
Paradyn/Condor Week (27 March 2000, Madison/WI)cain@cs.wisc.edu

The New Call Graph Based
Performance Consultant

Trey Cain
cain@cs.wisc.edu

Computer Sciences Department
University of Wisconsin

1210 W. Dayton St.
Madison, WI 53706-1685

USA

 Call Graph Based Performance Consultantcain@cs.wisc.edu [2]

The Performance Consultant (PC)

• Uses two main Paradyn technologies
• Dynamic instrumentation
• Automated bottleneck search

• Original version had difficulty searching large
applications

• Our solution: direct PC search using
application call graph

 Call Graph Based Performance Consultantcain@cs.wisc.edu [3]

Outline

• Paradyn Basics
• Original Search Strategy
• Call Graph Based Search Strategy
• Dynamic Call Site Instrumentation
• Performance Comparison
• Conclusion

 Call Graph Based Performance Consultantcain@cs.wisc.edu [4]

Paradyn Basics:
Resource Hierarchies

Code main.C main

vect.C

testutil.C

vect::insert

vect::delete

vect::size

printstatus

debugA

debugB

Machine

Host1

Host2

Process1

Process2

Process1

SyncObject

Barrier

Message

Semaphore

SpinLock

Thread1

Thread1

Thread1

Thread2

g1

g2

m1

b1

sem1

spin1

 Call Graph Based Performance Consultantcain@cs.wisc.edu [5]

Paradyn Basics:
Resource Hierarchies

Code main.C main

vect.C

testutil.C

vect::insert

vect::delete

vect::size

printstatus

debugA

debugB

Machine

Host1

Host2

Process1

Process2

Process1

SyncObject

Barrier

Message

Semaphore

SpinLock

Example Focus: {/Code/testutil.C/printstatus, /Machine/host1/process1, /SyncObject }

Thread1

Thread1

Thread1

Thread2

g1

g2

m1

b1

sem1

spin1

 Call Graph Based Performance Consultantcain@cs.wisc.edu [6]

Paradyn Basics: Performance
Metrics

• Metrics are measurable performance
characteristics such as CPU time, function
calls, I/O bytes transferred

• Performance data collected for metric/focus
pair

• Example metric/focus pairs:
• cpu:{/Code/mod1/func1 }
• msgs:{/Code/mod1/func1, /Machine/host1/proc4/thread2,

/SyncObject/Message/1/0}

 Call Graph Based Performance Consultantcain@cs.wisc.edu [7]

Performance Consultant Basics

• Why is the application running slowly?
• Test bottleneck hypotheses

• CPU Bound?
• I/O Wait Bound?
• Synchronization Wait Bound?
• Memory Bound?

• Performance metric associated with each
hypothesis

• Which part of the application is slow?
• Isolates bottleneck to part of resource hierarchy

 Call Graph Based Performance Consultantcain@cs.wisc.edu [8]

Original PC Example

Top Level Hypothesis

CPUBound
SyncWaitBound

I/OWaitBound

 Call Graph Based Performance Consultantcain@cs.wisc.edu [9]

Original PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

 Call Graph Based Performance Consultantcain@cs.wisc.edu [10]

Original PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

Module1.o

Module3.o
Module2.o

Module4.so

 Call Graph Based Performance Consultantcain@cs.wisc.edu [11]

Original PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

Module1.o

Module3.o
Module2.o

Module4.so

 Call Graph Based Performance Consultantcain@cs.wisc.edu [12]

Original PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

Module1.o

Module3.o

Module2.o

Module4.so Function1
Function2
Function3
Function4

 Call Graph Based Performance Consultantcain@cs.wisc.edu [13]

Original PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

Module1.o

Module3.o

Module2.o

Module4.so function1Function2
Function3
Function4 Host1

Host2

Host3

 Call Graph Based Performance Consultantcain@cs.wisc.edu [14]

Original Performance Consultant

• Problem: Traversing the code hierarchy
does not scale
•Search space too large: too many modules,
too many functions

•Module instrumentation is not cheaper than
instrumenting all of module’s functions

•Exclusive metrics are costly

• We would like to avoid excessive
instrumentation

 Call Graph Based Performance Consultantcain@cs.wisc.edu [15]

Too many modules and functions

Code
Module 3

Module 1000

Module 1

Module 2

…

 Call Graph Based Performance Consultantcain@cs.wisc.edu [16]

Too many modules and functions

Code
Module 3

Module 1000

Module 1

Module 2

…

Function 3

Function 100

Function 1

Function 2

…

 Call Graph Based Performance Consultantcain@cs.wisc.edu [17]

PC Timing Metrics

• Performance Consultant based on the
idea that coarse grained instrumentation
is cheaper than fine grained…

• But instrumenting a module has the
same cost as instrumenting each
function in the module individually.

 Call Graph Based Performance Consultantcain@cs.wisc.edu [18]

 Exclusive vs. Inclusive Metrics

foo() {

 bar();

 car();

}

Exclusive TimerExclusive Timer

 Call Graph Based Performance Consultantcain@cs.wisc.edu [19]

Exclusive vs. Inclusive Metrics

foo() {

 bar();

 car();

}

startTimer(t)

stopTimer(t)

startTimer(t)

stopTimer(t)

startTimer(t)

stopTimer(t)

Exclusive Timer

 Call Graph Based Performance Consultantcain@cs.wisc.edu [20]

Exclusive vs. Inclusive Metrics

foo() {

 bar();

 car();

}

startTimer(t)

stopTimer(t)

startTimer(t)

stopTimer(t)

startTimer(t)

stopTimer(t)

Exclusive Timer

foo() {

 bar();

 car();

}

startTimer(t)

stopTimer(t)

Inclusive Timer

 Call Graph Based Performance Consultantcain@cs.wisc.edu [21]

Call Graph Based Performance
Consultant

• Based on application’s call graph
• Code hierarchy search starts at function main,

search continues to main’s children

• Advantages: Lots!
• It’s Scalable: Natural hierarchical refinement from
course grained search to fine grained search

• Uses less costly inclusive metrics
• Functions which are not part of call graph will never
be instrumented

 Call Graph Based Performance Consultantcain@cs.wisc.edu [22]

Call Graph Based PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

 Call Graph Based Performance Consultantcain@cs.wisc.edu [23]

Call Graph Based PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

main

 Call Graph Based Performance Consultantcain@cs.wisc.edu [24]

Call Graph Based PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

main

a1

a4

a2
a3

 Call Graph Based Performance Consultantcain@cs.wisc.edu [25]

Call Graph Based PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

main

a1

a4
a2

a3

 Call Graph Based Performance Consultantcain@cs.wisc.edu [26]

Call Graph Based PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

main

a1

a4
a2

a3

b1

b3
b2

 Call Graph Based Performance Consultantcain@cs.wisc.edu [27]

Call Graph Based PC Example

Top Level Hypothesis

CPUBoundSyncWaitBound
I/OWaitBound

main

a1

a4
a2

a3

b1

b3

b2

 Call Graph Based Performance Consultantcain@cs.wisc.edu [28]

Call Graph Construction

• Problem: targets of calls using function
pointers and virtual functions are not statically
determinable.

• Unknown callees in static call graph may
cause blind spots in new PC search

• We resolve dynamic callee addresses at run
time

• Strategy:
• Build static call graph at program start
• Fill in dynamic call graph on demand.

 Call Graph Based Performance Consultantcain@cs.wisc.edu [29]

Dynamic Call Sites

• Characterized by keeping the address of
a callee in a register or memory location

• New type of instrumentation necessary
to determine callee

• Examples:

call [%edi]X86

jalr $t9MIPS

Call InstructionInstruction Set

 Call Graph Based Performance Consultantcain@cs.wisc.edu [30]

Call Site Instrumentation: Chain
of Events

Performance
Consultant

Paradyn Front-end Paradyn Daemon Application

Code
Generator

Notifier

main(){
fp=bar;
}

foo(){
(*fp)();
}

bar(){
}

1. 2.

3.4.

5. 6.

 Call Graph Based Performance Consultantcain@cs.wisc.edu [31]

Performance Results

9572,51560,670184,3821613OM3 (MPI)

Required Search
Time (seconds)

Instrumentation
Mini-tramps Used

Bottlenecks found in
complete search

31646111,49643,23099ssTwod (MPI)

1861419647433Fpppp

27875528412,57042go

3221,00622814,31753Draco

Call GraphOriginalCall GraphOriginalCall GraphOriginalApplication

 Call Graph Based Performance Consultantcain@cs.wisc.edu [32]

Conclusion

• Call graph based search strategy perturbs
application less than old search

• New search also faster than old search
• New version of PC available in Paradyn 3.0

• Room for future work…
• Exclusive bottleneck verification
• Finding a way to avoid potential blind spots.

 Call Graph Based Performance Consultantcain@cs.wisc.edu [33]

Potential Blind Spot for New PC

main

child2 child3 child4child1

Bottleneck function

A rare scenario: we haven’t seen it happen yet.

 Call Graph Based Performance Consultantcain@cs.wisc.edu [34]

Retroactive Instrumentation

• Problem: Find CPU Time for a function if
we are executing in one of its children.

• When do we start the timer for the entry
to function?

• Need mechanism to trigger
instrumentation code.

• Retroactive instrumentation walks stack,
triggering outstanding timers

