Matchmaking in the Condor System

Rajesh Raman

Computer Sciences Department
University of Wisconsin-Madison
raman@cs.wisc.edu

Outline

> Introduction to Matchmaking
* Architecture, Philosophy

> Classified Advertisements (ClassAds)
* Language for Matchmaking

> Matchmaking in Condor
> Future Directions in Ma‘rchmakmg
> Conclusion

www.cs.wisc.edu/condor @

Matchmaking

> Matchmaking is a methodology for
Distributed Resource Management
> Conceptually simple:
* Service providers and requesters advertise
* Compatible advertisements are matched
* Matched entities cooperate to perform service

> Developed for opportunistic environments
* Use resources as and when available —

ondor

—-_—
www.cs.wisc.edu/condor § \/ 3

N
Ty

Matchmaking (Cont.)

> Customers and Servers advertise to a
Matchmaking Service

> Advertisements describe advertising

entities
* Characteristics

* Requirements and Constraints
* Preferences

> We call these descriptions classified
advertisements (classads) g

www.cs.wisc.edu/condor @

=

ClassAd Language Versions

> New ClassAd implementation will be
released with Condor Version 6.5

> Older implementation lacks:

* Some data types: lists, nested classads,
time stamps, time intervals

* Some operators: conditional, array
subscript, bit-wise operators

* Others: function calls

www.cs.wisc.edu/condor @

]

Example ClassAds

Type = "Tenant’;

Name = “John Doe”;

Age = 28;

HavePets = false;

RentOffer = 900;

Requirements = other. Type=="Apartment” &&
other.Rent <= RentOffer && other.Heatlncluded,;

Rank = (other.Location=="Downtown” ? 2000 :
other.OnBusLine ? 1500 : 1000) - other.Rent

www.cs.wisc.edu/condor

[

Example ClassAds (Cont.)

Type = “Apartment”;

Location = “Downtown”;

Heatlncluded = true;

Rent = 850;

Phone = “608-555-1234";

Requirements = other.Type == “Tenant” &&
lother.HavePets && other.RentOffer >= Rent;

Rank = other.RentOffer

www.cs.wisc.edu/condor

The Matchmaker

> Matchmaker matches compatible classads

* Matchmaker ensures that Server and Customer
Constraints are satisfied

* Server and Customer Preferences are honored
(within bounds of framework)

> Relevant parties notified when successfully
matched

> Matched parties claim each other

A_ i|_ o
 ——— L
www.cs.wisc.edu/condor \/ 8

Matchmaking

Customer Ads Server Ads

_/

www.cs.wisc.edu/condor

Matchmaking

Matchmaking

Matchmaking

D i
0 0
To matched Cusaromers e ‘ 0To matched Servers
‘7
1 0

/ Step 3: Notify

Ge_u dor

www.cs.wisc.edu/condor \/

—
N

Matchmaking

Step 4: Claim
>

\ .
| \/ 13

www.cs.wisc.edu/condor

>

Matchmaking Components

Advertising Language

Matchmaker Protocol
* Defines how ads are sent to the Matchmaker
* Names "well-known" attributes
* Defines how matched entities are notified

Matchmaking Algorithm
* Algorithm used for making matches

Claiming Protocol

Classified Advertisements

> Set of (Attribute Name,Expression) pairs

> Self-describing (no separate schema)
* Combines schema, data and query

* Entities classads may include arbitrary attributes, so
workstations may advertise

- Physical location
* Locally cached data files
- Time windows when preemption is unlikely
> Syntax: [n0=e0;nl=el;, . ni=ei]
* XML is a good fit; not currently used

www.cs.wisc.edu/condor

Condor Examples

| Type ="Job"; [Type = "Machine";
Owner = "raman’; Name = "XXy.cs. ...";
Cmd ="run_sim"; Arch ="ALPHA";
Args ="-Q 17 3200"; | OpSys ="OSF1%
Cwd = "[u/framan"; Mips = 104,
ImageSize = 31M,; Kflops = 21893;
Qdate =‘SatJan9...” | Memory =256M,;
LoadAvg = 0.042969;
Rank = other.Kflops... | ...
Requirements = Rank = ...

] Requirements = ...

www.cs.wisc.edu/condor

Y VvV ¥V VvV Vv

Attribute Expressions

Constants

References
Operators
Functions
Lists
ClassAds

104, 0.042969, "iX86", true,
'15:45', 'Sat Jan 9 15:33 1999 '

attr, self.attr, other.attr

>>, <<, +, * < >=, &&, ...

’ ’ ’

strcat, substr, regexp, member, ...

{ expr, expr, ...}

[name=expr; name=expr; ...]

www.cs.wisc.edu/condor

Three-valued Logic

other.Memory > 32 ™ all

other.Memory == 32 UNDEFINED
other.Memory = 32 g if other has no
|(other.Memory == 32) _ "Memory" attribute

Logical Operators (&& and ||) can squash UNDEFINED
For example:

other.Mips >= 100 || other.Kflops >= 1000

TRUE if e/ther attribute exists and satisfies
condition

www.cs.wisc.edu/condor

Job Constraint Example

Requirements =
other.Type = "Machine"
&& other.Arch = "ALPHA"
&& other.OpSys = "OSF1"
&& other.Disk > 1G
&& other.Memory >= self.ImageSize;

Rank Examples

// job’s rank for machine
Rank = other.Kflops/1k + other.Memory/32M,;

// machine’s rank for job
Rank = member(other.Owner,ResearchGrp) ? 10
. member(other.Owner, Friends) ? 5
. 0;

_ i|_ o
—‘G}ﬁ_ﬁ o1
www.cs.wisc.edu/condor _/

Machine Constraint
Example

Isldle = LoadAvg<0.3 && Keyboardldle>‘00:15";

Requirements =
Imember(other.Owner,Untrusted) &&
(
Rank >=10 ? True :
Isldle &&
(Rank >=5 ? True : DayTime() < ‘6:00’ ||
DayTime() > ‘18:00’)

www.cs.wisc.edu/condor

=

Condor Matchmaking

> To match two ads A and B

* Set up environment such that in A
- self evaluates to A (MY in old classads)
- other evaluates to B (TARGET in old classads)
> Check per classad policy
* A.Requirements and B.Requirements
* A.Rank and B.Rank for preferences

> Condor Matchmaking is a 4-way balancing act!

* User Priorities, Job Preferences, Machine Prefer'ences
Administrator Polucnes

www.cs.wisc.edu/condor

Condor Matchmaking:
Priorities

> Submitters are assigned priorities based on
* Past resource usage
* Administrator policy: boost and decay factors

> Submitters negotiated in priority order
* Users with better priority more likely to get what they
want
> Priorities used to determine "fair-share"
* Share determined by ratio of priorities

* May use more than fair-share if no one else wants
resources =

www.cs.wisc.edu/condor

=

Condor Matchmaking:
Preemption

> Job may be preempted for different reasons
* Priority: New job's Owner has better priority
* Rank: Machine likes new job more

> Administrator may control preemption
* Stall priority preemption
* PREEMPTION_REQUIREMENTS parameter
- e.g., prevent "thrashing”
* Affect choice of machine to preempt
* PREEMPTION_RANK parameter
- e.g., reduce network load

www.cs.wisc.edu/condor

=

Condor Matchmaking:
Scheme

> For submitter's job J (upto fair-share)

* Only consider vacant or preemptable machines
* Order lexicographically by

1. Job rank of machine
2. Preemption Mode
(None > Rank > Priority)
3. PREEMPTION_RANK (if applicable)

* Check PREEMPTION_REQUIREMENTS if
preempting for priority

www.cs.wisc.edu/condor @

=

Future Work

> Efficient Matchmaking

* Attribute and constraint indexing schemes

* Initial results very promising
- (8k,8k) takes 3 mins. instead of 2 hrs. 3 mins.

> Multilateral Matchmaking: Gang-Matching
* Matchmaking with more than two entities
- e.g., Job-Workstation-License
* In addition to co-allocation, can implement
- Regulation: limit number of running instances
- Aggregation: abstract aggregate services

www.cs.wisc.edu/condor

=

ClassAd Summary

> Distributed resource management
* Distributed clients, servers
* Heterogeneous resources

> Classified advertisements
* Semi-structured data model
* Schema, data, and query in one structure
> Matchmaking
* Condor's matchmaking algorithm

www.cs.wisc.edu/condor @

=

ClassAd Summary (Cont.)

> ClassAds are used throughout Condor

* Represent and query system daemons

- startds, schedds, masters, collectors, checkpoint
servers

* Configuration and Job Control
> C++ and Java implementations

> Available as part of Condor and as stand-
alone libraries

www.cs.wisc.edu/condor @

=

