements

• Function expansion/rewriting must preserve
execution semantics
•retain expected order of execution

•set context for de-optimized sequences

•adjust branches/jumps affected by expansion and
relocation of targets

• Allocate sufficient heap space for expanded
function (near function or instrumentation)

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [14]

Complementary solutions

• Mapping of local instrumentation heaps
brings them within desired range

• Rewriting select functions with expansion
provided for desired instrumentation

• More points & functions become instru’ble!

• More efficient instrumentation can be used!
• Instrumentation optimizations become possible

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [15]

Current instrumentation limitations II

• Instrumentation of functions on the stack is
deferred until they return to their caller
•ensures integrity of function instrumentation

•often inconvenient for exclusive metrics

•always problematic for inclusive metrics

• Some function calls cannot be determined
from static analysis

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [16]

Instrumentation assumptions

• Instrumentation relations:
•entry(A) < pre-call(B) < post-call(B) < return(A)

•pre-call(A) < entry(A) < return(A) < post-call(A)

•no other relations supported (though definable)

• Instrumentation scenarios:
• function is within body of stack

• function is currently top of stack (contains %pc)

•may have multiple instrumentation requests,
each of which are processed in turn

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [17]

Stack function instrumentation

• Functions currently on the stack need very
careful instrumentation
•function entry and active callee pre-call
instrumentation should be executed immediately
• use one-time-code

• set flags, start timers, etc. (instrumentation context)

• function return addresses on stack should be
updated to return via base trampolines which
contain post-call instrumentation

•other instrumentation can be freely inserted

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [18]

Body-of-stack function instrumentation

• Update context as if already instrumented
• instrument function entry, returns and call-sites

• immediately execute function entry-point and
active call-site pre-call instrumentation

•revise stack frame with address of active call-site
location in base trampoline, so that return of
callee will continue execution with post-call
instrumentation

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [19]

Top-of-stack function instrumentation

• Instrumentation of the function at the top of
the stack (i.e., where the %pc is currently)
requires additional care
• instrument function entry, returns and call-sites

•execute entry-point instrumentation

•overwriting the %pc location (or relocation of the
entire function) should also update the %pc

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [20]

Call-stack instrumentation example
main()
 subA()
 subB() if (…)
 subC()
 loop
 subD1() if (…)
 subD2() if (…)
 subD3()
 until (…)
 subB()

Code structure

Fr. currentAddr

 0. subD2+32
 1. subC.subD2
 2. main.subC

Call stack

Interrupt during subD2
to instrument subC

*

main.entry
main.pre-call(subA)
subA.entry
subA.return
main.post-call(subA)
main.pre-call(subB)
subB.entry
subB.return
main.post-call(subB)
main.pre-call(subC)
subC.entry
subC.pre-call(subD1)
subD1.entry
subD1.return
subC.post-call(subD1)
subC.pre-call(subD2)
subD2.entry
…_

Virtual instrumentation
execution record

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [21]

Dynamic function call resolution

• Some function calls (e.g., call-thru-register)
can’t be statically determined
•call destination only determined at run-time!

•call destination may be input-data dependent!

• Resolution requires run-time instrumentation
•pre-instrument call-site to report the destination
address found in the argument register

•only new call destinations need to be reported

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [22]

Dynamic function call resolution
0x28: ...
0x29: %reg=...
0x2A: call %reg
0x2B: ...

destAddr=%reg;
callAddr=%PC; // 0x2A

if (destAddr ∉ visitedDests{callAddr})
 add destAddr to visitedDests{callAddr};
 report new destAddr;
fi

execute pre-call instrumentation;

call destAddr;

execute post-call instrumentation;

branch back to original code; // 0x2B

Object code

Trampoline pseudocode

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [23]

Run-time instrumentation benefits

• Performance Consultant bottleneck analysis
(and other run-time analyses) can benefit
from improved support for instrumentation
•of functions currently on the stack (which are
therefore more likely to be of interest)

•which resolves statically-undetermined call
destinations to support construction of dynamic
call-graph (and graph-directed analysis)

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [24]

64-bit readiness

• Address and RegValue types now used
internally throughout DynInst & Paradynd
•configurable 32- or 64-bit size

•needs exercising on true 64-bit applications

•need to examine mixed 32/64-bit scenarios

• 64-bit instructions and instruction “bundles”
need further consideration

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [25]

Current status

• Address type now used for all platforms

• Multiple inferior heap segment management
implemented for MIPS-IRIX

• further implementations just starting

• Function rewriting infrastructure implemented
for SPARC-Solaris

• thorough testing in progress

• Stack function instrumentation and dynamic
function call resolution started for SPARC-Solaris

 Paradyn Instrumentation Technology Update© 1999 wylie@cs.wisc.edu [26]

Conclusions

• App. developers are getting what they want
•vast address spaces & more optimal (denser) code

• Tool developers aren’t getting what they need
•improved debugging/tuning support

• fast & compact long-range jump instructions

• Therefore
• less code is instru’ble with existing techniques

•more advanced instrumentation, rewriting and
management techniques are increasingly required!

