
Dynamic Instrumentation of Threaded Applications   March 25, 1999    (c) 1999 Xu

Dynamic Instrumentation of
Threaded Applications

Zhichen Xu, Bart P. Miller and Oscar Naim
zhichen@cs.wisc.edu

Computer Science Department

University of Wisconsin

1210 W. Dayton St.

Madison, WI 53706-1685



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 2 of 24

Introduction

• Use of threads is becoming common
– Database and web servers, Java interpreters,

Internet search engines, graphical user
interfaces, irregular numerical applications, etc.

– More obstacles to good performance

• However
– Few tools monitor threaded programs

– Threaded programs are hard to instrument



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 3 of 24

Instrumenting Threaded Programs
• Main Techniques

– Same instrumentation code multiple data

– Thread-conscious lock to avoid self-deadlock

– Per-thread virtual timers

– Safe inferior RPC

• Extend Paradyn to profile threads (Solaris)

• Initial experience
– Speedup a Java native method by 42%.

– Increase by 24% the amount of work in unit time



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 4 of 24

Instrumentation without Threads

Application
  Program

Func foo: Relocated
Instruction(s)

Save Regs
Inst. Primitive

(e.g., Start Timer)
Restore Regs

....

Inst. Primitive
(e.g., Inc. Counter)

Base-Trampoline Mini-Trampolines



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 5 of 24

Same Instrumentation Code
Multiple Data

• All threads share instrumentation

• Each thread has private copy of counters/timers

• Always allocate counters/timers for active threads

• Instrumentation code figures out which data

• Compute cumulative metrics by aggregating
measurements for individual threads



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 6 of 24

Data Heap - Thread Table

t
Thr1 Thr3Thr2

v

i
Vectors of Timers

Vectors of counters

• Each active thread is allocated a column (t)

• Counter/Timer address given by [t,(v,i)]



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 7 of 24

Instrumentation Code
• MT Preamble returns the column index (t) of the current thread

• Mini-tramp. uses [t,(v,i)] to compute counter/timer address

Application
  Program

Func foo: Relocated
Instruction (s)

Save Regs

Restore Regs

Base-Trampoline
Mini-Trampolines

MT Preamble

Compute
 Timer Address

Compute 
Counter Address

Start Timer

Inc. Counter



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 8 of 24

Same Instrumentation Code
Multiple Data (cont’d)

+ Trampoline similar to non-threaded version

+ No locks are needed for counters/timers

+ Address calculation is simple and efficient

- Some counter/timer may never be used



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 9 of 24

But, It is not Really That Easy!

• We need to:
– Use locks to guard global data structures

– Instrument thread context switches
– (e.g., implementing time-based metrics).

• Could cause deadlock

– Trigger instrumentation after execution has
passed the insertion point (inferior RPC)



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 10 of 24

Instrumenting Thread Switches

• Interleaving of instrumentation

• Self-deadlock
Application  

Application 

Application  

Instrumentation 

Instrumentation 

Instrumentation 

Instrumentation 

Context switch  

Context switch   

Instrumentation 

Instrumentation statement

Instrumentation 

Context switch 

Thread preemption

Acquired Lock ”L”

Instrumentation Thread preemption
Context switch  

Context switch  

Instrumentation 

Requesting  lock “L”Self-deadlock



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 11 of 24

Instrumenting Thread Switches (cont’d)
Thread-Conscious Lock

Previous New

State Tid State Tid
Return
Value

Held
Held
Free

t1
t2
-

Held
Held
Held

t1
t2
t1

Self
No
Yes

Thread t1 requests tc-lock(l), where l may already be held



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 12 of 24

Per-thread Virtual Timers
• Problem

– No system call to measure CPU spent in a thread

– But can get  CPU time for a light-weighted process

• Solution
– Use LWP timer where a thread is mapped

– Stop/restart at thread switch out/in

– Switch LWP timer if a thread migrates

+ reduce expensive timer calls.

+ Reduce chance of interleaving instrumentation.



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 13 of 24

Inferior RPC (aka oneTimeCode)

• Force application to execute certain
instrumentation code
– Needed when execution has passed

insertion point

• Implementation
– Pause  the  application, install the RPC,

change PC to RPC code

– A trap at the end of RPC notifies Paradyn
to resume application

Func: foo

StartTimer

Stop Timer

Current PC

Start Timer
Trap

Inferior
   RPC



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 14 of 24

Inferior RPC (cont’d)

• Problems with threads:
– Need to execute RPC for a particular thread

– When perform inferior RPC, the thread could be
the one we want

Func: foo

StartTimer

Stop Timer

Current PC Lock Inferior
   RPC

Request
Lock



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 15 of 24

Inferior RPC (cont’d)

• Solution
– Any thread can execute RPC for another thread

– Pass an extra parameter to identify thread

– Post RPC in shared-memory

– Add code in every base-tramp. to check pending
RPC



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 16 of 24

Instrumentation Overhead

• Instrumentation primitives
– Base-trampoline: 5x

– Counter primitives: 1.5x

– Timer primitives: 1.3x-1.4x

Base
Tramp.

Counter Start Timer Stop Timer
Machine

Non-
threaded

Threaded
Non-

threaded
Threaded

Non-
threaded

Threade
d

Non-
Threaded

Threaded

UltraSPARC II
Uniprocessor 125ns 552ns

5x 28ns 41ns
1.5x 1.1us 1.5us

1.4x 1.2us 1.5us
1.3x

Enterprise
5000s 186ns 815ns

5x
42ns 65ns

1.5x
1.5us 2.2us

1.4x
1.6us 2.0us

1.3x



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 17 of 24

Instrumentation overhead (cont’d)

• Two versions of matrix multiply
– Intrusion for thread instrumentation: 1x-7x

Non-threaded Paradyn
(Sequential Version)

Threaded Paradyn
(Threaded Version)Instrumentation

UltraSPARC II
1 processor

Enterprise 5000s
UltraSPARC II

1 processor
Enterprise 5000s

No Instrumentation 64.6s 95.9s 64.7s 24.4s

CPU Time (Inclusive)
Whole program

65.3s
(+1.1%)

96.3s
(+0.4%)

65.6s
(+1.4%)

24.5s
(+0.4%)

Procedure Call
Frequency (innerp)

65.4s
(+1.2%)

96.4s
(+0.5%)

66.7s
(+3.1%)

25.4s
(+4.1%)

CPU Time (Inclusive,
innerp)

66.6s
(+3.1%)

97.9s
(+2.1%)

68.4s
(+5.7%)

25.9s
(+6.1%)



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 18 of 24

Performance Study

• Benchmark
– Sun Java Virtual Machine

– Interpreting the AppletViewer

– Driven by a game applet, Tetris (1000 lines)

• Performance improvements
– Redundant code elimination

sun_awt_motif_X11Graphics_drawLine Lines/Second

Original 6.7us 9,474

Optimized 3.9 us (-42%) 11,718 (+24%)



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 19 of 24

Performance Study (cont’d)
• CPU time on a per-thread basis (thr_7, thr_13, thr_14)



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 20 of 24

Performance Study (cont’d)
• invokeNativeMethod takes about 20% of total CPU



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 21 of 24

Performance Study (cont’d)
• invokeNativeMethod mostly called by thr_7



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 22 of 24

Performance Study (cont’d)
• Subdivide invokeNativeMethod on thr_7



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 23 of 24

Portability Issues

• Profile both threaded  and non-threaded
applications with minimal overhead
– base-Tramp. : 2x; counter: 1.5x; timer: 1x

• Support different thread packages
– thread creation/deletion routines

– thread context switch routines

– Get information about  active threads
• LWP, stack, and etc.



Dynamic Instrumentation of Threaded Applications   March 25 1999    (c) 1999 Xu Page 24 of 24

Conclusion

• Paradyn can now instrument threaded programs

• Instrumentation overhead reasonable

• Used to tune performance of a large threaded
application (Sun JVM).

• Future work
– Reduce instrumentation overhead.

– More thread-specific metrics

– Integrate with released version


