
© 2000 Ariel Tamches March 27, 2000

Fine-Grained Dynamic Kernel
Instrumentation for OS Optimization

Ariel Tamches Barton P. Miller
{tamches,bart}@cs.wisc.edu

Computer Sciences Department

University of Wisconsin

1210 W. Dayton Street

Madison, WI 53706-1685

USA

– 2 of 25 –KernInst March 27, 2000

The Vision
Evolving Operating Systems

– Code changes in response to runtime behavior

Fine-grained dynamic kernel instrumentation for:
– Performance measurement

– Performance assertions

– Optimizations
• Custom policies

• Code rewriting

– 3 of 25 –KernInst March 27, 2000

Measurement
• Primitives

– Counts, elapsed cycles

– On-chip counters (cache miss cycles, etc.)

• Predicates
– Specific code path; when a process is running, etc.

• Many interesting routines in the kernel:
– Scheduling: preempt, disp, swtch

– VM management: hat_chgprot, hat_swapin

– Network: tcp_lookup, tcp_wput, ip_csum_hdr, hmeintr

– 4 of 25 –KernInst March 27, 2000

Time De-muxing TCP Packets

tcp_lookup()tcp_lookup()

Start timer
displaced code

time_tcp_lookuptime_tcp_lookup

stop timerstop timer

start timerstart timer

Patch AreaPatch Area

Data AreaData Areaif curr pid==123if curr pid==123

if curr pid==123if curr pid==123

displaced codedisplaced code

displaced codedisplaced code
(entry)

(exit)

• Replace timer primitive with on-chip counter
– Number of icache miss cycles

– Branch mispredict stall cycles

– 5 of 25 –KernInst March 27, 2000

Optimization: Specialization
• Profile:

kmem_alloc()kmem_alloc()
get size parameter
numcalls[size]++;
displaced code

get size parameter
numcalls[size]++;
displaced code

• Decision: examine hash table

• Generate specialized version:
– choose fixed value & run constant propagation

– expect unconditional branches & dead code

numcalls[]
hash table
numcalls[]
hash table

– 6 of 25 –KernInst March 27, 2000

Motivation: Specialization
• Splice in the specialized version:

kmem_alloc()kmem_alloc()
if size==value then
displaced code
if size==value then
displaced code

specialized
version

specialized
version

• Patch calls to kmem_alloc

– Detect constant values for size, where possible

– If specialized version appropriate, patch call
• No overhead in this case

– 7 of 25 –KernInst March 27, 2000

Technology to Make it Happen
KernInst: fine-grained dynamic kernelKernInst: fine-grained dynamic kernel

instrumentationinstrumentation

•• InsertsInserts runtime-generated code into kernel

•• Dynamic: everything at runtimeDynamic: everything at runtime
– no recompile, reboot, or even pause

•• Fine-grainedFine-grained: insert at instruction granularity

•• Runs on unmodified commodityRuns on unmodified commodity kernelkernel
– Solaris 7 on UltraSparc

– 8 of 25 –KernInst March 27, 2000

Our System: KernInstKernInst

Patch HeapPatch Heap Data HeapData Heap

Kernel SpaceKernel Space

Instrumentation requestInstrumentation request

ioctl()ioctl()

kerninstdkerninstd

/dev/kerninst/dev/kerninst

Kerninst Tools
(kernel profiler, tracer, optimizer,...)

Kerninst ToolsKerninst Tools
(kernel profiler, tracer, optimizer,...)(kernel profiler, tracer, optimizer,...)

– 9 of 25 –KernInst March 27, 2000

KernInst Splicing

some_kernel_func()some_kernel_func()

instruc1instruc1
instruc2instruc2
branchbranch
instruc4instruc4

instruc19instruc19
instruc20instruc20

Code PatchCode PatchCode Patch

runtime-generated coderuntime-generated coderuntime-generated code

equivalent of instruc3equivalent of instruc3

branchbranch

• Insert any code, almost anywhere (fine-fine-
grainedgrained), entirely at runtime (dynamicdynamic)

Net effect: desired code isNet effect: desired code is
inserted inserted before instruc3before instruc3

– 10 of 25 –KernInst March 27, 2000

kerninstd: Startup
• Create heaps

• Read kernel symbol table
– With assistance from /dev/kerninst

• Parses kernel code into CFG

• Finds unused registers
– Inserted code will use these registers (avoid spills)

• Fast: about 20 seconds

– 11 of 25 –KernInst March 27, 2000

Web Proxy Server Measurement
• Using kperfmon GUI

– Number of calls made to a kernel function

– Number of kernel threads executing within a
kernel function (“concurrency”)

• Squid v1.1.22 http proxy server
– Caches HTTP objects in memory and on disk

– We used KernInst to understand the cause of
two Squid disk I/O bottlenecks.

– 12 of 25 –KernInst March 27, 2000

Web Proxy Server Measurement
• Profile of the kernel open() routine

• Called 20-25 times/sec; taking 40% of time!

– 13 of 25 –KernInst March 27, 2000

• open() calling vn_create; has 2 sub-bottlenecks:
–– lookuppnlookuppn (a.k.a. namei): path name translation (20%)

–– ufs_createufs_create: file create on local disk (20%)

– 14 of 25 –KernInst March 27, 2000

File Creation Bottleneck
• How Squid manages its on-disk cache:

– 1 file per cached HTTP object

– A fixed-size hierarchy of cache files

– Stale cache files overwritten

• lookuppn bottleneck (dnlc_lookup)
– Too many files overwhelms DNLC

• File creation bottleneck (ufs_itrunc)
– When overwriting a stale cache file: truncates first

– UFS semantics: meta-data changed synchronouslysynchronously

– 15 of 25 –KernInst March 27, 2000

File Creation Optimization
• Overwrite cache file; truncate only if needed

• What took 20% now takes 6%

– 16 of 25 –KernInst March 27, 2000

Each measurement
is a pairing of a
metric and a
code resource.

 Double-click on
“Code” to
expand its
children (the
kernel modules)

All presently
loaded kernel
modules will be
shown.

Double-click on a
given kernel
module to
expand its
functions.

Single-click on
function(s) or basic
block(s) to select.

Single-click on
metric(s) to select.

Then pull down the
“Start a visi” menu
to start a
visualization
process.

Kperfmon

– 17 of 25 –KernInst March 27, 2000

Kperfmon: Metrics
• Counts

– Functions, basic blocks, or individual instructions

• Concurrency (# kthreads executing)
– Start timer on entry, stop on exit(s)

– Thread-seconds (wall time seconds) in a routine

– Per-invocation available (concurrency/invoc)

• Virtualized metrics (vtime, cache reads, etc.)
– Start with usual “wall” measurements (start on

entry, stop on exit)

– How to exclude time spent context switched out?

– 18 of 25 –KernInst March 27, 2000

Metrics: Virtualization
• On kthread switch-out:

– Stop all active vtimers
• They must have been started by this kthread

• Use per-cpu timers to handle multiprocessors

– Make a note of the vtimers that were stopped

• On kthread switch-in:
– Get vtimers stopped at last switch-out of this thread

– Restart those vtimers

– 19 of 25 –KernInst March 27, 2000

Outlining
• Profile based

dynamic
optimization

• Spending a high
fraction of time
stalled on I-cache
miss handling?

• Measure with
dynamic
instrumentation

– 20 of 25 –KernInst March 27, 2000

Outlining: Estimate Benefit
• Many cold basic blocks?

• Measure dynamically

• tcp_rput_data():
– 32% of blocks are hot

– 68% of blocks are cold
• Typical of kernel (extensive

error checking, calls to
panic, etc.)

– 21 of 25 –KernInst March 27, 2000

Outlining: Generate New Version

1

2

3

4

5

1 2

3 4

5

• Cold blocks have been moved
out of line.

• Cross edges are long jumps.

– 22 of 25 –KernInst March 27, 2000

Outlining: Installing
• Known call sites changed to new address

– Leave behind a jump in original function to
handle indirect calls

• Note that measurement and installation uses
the same underlying technology

• Each step of outlining can be automated!
– A self-evolving kernel, optimizing in response to

actual run-time behavior.

– 23 of 25 –KernInst March 27, 2000

KernInst: Current Work
• Runtime optimizations (Ari)

• Safety and security (Zhichen Xu)
– Now: must trust code that kperfmon inserts

– Allow untrusted instrumentation code

• x86/Linux port (Vic Zandy)
– As before, overwrite just 1 instruction

• The catch: tough given variable-length instructions

– 24 of 25 –KernInst March 27, 2000

Conclusion
Fine-grained dynamic kernel instrumentation

is feasible on an unmodifiedunmodified commodity OS

A single infrastructureA single infrastructure for
– Profiling, debugging, code coverage

– Optimizations

– Extensibility

The foundation for an evolving OSThe foundation for an evolving OS
Measures and constantly adapts itself to runtime

usage patterns

– 25 of 25 –KernInst March 27, 2000

The Big Picture

http://www.cs.wisc.edu/paradynhttp://www.cs.wisc.edu/paradynhttp://www.cs.wisc.edu/paradyn

