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Program binaries are commonly held to be an execute-only program form:
rigid, lacking in clear structure, complex to extend and difficult to modify.
However, there are several benefits to be gained from modifying binaries rather
than another program form: the effects of the compiler upon the program are
clearly present; binary modification does not require access to source code,
which may be unavailable; and users may manipulate programs while they
execute, which is impossible with other forms of program modification.

In this dissertation, we develop and refine four desired properties of a
binary modification toolkit: abstraction, safety, timeliness, and efficiency. By
abstraction, we mean that a user should operate in terms of familiar structural
representations, such as functions, loops, or basic blocks, instead of directly on
instructions. By safety, we mean that modification should preserve the visible
behavior of code that was not explicitly modified and the structural validity
of the binary as a whole. By timeliness, we mean that a toolkit should allow
modification of a binary at any time in its execution continuum, from a file
on disk to actively executing code. By efficiency, we mean that modification
should impose cost that is both low and proportional to the amount of modified
code and the frequency with which it is executed.

We then describe three techniques that allow us to achieve these properties.
First, we demonstrate that the CFG, an abstraction that represents the binary
program’s structure, can also be used to modify this structure and thus the
binary as a whole. By leveraging the CFG, we allow users to operate in terms
of familiar and natural constructs rather than requiring them to understand
the idiosyncrasies of particular instruction sets. Second, we further refine
techniques for code replacement, allowing us to modify a program binary at
any time in its execution continuum while preserving proportional cost. Third,
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we present a technique based on a formal understanding of the characteristics
of binary code that allows us to modify the structure of the binary without
changing its user-visible behavior, even when the binary attempts to detect
such modifications.

Barton P. Miller
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Abstract

Program binaries are commonly held to be an execute-only program form:
rigid, lacking in clear structure, complex to extend and difficult to modify.
However, there are several benefits to be gained from modifying binaries rather
than another program form: the effects of the compiler upon the program are
clearly present; binary modification does not require access to source code,
which may be unavailable; and users may manipulate programs while they
execute, which is impossible with other forms of program modification.

In this dissertation, we develop and refine four desired properties of a
binary modification toolkit: abstraction, safety, timeliness, and efficiency. By
abstraction, we mean that a user should operate in terms of familiar structural
representations, such as functions, loops, or basic blocks, instead of directly on
instructions. By safety, we mean that modification should preserve the visible
behavior of code that was not explicitly modified and the structural validity
of the binary as a whole. By timeliness, we mean that a toolkit should allow
modification of a binary at any time in its execution continuum, from a file
on disk to actively executing code. By efficiency, we mean that modification
should impose cost that is both low and proportional to the amount of modified
code and the frequency with which it is executed.

We then describe three techniques that allow us to achieve these properties.
First, we demonstrate that the CFG, an abstraction that represents the binary
program’s structure, can also be used to modify this structure and thus the
binary as a whole. By leveraging the CFG, we allow users to operate in terms
of familiar and natural constructs rather than requiring them to understand
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the idiosyncrasies of particular instruction sets. Second, we further refine
techniques for code replacement, allowing us to modify a program binary at
any time in its execution continuum while preserving proportional cost. Third,
we present a technique based on a formal understanding of the characteristics
of binary code that allows us to modify the structure of the binary without
changing its user-visible behavior, even when the binary attempts to detect
such modifications.
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1
Introduction

Program binaries are commonly held to be an execute-only program form:
rigid, lacking in clear structure, complex to extend and difficult to modify. This
is not the case. With the proper techniques, derived from a formal understand-
ing of the characteristics of program binaries, a binary can be extended and
modified up to and during execution of the program. In turn, binary modifica-
tion presents several benefits when compared to source-level or compile-time
modification. Binary modification does not require source code, debugging
information, or other information that is not directly required to execute the
program. In the commercial or security domains, the binary is frequently
the only available program form; even in other domains, binary modification
may be required due to a lack of source code, binary-only vendor-provided
libraries, or the need to include the effects of compilation and linking on a
program.

Binary modification has become a fundamental enabling technology for
a wide range of domains, including optimization [10, 70], performance anal-
ysis [43], dynamic (“hot”) patching [40], testing [78], cyberforensics [45, 74],
program auditing [21, 79], precise behavior monitoring [21], and attack de-
tection [51]. Binary modification can either be applied to a binary on disk
(binary rewriting) or to an executing process (dynamic instrumentation). The
earliest uses of binary modification focused on performance analysis and
whole-program optimization. Performance tools used dynamic search tech-
niques to automatically find program bottlenecks [28] and inserted tracing
code to measure basic block execution paths [7]. Optimization tools inlined
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calls across object file boundaries [70] or rearranged executing programs to
improve cache performance [5].

Our work distinguishes itself from other research into binary modification
toolkits in four significant ways: abstraction, timeliness, safety, and efficiency.
For abstraction, we use a high-level model of the binary based on its control
flow graph (CFG), and users manipulate this model instead of operating
directly on instructions or other low-level representations. Such a high-level
model greatly reduces the knowledge of program or platform idiosyncrasies
previously needed to modify programs. By timeliness, we mean that we allow
users to modify a binary at any time in the execution continuum: pre-execution,
before the code selected to be modified has executed for the first time, or
while such code is actively executing, and ensure these modifications take
effect immediately. For safety, we use a formal model of structural validity that
ensures that modified binaries do not contain illegal control flow and compatible
visible behavior that ensures that the behavior of code that was not explicitly
modified is preserved. For efficiency, we require that our cost is proportional to
the amount of modification or instrumentation and the frequency with which
it is executed; as a result, we impose overhead (both in space and execution
time) that is the same or lower than other binary modification toolkits while
providing cleaner interfaces and stronger correctness guarantees.

This dissertation describes the design and implementation of several novel
techniques that we use to accomplish these four goals. First, we define struc-
tured binary editing, a binary modification technique that ensures the modified
binary is structurally valid. This technique allows users to modify the binary
by transforming the familiar representation of its control flow graph (CFG)
with an algebra of valid CFG transformations. Manipulating the CFG instead
of the binary directly removes the need for an instruction-level understanding
of the binary while ensuring that, by maintaining a valid CFG, the user does
not accidentally create an invalid binary. Second, we define anywhere binary
modification, an approach that applies conventional definitions of functions,
loops, and basic blocks to binaries whose code does not naturally support
these structures due to optimization or obfuscation. Third, we define anytime
code replacement, a technique that can replace original code with modified code
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at any point in the execution continuum while imposing cost proportional to
these changes. Fourth, we define sensitivity resistant code relocation, a technique
that allows us to incorporate new code into a binary while preserving the
visible behavior of the original code.

1.1 Guiding Principles

In this section, we elaborate on our guiding principles of abstraction, safety,
timeliness, and efficiency.

Abstraction Binaries are complex mixtures of code and data; we seek to hide
these complexities and the idiosyncrasies of binary modification within
a set of familiar, high-level abstractions. We leverage the control flow
graph, which has a well understood hierarchy of abstractions, such as
basic blocks, control flow edges, loops, and functions, that represent
program structure. In particular, we wish to do three things. First, to
eliminate the need for users to have detailed knowledge of instruction sets
and operating system interfaces and reduce the difficulty of porting tools
between different architectures and operating systems by encapsulating
the differences between these platforms. Second, to represent higher
level program behaviors, such as “entry to a function”, that may not be
obvious at the instruction level1. Third, to hide many of the complexities
of binaries, particularly programs that have been heavily optimized or
obfuscated. For example, functions and blocks may overlap and share
code bytes. Modeling these these structures as independent abstractions
hides this sharing from the user when such information is not needed,
and exposes it when desired by the user.

Safety It is important for binary modification toolkits to both preserve the
binary’s structural validity and ensure that the toolkit itself does not

1While entry to a function may seem like an obvious behavior associated with executing a
call instruction, it is in practice more complex particularly for highly optimized or obfuscated
code, where call instructions are used to access the program counter and jumps often replace
calls to optimize call/return behavior.
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alter the visible behavior of the binary. A binary is structurally valid if it
has valid control flow and only executes valid instructions; for example,
it must not branch to data (not including code in data), unallocated
memory, or the middle of an instruction. Toolkits often further modify
the binary, such as to insert additional infrastructure code; we these
modifications must not change the visible behavior of the program. We
define visible behavior in terms of denotational semantics (informally,
I/O behavior), which allows internal details of execution to change so
long as a binary’s output is the same. Current binary modification
techniques require the user to ensure structural validity and rely on
ad-hoc techniques to preserve visible behavior. We believe that these
approaches are not sufficient; instead, we rely on strong formal models
of both structural validity and visible behavior to guarantee the safety of
our techniques.

Timeliness Users may wish to modify a piece of code at any time in the ex-
ecution continuum: pre-program execution, while the selected code is
not executing (e.g., at the start of program execution), or while the se-
lected code is currently executing. This principle presents an interesting
challenge: we must present a single modification and instrumentation
interface that can be efficiently supported by a tool infrastructure that pro-
vides both binary rewriting and dynamic instrumentation. In addition,
we believe that any such modification should take effect immediately
rather than waiting for the selected code to be executed again (e.g., a
different loop iteration or function call). For example, the SD-Dyninst
research prototype [60] relies on the ability to instrument the current
instruction and have this instrumentation take immediate effect; this is a
critical component of its ability to analyze and instrument malware.

Efficiency Modifying and instrumenting a binary imposes overhead, both in
space (the size of the modified binary) and execution time. We believe
this overhead should be proportional to the amount of modified code
and the frequency with which it is executed. Inversely, code that has not
been explicitly modified should have no associated overhead. Finally, if
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a user removes a modification (e.g., removing inserted code) the costs
associated with the modification should similarly be eliminated.

1.2 Structured Binary Editing

The first contribution of this dissertation is structured binary editing, a tech-
nique for modifying a program binary by manipulating its control flow graph
(CFG). The CFG describes the structure and possible execution paths of a
binary, and we demonstrate that it can be used to manipulate these features
as well. Structured binary editing is conceptually simple: the user manipu-
lates the CFG to describe their desired resulting binary, including inserting
new code, copying existing code, modifying existing control flow paths, or
removing undesired code. This technique can also serve as the basis for more
complex modifications, such as modifying the data structures of the binary
[49]; however, such modifications are beyond the scope of this work. We
then use this modified CFG to generate a new binary. In addition to allowing
users to manipulate the structure of the binary at a high level, this approach
allows us to guarantee the resulting binary is structurally valid by ensuring
the CFG itself is valid. Structured binary editing consists of four components:
formalizing structural and CFG validity, ensuring that the transformed CFG is
valid by defining a set of valid and useful CFG transformations, handling the
insertion of new code into a valid CFG, and ensuring that modification does
not invalidate calculated, or indirect, control flow.

First, we formalize structural validity of binaries and define CFG validity.
We use a simple model of structural validity: a binary is structurally valid
if it has legal control flow and thus will only execute valid instructions. A
binary that attempts to branch to an unallocated address, into the middle of an
instruction, or execute actual data (but not code in data) is structurally invalid.
We define a CFG to be valid if it represents a structurally valid binary. For
example, a basic block with no out-edges that is not an exit block is invalid,
since such a block does not represent actual code.

Second, we define a modification algebra of graph transformations that
is closed under CFG validity. A graph transformation replaces a particular
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subgraph of an input graph G with a pre-defined replacement graph [3, 26].
These transformations are purposefully simple and localized to avoid unex-
pected side-effects on program behavior. However, since our algebra is closed,
transformations can be arbitrarily composed to perform complex modifications
of the program.

Third, we address the insertion of new code into a valid CFG. We must
ensure this new code does not introduce control flow of which we are not
aware to ensure our CFG remains correct. We do this by defining insertion
transformations, which insert a specific code sequence that matches a single
conceptual operation, such as inserting a conditional branch or call, and has
no other side-effects on the CFG. In addition, we allow users to insert code
snippets, which are single-entry, single-exit regions of code. Once inserted,
a snippet can be transformed as part of the original CFG, allowing users to
construct more complex code sequences.

Fourth, we address indirect control flow. We first present our algebra of
transformations in a simplified model that assumes that the control flow of
the program is not affected by its data flow. In this simple model, a particular
application of a transformation will have no control flow side-effects outside
of the transformed code. Since transforming control flow frequently affects
the data flow of the program by changing which instructions execute, this
simplified model assumes that any changed data flow has no effect on control
flow, such as by altering the target of an indirect branch. As a result, we can
determine whether a transformation is valid or not for any possible application
of that transformation.

Since indirect control flow uses values calculated at run-time, the data
flow side-effects of a transformation can alter control flow outside of the
transformed portion of the CFG. These non-local control flow changes in turn
could cause an invalid CFG; for example, by corrupting a function pointer
to target non-code. We address this problem by defining a slicing-based
dataflow analysis that determines if the destinations of an indirect control
flow instruction may be invalidated by a transformation of the CFG. We can
either invalidate such transformations or insert runtime monitoring code at
the option of the user.
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For simplicity of description, we assume that a complete CFG can be de-
rived from the input binary. This is not always possible to do with a static
analysis due to the presence of exceptions, callbacks, indirect control flow,
or self-modifying code. This problem can be overcome by augmenting static
parsing with dynamic parsing techniques to identify a complete CFG during
execution [60]. Such a CFG can then be modified and used to generate modi-
fied code; if the CFG is further developed by additional dynamic parsing, then
the process can be repeated.

We define our CFG model and describe the concepts and implementa-
tion details of structured binary editing in Chapter 3, and describe a CFG
view technique that allows us to apply structured binary editing to binary
instrumentation in Chapter 5.

1.3 Projections on a CFG: Functions and Loops

The second contribution of this dissertation extends structured binary editing
to operate on functions and loops, abstractions that provide a familiar interface
to the binary. For example, a user can insert new code at a function entry or at
the top of a loop instead of having to operate at the instruction or basic block
level. Such an approach provides significant value by encapsulating binary
complexity, but also poses significant design challenges. Modern optimizing
compilers focus on efficiency of generated code instead of generating simply
structured code; as a result, the mapping of these abstract representations onto
the binary may be complex.

Previous approaches [11, 36, 38, 41, 52, 57, 68, 69] use an overly simple
mapping of these functions and loops to instructions, including mapping the
entry of a function or loop to its first instruction, assuming that functions do
not share code (a common optimization), and assuming functions only end
at return instructions instead of optimized return sequences. Consider the
example shown in Figure 1.1 of a function whose preamble code (stack setup)
was omitted by the compiler. Since previous approaches map the entry of a
function to its first instruction, they would generate the instrumented CFG
shown in Figure 1.2a. This CFG is incorrect, as entry instrumentation may



8

i n t main ( i n t argc ) {
do {

argc −= 1 ;
} while ( argc > 0 ) ;
return argc ;

}

(a) Code Listing

400450: sub $0x1 , %edi
400453: test %edi , %edi
400455: jg 400450
400457: mov %edi , %eax
400459: ret

(b) Disassembly

(c) Function CFG

Figure 1.1: Code listing, disassembly, and CFG for an example function whose
first instruction executes multiple times per function invocation. This example
was generated by GNU GCC version 4.1.2 at optimization level O2.

execute multiple times per function invocation.
We describe more sophisticated abstractions of functions and loops that

encapsulate the complexity present in optimized or obfuscated binaries. We
extract these abstractions from the interprocedural CFG and map them back
to the CFG instead of directly to the underlying binary. Instrumentation and
modification of these abstractions is applied to the underlying CFG using the
transformation algebra described in Section 1.2. For example, entry instrumen-
tation is performed by creating a distinct entry block, as shown in Figure 1.2b;
this allows correct instrumentation even of optimized functions.

For several reasons, the functions and loops we identify in the binary
may not precisely correspond with functions and loops in the source code.
For example, inlined functions will not be distinguished from their callers,
and unrolled loops may not be identified. Instead, we attempt to identify
structures with familiar characteristics to source code functions and loops that
also include the effects of compilation.

We define our function and loop abstractions and discuss modification of
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(a) Incorrect Instrumentation (b) Correct Instrumentation

Figure 1.2: Examples of instrumenting the function shown in Figure 1.1, with
instrumentation shown shaded. Figure (a) shows the result of prior approaches
that instrument a function by instrumenting its first instruction; as a result,
instrumentation may execute multiple times per function invocation. Figure
(b) shows our approach, which creates a new entry block and inserts instru-
mentation there without disturbing the rest of the function.

these abstractions in Chapter 4.

1.4 Anytime Code Replacement

The third contribution of this dissertation is a technique for replacing the code
in a binary at any time while imposing proportional overhead; we call this
technique anytime code replacement [8]. The techniques described in Sections
1.2 and 1.3 allow a user to modify the CFG. To apply these modifications
to the binary we first use the CFG to generate new binary code, and then
replace the corresponding regions of original code with this new code. Due
to the presence of data in code and indirect control flow, it is often difficult
to replace the original code in place. Instead, we append the new code to the
binary and patch the original code with interception branches to the new code.
Patch-based code replacement has been used by several binary modification
toolkits [11, 36, 38, 52, 68]; however, these toolkits cannot patch executing code
and incur unnecessary overhead due to frequent execution of interception
branches.
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We define executing code to include both the current point of execution
(or points for multithreaded programs) as defined by the program counter
as well as code referenced in memory, such as return addresses on the stack
or function pointers. We must ensure that execution immediately moves to
the replacement code instead of continuing in the original code. If not, we
cannot guarantee that modification of the binary will take effect immediately,
or even in the near future in the case of a long-running loop. We address this
problem with state interception, which operates by directly modifying process
state to move execution from the current execution point to the corresponding
destination in the modified code.

Surprisingly, frequent execution of branches, even unconditional branches,
results in significant execution overhead. Our experiments show that this is
caused by branching between two separate regions of code, which increases
the pressure on the instruction cache, and by branches causing bubbles in the
processor pipeline, which stalls instruction fetch and decode. Due to these
factors, we minimize the frequency of executing interception branches with
region patching. Instead of copying single instructions, we identify a region that
includes all modified areas of the CFG. This region may vary in size from a
single basic block to a set of functions. We then consider this entire region to
be modified and patch only the entry points to this region with interception
branches. This technique is a generalization of the function patching approach
previously used by several binary modification toolkits [11, 36, 38, 68], and
greatly decreases the frequency of executing interception branches.

As with structured binary editing, our description of anytime code replace-
ment assumes the existence of a complete CFG. If the CFG is incomplete, we
may either augment it with dynamic analysis or mark the incomplete regions
of the CFG unmodifiable. Dynamic analysis will result in a complete CFG,
but must be performed at runtime; in contrast, marking regions of the CFG
as unmodifiable will allow the user to rewrite the remaining portions of the
binary.

We describe region patching and state interception in Chapter 6.
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1.5 Sensitivity-Resistant Code Relocation

The fourth contribution of this dissertation is a technique for replacing code in
a binary while preserving the behavior of both the original code and the sur-
rounding code. Such replacement frequently changes the contents of registers
and memory as a side effect. For example, region patching overwrites original
code with interception branches, which alters the memory corresponding with
this code; adds new code, which allocates additional memory; and executes
new code, which will perceive a different program counter value. Other code
replacement techniques may also overwrite original code, allocate additional
memory, and execute new code at a different address. These changes alter the
contents of registers, such as the program counter, and memory, and may in
turn alter the behavior of instructions that use these changed registers or mem-
ory as inputs. For example, a moved call instruction will produce a changed
return address. We call these instructions sensitive to code replacement.

Binary modification toolkits seek to compensate for the altered behavior of
sensitive instructions using code relocation, a technique that produces code that
has compatible visible behavior with the original code. Previous approaches
have relied on ad-hoc definitions of sensitivity and visible behavior and thus
impose unnecessary overhead [10, 41, 50] or may fail to preserve compati-
ble behavior [11, 36, 38, 52, 57, 68, 69]. We describe sensitivity-resistant code
relocation, a technique that relies on a formal specification of sensitivity to
both preserve correct behavior while often imposing lower overhead than
previous approaches [9]. This technique consists of four components: a model
of instruction sensitivity, a formalization of the compatible visible program
behavior that we wish to preserve, an analysis for identifying externally sensi-
tive instructions that will alter this behavior, and an efficient compensation
technique for handling such instructions.

First, we describe a model of instruction sensitivity. We classify the effects
of code replacement on the program and identify four classes of affected in-
structions: instructions in modified code that perceive a different value for
the PC, instructions that access original code that was overwritten, instruc-
tions that access newly allocated memory, and instructions whose successors
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were moved. For each category we define how the inputs and outputs of the
instruction are changed by code replacement.

Second, we formalize compatible visible behavior in terms of denotational
semantic equivalence. When we modify the program, we maintain a rela-
tionship between the CFG and the modified binary. We formalize output flow
compatibility, a stricter approximation of denotational semantic equivalence
that leverages this relationship to make the determination of equivalence
tractable.

Third, we describe a dataflow analysis for identifying externally sensitive
instructions. Not all sensitive instructions are externally sensitive. Consider a
moved call instruction; since executing a call records a PC-dependent return
address, a call is PC-sensitive. However, if this return address is only used for
control flow, such as by a return instruction, then moving the call will have
no effect on the program’s behavior; in this case the call would be internally
sensitive. If the return address is used as part of a pointer calculation, such
as for a position-independent jump table; then modifying its value may alter
the program’s behavior and thus the call would be externally sensitive. Our
external sensitivity analysis uses program slicing [33, 56] to determine which
instructions may be affected by a sensitive instruction, and symbolic evaluation
[16] to determine if these effects would break output flow compatibility; if so,
we conclude the instruction is externally sensitive.

Fourth, we define a framework for low-overhead compensation of exter-
nally sensitive instructions. Relocation typically replaces each such instruction
with a sequence that emulates the original instruction’s behavior. This ap-
proach is straightforward but may miss opportunities for greater efficiency.
We describe group transformations that replace a sequence of affected code as a
single unit; our experiments show this technique results in a 23% decrease in
overhead when instrumenting position-independent code.

Our sensitivity model only addresses the effects of moving, adding, and
overwriting code. Inserting code into the binary may affect its behavior in
other ways, such as increasing the execution time, modifying library state,
modifying operating system state, or changing the layout of the heap by allo-
cating memory. Although we do not address these effects on the program in
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this work, we believe our approach could be extended to do so; however, such
an extension is beyond the scope of this work.

We describe these four components in Chapter 7.
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2
Related Work

This dissertation explores binary modification and instrumentation. In this
chapter, we survey related work that is closely related to our research. We begin
by describing existing research in binary modification related to structured
binary editing (Section 2.1). Next, we discuss related techniques for modifying
binaries in terms of functions and loops (Section 2.2). We then relate anytime
code replacement to existing binary code replacement techniques: patch-based,
just-in-time (JIT), and in-place code replacement (Section 2.3). Next, we discuss
other code relocation techniques that are similar to sensitivity-resistant code
relocation (Section 2.4). We conclude the chapter with a summary of the
related work (Section 2.5).

We implemented our new techniques and approaches in the Dyninst bi-
nary modification toolkit [11], replacing the techniques used previously. We
compare our approach to these previous techniques in addition to the tech-
niques used by other binary modification toolkits. When we refer to Dyninst,
we specifically refer to Dyninst 7.0.

2.1 Binary Modification Interfaces

A binary modification toolkit provides an interface that allows a user to modify
a binary program, either on disk or during execution. In this section, we discuss
the interfaces used by current binary modification toolkits. We classify these
interfaces by the abstractions that the user is given to manipulate: instructions,
control flow graphs (CFGs), or functions. Our approach operates on the CFG
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and builds upon previous work in binary CFG modification as well as the
related area of compile-time CFG modification.

We do not discuss toolkits that only provide binary instrumentation. In-
strumentation inserts new code into the binary with the intent of leaving the
original binary’s behavior unmodified; thus, instrumentation is a subset of
modification. While it is possible to insert instrumentation that alters the
behavior of a program, such as code that branches from instrumentation to a
different location in the program, doing so requires significant expertise by the
user; binary modification toolkits attempt to make this expertise unnecessary.
We discuss instrumentation toolkits where the technical details are relevant in
the later sections of this chapter.

Instruction Modification Interfaces

The EEL [36], Etch [57], Vulcan [68], DynamoRIO [10], Valgrind [50], and Sec-
ondWrite [52] binary modification toolkits allow users to modify binaries at the
instruction level. EEL, Etch, and Vulcan allow users to both remove original
instructions and insert new code anywhere in the binary; DynamoRIO also
provides the ability to modify an instruction, such as to change an operand.
These tools use platform-specific instruction representations. This approach
allows the user to precisely specify which instructions to use. However, it
also requires the user to understand the idiosyncrasies of these instructions to
ensure that they do not cause undesired side-effects, such as altering proces-
sor status flags, and limits the portability of tools written for that particular
architecture.

Valgrind and SecondWrite provide similar capabilities but use a platform-
independent instruction representation. Valgrind translates original instruc-
tions into a RISC-like language called UCode. All user modification is per-
formed on the UCode representation instead of the original binary, and the
modified UCode is compiled into a new binary. SecondWrite performs a sim-
ilar translation into the LLVM [37] compiler’s intermediate representation.
These approaches remove the need for instruction set-specific knowledge by
users and provide portability.
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Instruction-level modification provides fine-grained control over the binary
by allowing users to modify individual instructions. However, these toolkits
do not provide any validity guarantees, instead relying on the user to ensure
that any modifications are valid.

CFG Modification Interfaces

The DIABLO [18] binary rewriter provides both CFG and instruction modifi-
cation capability through its visual LANCET [72] tool. LANCET presents the
binary as a CFG. Dataflow analysis results, such as liveness information, are
presented as an annotation of the graph, and colors indicate the frequency of
execution as determined by profiling the binary. LANCET allows the user to
arbitrarily change the CFG by changing the source or target of a control flow
edge, adding new basic blocks, and splitting blocks. Furthermore, users can
insert, modify, or remove instructions inside blocks.

By combining instruction-level and CFG modification, LANCET provides a
platform-independent, abstract binary modification capability. However, their
approach has three weaknesses. First, since LANCET operations allow the user
to arbitrarily transform the CFG, they do not necessarily preserve validity of the
graph; instead, they rely on the user to do so. Second, LANCET’s instruction-
level modifications are performed using a platform-specific representation
and thus the user must have platform-specific knowledge as with instruction-
level modification toolkits. Third, they do not keep the CFG and instruction
representations consistent; any modification of instructions is not reflected
in the CFG and vice versa. This can be dangerous if the user modifies both
representations, or if one representation is used for analysis after the other
is modified. For example, if a user modifies a branch instruction to target an
instruction in the middle of a block, that block will not be split in the CFG.

We build upon the ideas provided by LANCET and address these weak-
nesses in this work. For example, we restrict the code users can insert to not
include control flow instructions, such as branches, calls, and returns, thus
ensuring that instruction-level modification does not alter the CFG; instead,
such operations are performed on the CFG directly.
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Call Graph Modification Interfaces

The Dyninst 7.0 [11] and PIN [41] binary modification toolkits can modify
a binary at the function level by modifying the targets of function calls or
replacing functions entirely. Conceptually, these are modifications of the
program’s call graph. The call graph is a multigraph that represents flow
of control between different functions; nodes represent functions, and edges
represent calls between functions. Dyninst 7.0 and PIN support function
call replacement, which redirects an edge in the call graph to another node;
function replacement, which redirects all edges to a particular node with a
replacement node; and function wrapping, which refines function replacement
to allow specific calls to access the original function. These replacements are
specified by the user and may be compiled from a high-level language, such
as C or C++.

Function modification provides a coarser granularity of modification than
either instruction or CFG modification. While it is possible to modify a par-
ticular location, such as a particular branch or memory access, by replacing
the entire function, doing so requires the user to construct the replacement
function manually. Instead, function modification lends itself well to situations
where functionality should be modified at a large granularity, such as replac-
ing or wrapping malloc or similar functions. Unlike instruction or CFG-level
modification approaches, operating at the function level preserves validity of
the underlying CFG.

Compile-Time Modification

Compiler toolkits support modification of a program during compilation. The
SUIF compiler toolkit [75] provides the Machine SUIF library [29], which allows
modification of both the CFG and individual instructions. Machine SUIF
provides block cloning, block creation, and edge redirection transformations.
These are intended to support code layout optimizations such as loop unrolling.
The library also automatically updates control flow instructions to correspond
with changes to the CFG.

Unlike LANCET, Machine SUIF limits the transformations that can be
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applied to the CFG and thus ensures that validity is preserved; we leverage
this concept and expand on it in this work. We also leverage their concept of
performing control flow modification solely on the CFG instead of allowing
direct user modification of control flow instructions to ensure that the CFG
stays consistent with the underlying instruction representation. Machine SUIF
provides basic transformations that can modify existing control flow paths.
We provide additional transformations that create or remove paths while
preserving the validity of the graph.

2.2 Function and Loop Abstractions

Several binary modification toolkits, including Atom [22], EEL [36], Dyninst 7.0
[11], Etch [57], Vulcan [68], PIN [41], PEBIL [38], and SecondWrite [52], describe
the binary in terms of high-level function and loop abstractions. In contrast to
the low-level abstractions of individual instructions and basic blocks, which
have generally agreed upon definitions, previous research has developed
several function and loop abstractions; these abstractions have increased in
complexity over time to handle the code produced by modern compilers.
In this section, we discuss the abstractions for functions and loops used by
current binary modification toolkits and the techniques these toolkits use to
map modification or instrumentation of these abstractions to the underlying
code.

When evaluating a function abstraction, we consider the following exam-
ples of the complexities of code generated by a modern compiler:

• Shared code. Multiple functions may share the same blocks of instruc-
tions, such as error handling or teardown code. Examples of shared
code are found in libc on Linux and the floating-point restore macros
on AIX.

• Multiple entry functions. Languages may allow a function to be entered
at multiple locations, such as the Fortran ENTRY statement. Such code
generates functions that have multiple entry points.
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• Interleaved functions. Compilers may outline infrequently executed
code to improve cache performance. As a result, code from multiple
functions may be interleaved.

• Internal entry points. As a result of outlining, the entry of a function
may not be the instruction with the lowest address. This occurs when
code is outlined to an earlier location in the binary.

ATOM, EEL, Etch, Vulcan, PIN, and PEBIL represent a function as a con-
tiguous sequence of basic blocks with possible gaps for data. A particular
block may only belong to one function, and functions may not be interleaved.
This representation is typically derived from the information present in the
symbol table, which specifies a function’s name, starting address, and size.
The function’s entry is considered to be the instruction with the lowest ad-
dress, and function exits correspond to return instructions. This approach has
the advantage of simplicity, but it is not sufficient to handle the complexities
of code generated by a modern compiler, as it does not handle shared code,
multiple entry functions, interleaved functions, or internal entry points. In
addition, entry and exit instrumentation are mapped to single instructions,
and thus may be incorrect.

Dyninst 7.0 represents functions as a subgraph of the CFG with a single
entry block. Function entries are identified with the symbol table (if present),
by identifying the targets of other function calls, or with heuristics that identify
common function preambles [25]. The body of each function is identified by
performing a forward search of the CFG until a return instruction or tail call
sequence is reached; these are identified as the exits of the function. This
abstraction supports the examples described above. Functions may share
basic blocks; in this case, Dyninst 7.0 uses per-function logical copies of such
blocks. Multiple-entry functions are represented as a collection of single-entry
functions that share code. Interleaved functions are possible, as the function
body may be non-contiguous. Finally, the function entry is associated with a
block rather than with the instruction with the lowest address.

The Dyninst 7.0 function abstraction has two weaknesses. First, Dyninst
7.0 uses the same simple mapping of entry and exit points to instructions
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that other toolkits use, and thus may incorrectly instrument optimized code.
The second weakness is more subtle. Dyninst 7.0 handles shared code by
making multiple logical copies of overlapping blocks. However, the toolkit
will always make multiple copies of instrumented shared blocks, even if the
instrumentation is identical for each function that contains the block. This can
lead to an increase in the size of the instrumented binary if overlapping code
is common.

SecondWrite extends the abstraction used by ATOM and other toolkits to
allow logically distinct functions to overlap. This approach successfully repre-
sents both shared code and multiple-entry functions; the latter are represented
as a set of single-entry functions. However, SecondWrite’s abstraction does
not allow interleaved functions or internal entry points.

An alternative abstraction is used by the PLTO whole-program optimiza-
tion engine [63]. The PLTO function abstraction supports multiple entry points.
Thus, if multiple functions share code, they are merged into a single function
with multiple entry points. This approach avoids creating multiple logical
copies of blocks as required by the Dyninst 7.0 function abstraction. However,
if the code sharing is the result of an optimization rather than a language
feature, this abstraction can be confusing.

EEL and Dyninst 7.0 both provide loop abstractions. These projects use
natural loops [1]. EEL represents a loop as a single header block, a set of exit
edges, and a set of back-edges. Dyninst 7.0 explicitly specifies the loop body
as well. Loop entries are instrumented by instrumenting the edges into the
header block from outside the loop, and exits are similarly instrumented at
the exit edges of the loop. Finally, per-iteration instrumentation is performed
by instrumenting loop back-edges. This approach does not map loop instru-
mentation to specific instructions, and thus does not suffer the same mapping
problem as functions.

2.3 Binary Code Replacement

In this section, we describe the code replacement techniques used by binary
modification and instrumentation toolkits. As with the structural representa-
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tions discussed in the previous section, there are a small number of techniques
shared by binary modification toolkits: patch-based, JIT, or in-place code re-
placement. We describe each of these techniques below. We characterize these
approaches by the techniques they use, and whether they impose proportional
cost; that is, whether overhead is incurred when executing original code that
was not modified by the user.

Patch-based Code Replacement

Patch-based code replacement operates by appending modified or instru-
mented code to the binary and overwriting original code with interception
branches to the corresponding locations in the appended code. Thus, the pro-
gram executes a mixture of original and added code.

EEL [36], Dyninst 7.0 [11], Vulcan [68], PIN [41], PEBIL [38], SecondWrite
[52], and self-propelled instrumentation [44] use patch-based code replace-
ment. Vulcan uses patch-based replacement for dynamic instrumentation and
in-place replacement for binary rewriting, and PIN supports both patch-based
and JIT replacement for dynamic instrumentation. We characterize these toolk-
its as follows: first, whether they support dynamic instrumentation, binary
rewriting, or both; second, the granularity at which they intercept control
flow (per function, basic block, or instruction); third, whether they provide a
mechanism other than interception branches to capture control flow.

EEL [36] supports binary rewriting of SPARC/Solaris programs. EEL
copies the entire code region of the original binary and overwrites every
instruction in the original with a branch to the corresponding location in the
copy; this allows them to intercept execution on a per-instruction basis. This
technique is effective on SPARC and other fixed-length architectures where
a single instruction can always be overwritten with a branch. The LEEL [77]
toolkit applied EEL’s technique to IA-32, but relied on traps instead of branches
and thus suffered high overhead.

EEL uses an interesting technique to handle jump tables, a form of indirect
control flow often used to implement multiway branches such as the C switch
statement. Jump tables map the value of an index variable to an entry in
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a table of destination addresses and then branch to this calculated address.
EEL uses compiler-specific heuristics to identify this table and updates these
addresses to point to the replacement code instead of the original code. If this
update fails, EEL instead uses the original destination address and intercepts
execution with the branches patched over the original code. Since the time
that EEL was developed (1996), code generation strategies have become much
more sophisticated, so the variations in jump table layouts have increased
dramatically. As a result, heuristic-based strategies similar to EEL’s are less
effective today.

Dyninst 7.0 [11] supports both dynamic instrumentation and binary rewrit-
ing with the same tool infrastructure. They only copy modified or instru-
mented code and do so on a basic block granularity. If a block is not large
enough to contain an interception branch, Dyninst 7.0 instead attempts to
relocate the function that contains the block, padding out each block in the re-
located function with enough space to contain an interception branch. Function
relocation fails if the function includes an indirect branch with an unknown
destination; in these cases Dyninst 7.0 marks the function uninstrumentable.

As a result of function relocation Dyninst 7.0 may execute two levels of in-
terception branches; the first to a relocated function, then within that relocated
function to a relocated block. Dyninst 7.0’s approach is platform independent
and has been implemented on SPARC, PowerPC, IA-32, x86-64, and IA-64 archi-
tectures; however, its two-level branching scheme can impose higher overhead
than approaches such as EEL that execute only one level of branching.

Two other toolkits, the PEBIL binary rewriter [38] and the Vulcan dynamic
instrumenter [68], use techniques similar to Dyninst 7.0. PEBIL [38] initially
relocates at the instruction level; as with Dyninst 7.0, PEBIL may relocate a
function if instructions cannot be patched with branches and will fail if an
unparsed indirect branch is present. Vulcan’s [68] dynamic instrumentation
mode uses both block and function replacement, similarly to Dyninst 7.0;
Vulcan relies on information provided by the compiler to determine the targets
of indirect branches and thus can always relocate a function. Vulcan also
supports binary rewriting but uses in-place replacement to do so; we discuss
this mode in Section 2.3.
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SecondWrite [52] supports binary rewriting. Like EEL, SecondWrite copies
the entire binary, but only inserts interception branches at function entries.
SecondWrite handles indirect control flow by inserting address translation
code immediately before an indirect branch or call. This code converts the
original destination of the indirect control flow instruction to its corresponding
address in the replacement code. This scheme obviates the need for block-level
interception branches, but imposes higher overhead since executing address
translation code is typically more expensive than executing an interception
branch.

These toolkits all operate as third-party programs that modify the target
binary, either on disk or at run-time via the debugger interface. Patch-based
replacement has also been applied from within the executing program with a
technique called self-propelled instrumentation [44]. This technique replaces
call sites with interception branches to code snippets that contain both user-
specified instrumentation code and toolkit-provided propagation code. This
propagation code identifies the callee and instruments it. As a result, instru-
mentation is propagated along execution paths. This approach is amenable to
situations where a third-party instrumentation may not be feasible, such as
distributed systems, and often results in lower overhead by avoiding a context
switch between the executing program and the toolkit.

Finally, the PIN [41] toolkit provides partial support for patch-based code
replacement. PIN is primarily a JIT-style toolkit as described in the next section.
However, PIN supports a patch-based “probe mode”. This mode supports
instrumenting only function entries and exits, and operates by copying whole
functions. These copied functions cannot contain indirect control flow and
must be represented in the symbol table.

Patch-based replacement will impose proportional cost in space and time
if only modified or instrumented code is copied; thus, Dyninst 7.0, PEBIL,
Vulcan, and PIN impose proportional cost while EEL and SecondWrite do not.
Dyninst 7.0 and Vulcan support both dynamic instrumentation and binary
rewriting with the same tool infrastructure.
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JIT Code Replacement

JIT code replacement begins by identifying the current execution point in the
process and copying a sequence of instructions beginning at that point into a
code cache. This trace is then instrumented or modified as desired by the user.
When the trace finishes executing, control is transferred back to the toolkit,
which identifies, copies, modifies, instruments, and executes the next trace. As
a result, no original code is ever executed; instead, execution occurs entirely in
the code cache and the toolkit itself.

Shade [14], DELI [19], DIOTA [42], and PIN [41] are JIT-based dynamic
instrumenters; DynamoRIO [10] and Valgrind [50] provide JIT-based binary
modification in addition to instrumentation. Unlike patch-based code replace-
ment, there is a great deal of similarity between the various JIT-based tools.
Therefore, we only mention unique aspects of these tools.

Shade was the first JIT instrumentation toolkit, and was remarkable for per-
forming binary translation as well as instrumentation. Shade could translate
between SPARC (v8 and v9) and MIPS by emitting code for a different architec-
ture than the original code. However, Shade’s traces were single instructions,
and thus its overhead was high since the JIT engine was called frequently.

DIOTA developed a mechanism for handling self-modifying code by write-
protecting code pages and intercepting write operations; this approach was
also used by DynamoRIO and PIN. This approach works well if code and data
are separated, but leads to high overhead if code and data are mixed on the
same pages.

PIN focuses instead on optimization of the generated code and pioneered
several address translation optimizations, such as code cloning to enable con-
stant propagation, that have been reused by other JIT-based toolkits such as
DynamoRIO.

JIT code replacement does not require a static parse of the binary, and thus
works transparently both on programs with substantial indirect control flow
and programs that generate code at run-time. Also, since toolkits that use
this approach do not overwrite original code, they do not create problems
for self-checksumming and similar tamper resistance techniques. However,
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this approach has three weaknesses. First, since all executed code is copied
and relocated, these toolkits impose cost even when executing unmodified
code; thus, they do not impose proportional cost. Also, the cost involved
with executing the JIT engine can dominate if the program is short-lived,
although it may be amortized for long-running programs. Second, these tools
handle indirect control flow using an address-translation approach similar
to SecondWrite: the program calculates the original destination, and it is
translated to a replacement destination immediately before the indirect branch
or call. This approach imposes higher overhead than using an interception
branch. Third, this approach is not amenable to binary rewriting since it relies
on a dynamic parse of the program.

In-Place Code Replacement

In-place replacement operates by moving original code to make space to insert
new code and updating any address calculations to correspond to the new
structure of the binary. This technique imposes lower overhead than both
patch-based and JIT code replacement, since there is no need for interception
branches, address translation, or a JIT engine. ATOM [22], Etch [57], Vulcan
[68], and DIABLO [18] use this technique to provide binary rewriting.

However, this technique relies on the presence of linker relocations to allow
the toolkit to update address calculations. Conceptually, linker relocations
provide sufficient information about the binary to make all code position-
independent; however, this information is normally only present in object
files or statically linked code and is discarded after it is used. Thus, this
approach can only be applied to specially prepared binaries. Furthermore, in-
place code replacement is not amenable to dynamic instrumentation, since the
information provided by linker relocations is not sufficient to update executing
process state.
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2.4 Behavior Preservation

The code replacement strategies discussed in the previous section alter the
binary by copying original code, overwriting original code, and adding new
code. This section discusses approaches for compensating for the effects of
these operations on the binary to ensure the original binary’s behavior is
preserved. We also describe a related technique that compensates for the
effects of executing instrumentation code on shared library state.

Binary modification toolkits modify the structure of the binary by mov-
ing original code, adding new code, and overwriting original code. These
operations can affect the execution of sensitive instructions. Conceptually, an
instruction is sensitive if one or more of its inputs will be changed by a modifi-
cation; we formalize this concept in Chapter 7. For example, a load instruction
that treats code as data would be sensitive to overwriting that code with new
values. Similarly, an instruction that uses the program counter (PC) would be
sensitive to movement because the value of the PC would change. We discuss
approaches for handling overwritten or moved code below; to our knowl-
edge, no binary modification toolkits attempt to compensate for instructions
sensitive to added code.

The simplest method for preventing behavior changes is to use a modifica-
tion technique that does not modify program structure. This approach is used
by JIT-based toolkits [10, 14, 19, 41, 42, 50] that do not overwrite any original
code. While this approach suffices for programs sensitive to overwritten code,
such as a self-checksumming program, it does not compensate for moved code,
which will perceive a different program counter value, or added code, since
adding code changes the shape of the address space.

Wurster et al. [76] compensate for overwritten code by redirecting instruc-
tion fetches and data accesses to different regions of memory by manipulating
the translation lookaside buffer (TLB). This TLB splitting approach makes a
copy of the original code and redirects data accesses to that copy while exe-
cuting the modified code; as a result program behavior is preserved with no
overhead. TLB splitting has been implemented by modifying the kernel [76] or
a virtual machine monitor (VMM) underlying the kernel [59]. Unfortunately,
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it can be defeated by combining self-modifying code with self-checksumming
code [23], since writes occur only on the data copy. Thus, when the code
attempts to modify itself, it will update the data copy but not the code copy
and the modifications will not be reflected in future instruction fetches.

The most common technique for compensating for the effects of moved
code is to emulate the original value of the program counter. For example, a
call instruction would be split into a sequence that saved the original return
address and then branched to the destination of a call. As a result, all addresses
are calculated relative to the original program. This approach also requires
address translation for all control flow pointers to code that may have been
moved. This approach is used by JIT toolkits [10, 14, 19, 41, 42, 50]; these
toolkits insert address translation code at all indirect branches, indirect calls,
and return instructions. Our experiments show the combination of emulation
and translation imposes an average execution overhead of 90%; these results
are shown in Chapter 7.

However, not all changes in instruction behavior will affect overall program
behavior. For example, moving a call instruction is often safe if the stored
return address is only used for control flow. This intuition motivates the ad-
hoc compensation technique developed by Dyninst 7.0 [11] and used by PEBIL
[38]. This approach attempts to emulate only instruction sequences that copy
the program counter into a general purpose register; instructions that use the
PC to save a return address are left unmodified. However, this approach uses
manually specified patterns to recognize sequences that require emulation,
may result in false negatives, and cannot guarantee behavior preservation.

The DIABLO link-time optimization system [18] addresses a separate prob-
lem, that of preventing instrumentation code’s execution from modifying data
structures in shared libraries [17]. They note that instrumentation that uses
library functionality, such as to allocate memory or open a trace file, may
perturb applications that depend on particular patterns of library behavior,
such as precise values of file descriptors or pointers to allocated memory. DI-
ABLO provides specialized support libraries that instrumentation can use to
safely access such functionality. The PLTO optimization system [2] provides
similar libraries for memory management. This support library approach is
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complementary to our sensitivity resistant code relocation technique.

2.5 Summary

There has been significant research into binary modification and instrumenta-
tion. In this chapter we discussed four facets of this work: the interfaces used to
modify binaries, the function and loop abstractions that provide a higher-level
structural representation of binaries, the techniques used to replace original
binary code with modified code, and the techniques used to compensate for
the side-effects of code replacement on the binary.

Binary modification has been performed on instructions, the CFG, and
functions. Of these, the CFG provides both fine-grained control and a platform-
independent interface. However, previous CFG modification approaches fail
to enforce safety constraints; it is possible to create a CFG that cannot be
instantiated into binary code or an invalid CFG that describes a structurally
invalid binary. We address this problem with structured binary editing, a
CFG-modification technique that preserves validity, in Chapter 3.

Several function abstractions exist that trade off simplicity for effectiveness
on program binaries produced by modern compilers. Current binary modifi-
cation toolkits make the assumption that function entries and exits correspond
to single instructions. As we showed in the introduction, this assumption is
not always true; these toolkits may incorrectly instrument optimized or obfus-
cated code. EEL and Dyninst 7.0 provide a loop abstraction and instrument
these abstractions in terms of edges, rather than instructions, thus avoiding
the problems of mapping entry and exit to particular instructions. We present
our extension of structured binary editing to functions and loops in Chapter 4.

Patch-based code replacement provides both dynamic instrumentation
and binary rewriting, imposes lower overhead than JIT replacement, and
can operate without the linker relocations required by in-place replacement.
However, current patch-based methods do not provide timely replacement of
actively executing code and may execute unnecessary interception branches,
adding to the execution cost. We address these problems with anytime code
replacement, which we present in Chapter 6.
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Current behavior-preservation approaches handle moved or overwritten
code; no solution for hiding the presence of added code exists. Moved code
has been handled by either emulating all moved instructions, which may
impose unnecessary overhead, or recognizing which instructions to emulate
with pattern-matching heuristics, which may be unsafe. Overwritten code can
be addressed by providing a specialized execution environment that hides
overwritten code by altering the TLB; however, this approach may be ineffective
if a program generates code at runtime. We present our sensitivity-resistant
code relocation technique, which handles moved, overwritten, and added
code, in Chapter 7.
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3
Structured Binary Editing

Binary modification allows the user to alter the structure and control flow, and
thus the behavior, of a binary program. In this chapter, we describe structured
binary editing, a binary modification approach based on transformation of the
CFG that provides platform-independent binary modification while ensuring
that these modifications do not create a structurally invalid program binary that
has illegal control flow or executes invalid instructions. The CFG is a familiar
representation of a binary’s structure and control flow; we demonstrate that
the CFG can also be used to modify these characteristics. The core of our
approach is an algebra of CFG transformations that preserve the validity of the
CFG and thus ensure the modified CFG can be instantiated into a new binary
that has the corresponding changes to its control flow. The operations in this
algebra are closed under CFG validity, and thus these transformations can
be composed to provide powerful binary modification capabilities without
requiring instruction-level understanding of the binary by users.

We begin by defining our CFG representation, which is derived from the
CFG representation used by the ParseAPI component of Dyninst 7.0 [54]. A
CFG is a directed graph whose nodes represent basic blocks and edges repre-
sent control flow between blocks. A basic block is a contiguous sequence of
instructions that execute as a single unit; blocks are commonly used to reduce
the size of the graph. We also define abstractions for functions and loops. In
this chapter we only present transformations of the CFG; we discuss both
modification and instrumentation of functions and loops in the next chapter.

We then define program structural validity and CFG validity, using the
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CFG definition presented in Section 3.1. Conceptually, a program is structurally
valid if it will execute valid instructions, and a CFG is valid if it represents
a structurally valid program. CFGs that are derived from structurally valid
programs by correct parsing techniques are implicitly valid; however, this
characteristic may not hold if the graph is transformed without constraint.
We define CFG validity as a constraint over each element in our CFG defini-
tion. Our approach enforces structural validity of the resulting binary; other,
stronger forms of validity, such as enforcing alignment of the stack, are beyond
the scope of this work.

Next, we define our algebra of CFG transformations, building on the CFG
transformations provided by LANCET [72]. We demonstrate that the opera-
tions of this algebra preserve CFG validity and thus an arbitrary composition of
transformations will preserve validity as well. We define three classes of trans-
formations: block transformations that alter basic blocks; edge transformations
that redirect or otherwise modify control flow edges between blocks; and code
insertion transformations that either insert a predefined code sequence, such
as a call, return, or conditional branch, or a user-provided sequence of new
code.

We then discuss the problem of handling indirect control flow. Our initial
treatment considers only direct control flow where the validity of a transforma-
tion can be immediately determined. Indirect control flow, however, depends
on the data flow of the program; this, in turn, can be altered by modifying
control flow. We present a slice-based dataflow analysis that identifies which
indirect control transfers (ICTs) may be affected by transforming the CFG, and
attempt to determine the new possible destinations of these transfers using
the same techniques we use to parse the initial CFG. If this succeeds, we can
determine whether the transformation will preserve validity and disallow
transformations that do not. If the analysis fails, we instead insert runtime
verification code that dynamically ensures validity.

Next, we discuss the implementation of our techniques in the Dyninst 7.0
binary analysis and instrumentation toolkit. When compared to other binary
modification toolkits Dyninst 7.0 has two clear advantages. First, it uses the
CFG as its primary program representation, and thus gave us the foundational
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abstractions on which to build. Second, it provides the analysis capabilities
(e.g., slicing) required for our dynamic validity analysis as described in Sec-
tion 3.4. However, implementing binary modification in Dyninst 7.0 posed
challenges as well. While Dyninst 7.0 provides a CFG representation of the
binary, this CFG is essentially static. We extended Dyninst 7.0 in three ways:
first, by making its CFG user-modifiable; second, by allowing insertion of new
code into the CFG; and third, by extending its code generation to instantiate a
new binary from the modified CFG.

We conclude the chapter with a presentation of two case studies that
demonstrate the efficacy of our techniques. We first present a tool that applies
security fixes to a running Apache web server, and compare this tool to similar
approaches using instruction-level binary modification. Second, we describe
ongoing work that that alters the precision of floating-point instructions. This
effort is being performed by Michael Lam at the University of Maryland [35],
and relies on our structured binary editing to enable alteration of floating-point
instructions.

3.1 Control Flow Graph

The CFG represents the structure of a binary and describes possible execution
paths. Our CFG is based on five abstractions: the interprocedural control flow
graph that consists of basic blocks and edges; functions; and loops. This graph
provides a platform-independent representation of the structure of the under-
lying binary. We define our abstractions for functions and loops in Chapter 4.
In addition, we define code snippets to represent code that a user adds to the
binary.

A CFG is a directed graph G = (V, E, Ve, Vx, T ), defined as follows; we
show an example CFG in Figure 3.1:

• The set V = B ∪ {v⊥} of vertices corresponding to basic blocks B and a
sink v⊥,

• The set E ⊆ V × V corresponds to control flow edges between blocks,
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b

b0

CallFt

Call

Ret

f

s

Ft

Figure 3.1: An example CFG that demonstrates our notation. Blocks (b, b′, s)
are represented by boxes and edges as arrows that are labeled with their
types. We shade snippet blocks, such as s, in blue. Dashed arrows represent
intraprocedural edges, while dotted arrows represent interprocedural edges.
We summarize functions as ellipses (f ).

• The sets Ve ⊆ V of entry vertices and Vx ⊆ V of exit vertices, and

• The function T : E → T that associates edges with types.

We define basic blocks in the conventional way as a consecutive sequence of
instructions bi = 〈im, . . . , in〉 with a single entry instruction im and single exit
instruction in; an instruction may belong to only one block. Each instruction
in a block is pre-dominated by its predecessor and post-dominated by its suc-
cessor. The in- and out-edges of bi are denoted In(bi) and Out(bi). Unknown
control flow is represented by an edge to a unique sink v⊥ that contains no
instructions and has no out-edges.

Edges are associated with a type that is an element in the following set:

T = (Dir , Ft, Cond, CondFt, Ind, Call, CallFt, Ret)

that represents direct, fallthrough, conditional taken, conditional fallthrough,
indirect, call, call fallthrough, and return edges, respectively. Call fallthrough
edges link blocks ending with calls to their intraprocedural successors, and
may be omitted if the callee does not return. Call and return edges are inter-
procedural; all other edges are intraprocedural.
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Our CFG model has been successfully applied to IA-32/x86-64 and Pow-
erPC. It is derived from the Dyninst CFG as provided by the ParseAPI compo-
nent [54], which has also been applied to SPARC and IA-64. We expect that
the CFG will also be able to represent ARM binaries. ARM is an interesting
architecture in this respect because of its pervasive use of predicated control
flow instructions, including calls and returns. However, PowerPC has a sim-
ilar capability (which we discuss in detail in Section 4.1) and so we expect
supporting ARM will be a straightforward process.

Deriving a CFG from a binary is a difficult problem in its own right. We
assume the presence of a parsing algorithm that can derive a CFG from the
binary. The design of these algorithms is a challenge due to the presence of
both indirect control flow that cannot be statically analyzed and data inter-
mixed with code. We use the ParseAPI [54] recursive-traversal parser [13, 64]
that follows statically determinable control flow to discover as much code
as possible, and makes use of backwards slicing and heuristic techniques to
identify the targets of indirect jumps (e.g., jump tables [12]) and functions that
are only reached via indirect calls [25]. To our knowledge, this algorithm has
never been published.

The CFG resulting from this parsing may be incomplete due to unknown
indirect control flow, exceptions, and similar constructs. For conventional
binaries, this incompleteness can be addressed by making conservative as-
sumptions about such control flow, such as that any function may be the target
of an indirect call, and that indirect branches are intraprocedural. In such cases,
additional edges can be added to the CFG to represent these assumptions, and
we may mark functions as unmodifiable if they contain unknown control flow.
If the user is modifying a running process, we may augment our static parse
with dynamic analysis techniques, such as those described by Roundy and
Miller [60]. These techniques will always present a locally complete CFG that
can be safely modified.

Users insert additional code into the CFG by providing a code snippet. A
code snippet is a single-entry, single-exit sequence of code that may contain
internal branching. We use this definition, rather than the finer-grained defi-
nition of a snippet as a single block, to provide maximum compatibility with
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existing tools that generate such regions of code, such as LLVM [37] or Dyninst
7.0’s AST [11] and DynC [53] code generation languages. We do not allow
control flow edges from within the snippet to external targets, such as a call to
an existing function, to ensure that inserting new code does not modify the
surrounding blocks and edges; such modification must instead be performed
with an explicit additional CFG transformation. Users may construct more
complex code sequences, such as code that ends in a conditional branch or
makes a call, by combining multiple snippets with the appropriate CFG trans-
formations. Once a snippet has been inserted into the CFG, it is represented
as a subgraph of the CFG and may be further transformed using the same
transformations that can be used on the original CFG.

We define a code snippet sj as a CFG (Vj , Ej , vj , xj , Tj) with a single entry
block vj and exit block xj ; the exit block must have a single fallthrough edge
to the sink v⊥. Code snippets may contain internal branching, but may not
have explicit branches outside of the snippet. For simplicity, we presume
that each snippet is specified as a CFG. They could also be provided as a
buffer of assembly that is parsed at insertion time to create a CFG, or in some
representation that can be compiled to assembly.

3.2 Validity

Structured binary editing allows the user to modify a binary program while
ensuring that its structural validity is preserved. Instead of directly modifying
the program, we derive a CFG from the binary, transform the CFG, and use the
transformed CFG to instantiate a similarly modified program. By ensuring that
all transformations preserve the validity of the CFG, we ensure the resulting
program is structurally valid. In this section, we define structural validity
of binary programs and validity of CFGs. Intuitively, a binary program is
structurally valid if it will only execute valid instructions; structural validity
does not guarantee correct execution or output. Similarly, a CFG is valid if
it represents a structurally valid binary program and can thus be used to
instantiate such a program.
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b1

b2

Dir

(a) Original CFG

b1

b2

(b) Transformed CFG

Figure 3.2: An example of an invalid CFG transformation. Figure (a) shows
the original CFG, with V = {b1, b2}, Ve = {b1}, Vx = {b2}, E = {(b1, b2)}, and
T mapping this edge to type Dir . Figure (b) shows the CFG with the edge
(b1, b2) removed. The second CFG is invalid, as b1 has no out-edges and is not
an exit block, and cannot be instantiated as a structurally valid binary program.
Thus, edge removal does not satisfy our constraints and is thus an invalid
transformation.

Structural Validity

For our definition of structural validity, we represent a binary program as a
tuple P = (C, D) where C = 〈i0, . . . , im〉 is a sequence of instructions repre-
senting the binary code and D represents data. We say P is structurally valid if
for all inputs, P will only execute instructions from C, and does not treat values
from D as instructions or execute unallocated memory. We purposefully use
a permissive model of validity that allows constructs such as code in data
(as C and D may overlap) and overlapping instruction sequences, which is a
common code obfuscation concept.

We assume the input program P is valid. This may not be the case, either if
P contains code that is modified at runtime by the remainder of the program
or if it contains intentionally invalid instructions. In such cases, our approach
will preserve the invalidity of the program.

CFG Validity

A CFG is implicitly valid when it is first derived from a structurally valid
binary, since its blocks describe valid instruction sequences and edges rep-
resent the control flow paths the binary will take. However, unconstrained
transformation of the CFG may result in a graph that no longer represents
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a structurally valid binary program. Consider the simple example shown in
Figure 3.2, where a transformation has removed all of the out-edges of a block
b1. As a result, b1 has no identified successors; since b1 is not an exit node, the
graph does not represent a structurally valid binary program and thus cannot
be used to instantiate one. We use our definition of CFG validity to constrain
which graph transformations can be applied to a CFG.

We define CFG validity with constraints over each element in the CFG defi-
nition. Let P = (C, D) be a structurally valid program as defined above. Then
a control flow graph CFGP = (V, E, Ve, Vx, T ) for P is valid if the following
constraints hold:

• Vertex constraint: The vertex set V = B ∪ {v⊥} is valid if every block
b ∈ B is valid by the definition of basic blocks and the sink v⊥ is unique.

• Edge constraint: The edge set E is valid if no edge has the sink as a
source and all non-exit blocks b ∈ (V \ Vx) have at least one out-edge.
That is, E is valid iff @e ∈ E s.t. e = (v⊥, bi) for some block bi and
∀bj ∈ (V \ Vx),∃e ∈ E s.t. e = (bj , bk) for some block bk.

• Entry constraint: The entry set Ve is valid iff Ve ⊆ V , |Ve| ≥ 1, and v⊥ 6∈ Ve.

• Exit constraint: The exit set Vx is valid iff Vx ⊆ V and v⊥ 6∈ Vx. Unlike
the entry set, the exit set may be empty if the program never terminates.

• Type constraint: The type function T is valid if all edges have a type, and
the out-edges of each block b are labeled in a way that corresponds to the
appropriate architecture. This constraint is architecture-specific because
each architecture has different control flow instructions with different
characteristics; for example, PowerPC and ARM support conditional indi-
rect branches while IA-32 only supports unconditional indirect branches.
We represent valid edge types, or signatures, in disjunctive normal form,
and we define signatures for IA-32/x86-64, PowerPC, and ARM in Table
3.1. We have implemented support for IA-32/x86-64 and PowerPC; an
ARM implementation is in the planning stage.
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IA-32/x86-64 PowerPC/ARM
(Dir) ∨ (Dir) ∨
(Ft) ∨ (Ft) ∨

(Cond ∧ CondFt) ∨ (Cond ∧ CondFt) ∨
(Ind+) ∨ (Ind+) ∨
(Call) ∨ (Call) ∨

(Call ∧ CallFt) ∨ (Call ∧ CallFt) ∨
(Ret+) (Ret+) ∨

(Ind+ ∧ CondFt) ∨
(Call ∧ CondFt) ∨

(Call ∧ CallFt ∧ CondFt) ∨
(Ret+ ∧ CondFt)

Table 3.1: Valid signatures for IA-32/x86-64, PowerPC, and ARM. In some cases
multiple out-edges may have the same type; we label these with +, borrowing
notation from regular expressions. For example, one or more indirect out-
edges is valid. A call will have a call fallthrough edge if the callee returns; for
non-returning calls, such as exit, we omit the call fallthrough edge. PowerPC
and ARM support conditional indirect branch, call, and return instructions;
this complicates the signature for this architecture.

Let Out(b) = {ei, . . . , ej} be the out-edges of a block b, and Tb a sequence
of types 〈T (ei), . . . , T (ej)〉; we represent Tb as a sequence since multiple
edges may have the same type, such as for an indirect branch. Each
sequence Tb is valid if it satisfies the appropriate signature, and T is
valid if ∀b, Tb is valid.

As examples, let b be a block with two out-edges e1, e2. A type function
T1 that maps e1 → Cond and e2 → CondFt is valid on IA-32, x86-64, and
PowerPC. A type function T2 that maps e1 → Call and e2 → CondFt is
valid on PowerPC or ARM but not on IA-32 or x86-64. Finally, a type
function that maps e1 → Cond and e2 → Dir is not valid on either
architecture since there is no control flow instruction that can produce
both a conditional and direct out-edge.
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b b b0

 L : R :

Figure 3.3: An example graph transformation. The input subgraph L is on
the left, and the replacement R is shown on the right, separated by a double
arrow. We use solid arrows to indicate an edge that can be either intra- or
inter-procedural, and omit type labels when they are not necessary. Edges to
or from blocks not included in the transformation (such as the source edge(s)
of b) are omitted for clarity.

3.3 CFG Transformation Algebra

The major contribution of this chapter is an algebra of graph transformations
for editing the structure and control flow of a binary program. In this section,
we define this algebra. We then describe three classes of transformations: block,
edge, and code insertion, and provide examples of each class. This discussion
assumes that each transformation has no other effect on the CFG; specifically,
that indirect control flow is not changed. We discuss our approach to handling
indirect control flow in Section 3.4.

Our structured binary editing algebra is a tuple BinEdit = (GT, V C) where
GT is a set of graph transformation rules and V C represents the validity con-
straint defined in Section 3.2. Briefly, a rule r : L → R replaces an instance
of the subgraph L in a target graph G with the graph R; we represent these
rules graphically, as is typical in graph transformation [3, 26]. A rule r is
valid under the constraint V C if transforming an input graph that satisfies
V C results in an output graph that satisfies V C. We show an example graph
transformation to demonstrate our notation in Figure 3.3. Users may compose
these transformations; composition of two valid rules is also valid.

The transformations presented in this section are valid so long as each
transformation has no effect on the surrounding CFG. This may not be the case
if a transformation alters indirect control flow, and we address this problem in
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Figure 3.4: Block transformations. Block splitting is shown in figure (a); the
original block b = (i1, . . . , ln) is split into two blocks b′ = (i1, . . . , im) and
b′′ = (im+1, . . . , in). Block joining is shown in figure (b), where two blocks
b, b′ are combined into one block b′′ = b ∪ b′; note that b′ may have no other
in-edges except from b. Block cloning is shown in figure (c), where the block
b is cloned creating a block b′. Note that cloning copies out-edges but not
in-edges. Finally, we show block removal in figure (d); note that the removed
block may not have in-edges.

Section 3.4.
The first class of transformations alter the blocks (nodes) in the CFG. We

define four block transformations: block splitting, block joining, block cloning, and
block removal. These transformations are shown in Figure 3.4. Block splitting
divides an existing block into two pieces and joins the resulting blocks with a
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(a) Edge Redirection

b

b0
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b0... ...

Dir

(b) Edge Collapsing

Figure 3.5: Edge transformations. Edge redirection is shown in figure (a);
the target of the edge is changed from b to b′ with no other changes. Edge
collapsing is shown in figure (b); all out-edges of b are replaced by a single
out-edge to b′. All blocks may have in-edges from blocks not included in the
transformation; however, blocks with no in-edges are valid.

fallthrough edge. Blocks must be split at an instruction boundary. Block joining
reverses this operation. The first block must have a single intraprocedural
out-edge that targets the second block; thus, this edge must be typed as either
direct or fallthrough. The second block must have a single in-edge from the
first block. Block cloning creates a copy of a particular block, including all of
that block’s out-edges (but not its in-edges). Block removal deletes a block
from the graph; the removed block must have no in-edges.

The second class of transformations alter the edges in the CFG. Since these
transformations involve no new code, they can only alter or remove existing
execution paths; we discuss creating new paths below. We define two edge
transformations: edge redirection and edge collapsing. These transformations
are shown in Figure 3.5. Edge redirection changes the target of an edge; the
source is left unmodified. Edge collapsing replaces all out-edges of a block
with a single edge to a selected target block; this edge is typed as direct and
with a context of intraprocedural. One obvious transformation that we do not
support is edge deletion, which removes an edge from the graph. Applying
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Figure 3.6: Insertion transformations, with the inserted snippet represented by
blocks shaded in blue. Raw insertion is shown in figure (a); the added snippet
s is not connected to the original CFG. Edge insertion is shown in figure (b);
a new snippet s is inserted between b and b′. Predicate insertion is shown in
figure (c); in the original graph b and b′ are connected by a direct or fallthrough
edge, and we introduce a conditional edge to b′′ while converting the original
edge to a conditional fallthrough. The block p represents the predicate that
selects which edge is taken at runtime.

such a transformation may result in an invalid CFG, since it does not provide
an alternative execution path (Figure 3.2). Similarly, modifying the source of
an edge is invalid in our algebra since it may result in an invalid CFG.

The third class of transformations inserts new code into the CFG. We must
constrain such insertion to ensure that the resulting CFG is valid; we do this by
constraining the transformations that can be used to insert code. In this work
we define five insertion transformations: raw insertion, edge insertion, predicate
insertion, call insertion, and return redirection. These transformations are shown
in Figures 3.6 and 3.7. Raw insertion simply inserts a provided snippet into
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Figure 3.7: Insertion transformations continued, with the inserted snippet
represented by blocks shaded in blue. Call insertion is shown in figure (a);
we insert a new block c (shown shaded) that contains the call to f . Return
replacement is shown in figure (b); we replace the out-edges of a block b in
a function f with return edges to the caller(s) of f . We represent the blocks
that call f as cm, . . . , cn, and the corresponding call fallthrough blocks as
cftm . . . cftn . The shaded block r contains the code necessary for a valid return
(e.g., stack teardown).
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the CFG, but performs no other operations; as a result, the user must use other
transformations to connect its entry and exit with the original CFG. Edge in-
sertion inserts a snippet along an existing single control flow edge; the snippet
entry is linked to the source of the edge and the exit is linked to the target.
Predicate insertion creates new execution paths by converting an existing di-
rect or fallthrough edge to a conditional pair. This transformation inserts a
predicate that controls which edge is executed and a new conditional taken
edge et, while converting the original edge to a conditional fallthrough eft. For
simplicity, the predicate tests a single register or memory location: if the value
is non-zero, et is taken; if zero, eft is taken instead. If more complex predicates
are required, a user can create them by composing predicate insertion with
edge insertion, and we rely on existing code-optimization techniques to gener-
ate efficient code for the desired result. Call insertion allows a user to interpose
a function call along an edge; to preserve validity, the original edge must be
typed as either direct or fallthrough. Finally, return redirection replaces the
out-edges of a block with an immediate return to the calling function.

3.4 Indirect Control Validity

In the previous sections, we described an approach to modifying a binary
program by transforming its CFG. This approach made the simplifying as-
sumption that these transformations had no effect on the remainder of the
CFG. This simplification does not hold if a program uses indirect branches or
calls that use addresses determined at runtime. In this section, we describe
how transforming the CFG may alter indirect control flow and describe an
approach for safely determining when this may occur.

Programs rely on indirect control flow for language features such as multi-
way branches, function pointers, or virtual functions. At the binary level, these
constructs are similar: the program first calculates an address and then uses an
indirect control transfer (ICT) to branch or call to this destination. These address
calculations may be altered by a transformation of the CFG, such as by inserting
new code that changes intermediate values used by the calculation. Such an
altered calculation may change the possible destinations of the corresponding
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ICT. This, in turn, may result in an invalid CFG that does not properly represent
these new destinations. The transformations presented in Section 3.3 do not
take this case into account, instead assuming that the only control flow effects
on the CFG are those explicitly represented in the transformation.

This problem is compounded by the difficulty of statically determining
indirect control flow. Compiler-emitted address calculations (e.g., jump tables)
frequently can be successfully analyzed and their destinations represented
in the CFG [12]. However, more complex calculations, such as those used for
function pointers or in optimized code, are either expensive to analyze [6] or
defeat analysis entirely. We label such ICTs in our code with edges to the sink
node, representing statically unknown control flow.

We identify which ICTs are affected by a particular CFG transformation
and how they are affected as follows. We use static analysis to identify which
ICTs are affected; clearly, if an ICT is not affected by a transformation then
its destinations will not be changed. If the ICT is affected, we attempt to
statically determine its new destination set. If each such destination is valid,
we update the CFG to match; if a destination is invalid we inform the user
and invalidate the transformation. Finally, if we fail to resolve the possible
destinations via static analysis, there is a spectrum of responses: we could
invalidate the transformation, allow the transformation but insert runtime
monitoring code, or allow the transformation and warn the user of the CFG
possibly becoming invalid. We allow the user to select which response they
prefer, which allows a user to be conservative if they want while allowing
transformations that the user may know is valid even if our analysis fails.

We define a destination to be valid if it targets the entry of a known basic
block (for an indirect jump) or known function (for an indirect call). This
is purposefully a restricted definition following our policy to minimize the
possible secondary effects of a CFG transformation. More relaxed policies are
possible; for example, we could define a destination to be valid if it targeted a
known instruction, and implicitly split a block at such a targeted instruction.

Our analysis is performed over the transformed CFG, which may include
inserted code snippets as well as original code. This analysis can be simplified if
the user provides semantic summaries of inserted code snippets; however, such
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summaries are not required. When we encounter a snippet during our analysis,
we apply a summary if it is available and continue instead of having to analyze
the entire snippet. This simplification biases towards cases where inserted code
has no cumulative effect on the address calculation (e.g., instrumentation) but
proving this with analysis of the inserted code would be expensive. Specifically,
if a snippet has no cumulative effect, we can omit its effects entirely and quickly
determine that the ICT was not affected.

Identifying Affected Indirect Jumps

Intuitively, an ICT is affected if a CFG transformation interferes with the ad-
dress calculation preceding the ICT. Let ij be such an ICT in a function f in the
original CFG, t a transformation, and f ′ be the resulting transformed function
with corresponding ICT i′

j . We define the address calculation corresponding
to ij as the backwards slice acj , bounded at function entry [33]; we discuss our
selection of this bound below. Clearly, if t has no effect on acj then the ICT ij

will also be unaffected; similarly, if t alters acj then ij is affected.

This is essentially a dataflow analysis problem, and thus it is insufficient to
see if acj is directly affected by t. Instead, we calculate the new backwards slice
ac′

j from i′
j in f ′. If acj ≡ ac′

j , then no modification of the address calculation
has occurred and thus ij ≡ i′

j ; otherwise, we conclude ij is affected and
perform further analysis to determine its new destinations.

We bound the backwards slice at unanalyzable memory accesses or the
entry of the function. Our current implementation can resolve stack accesses
or accesses to fixed memory locations; all others, such as a pointer-based
heap reference, terminate the slice. If we reach an unanalyzable memory
access, we make the conservative assumption that the ICT was affected by
the transformation. If we reach the entry of the function we can safely end
the slice since an intraprocedural transformation will not alter the function’s
inputs.



48

Identifying New Destinations

Once we have identified the ICT ij that is affected by the transformation t,
we must determine its new possible destination addresses; let this be a set
of addresses D = {am, . . . , an}. We say ij is valid if ∀ak ∈ D, ak is the entry
of a block bk. We analyze D as follows. First, we use symbolic evaluation
to convert the slice acj into a symbolic representation evalj [62]. We then
attempt to evaluate evalj to determine its possible outputs. If this evaluation
succeeds, we examine each possible destination to determine if it is valid; if
all destinations are valid, we update the out-edges of the ICT in the CFG and
inform the user of each changed edge. If a destination is invalid, we invalidate
the transformation. Finally, if the evaluation fails, we perform one of three
actions depending on the user’s preference for handling failed analysis. The
first option invalidates the transformation; this option is conservative, but
may invalidate legal transformations. The second option inserts runtime
monitoring code that raises an exception if the indirect branch targets an
invalid destination; this option allows possibly invalid transformations, but
may result in unexpected runtime failures. The third option removes all out-
edges from the ICT and replaces them with a single edge to the sink node; this
option is maximally permissive, but may allow invalid transformations and
thus may be dangerous.

3.5 Implementation

We implemented our structured binary editing techniques in the Dyninst 7.0
binary analysis and instrumentation system [11] by extending the PatchAPI
component [55] of the system. When compared to other instrumentation sys-
tems Dyninst 7.0 has two clear advantages. First, it uses the CFG as its primary
program representation, and thus gave us the foundational abstractions on
which to build. Second, it provides the analysis capabilities (e.g., slicing) re-
quired for our dynamic validity analysis as described in Section 3.4. In this
section, we briefly describe the Dyninst 7.0 system and detail how we extended
it to become a structured binary editor.
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While Dyninst 7.0 uses the CFG as its program representation, this CFG
is essentially static; instrumentation is specified as an annotation rather than
a transformation, and the augmented CFG is not visible to the user. Thus,
this approach does not suffice for structured binary editing. We extended
Dyninst 7.0 in three ways: first, by making its CFG user-modifiable; second,
by allowing insertion of new code into the CFG; and third, by extending its
code generation to instantiate a new binary from the modified CFG.

We extended the PatchAPI component to make the CFG directly modifiable
via the transformations described in Section 3.3. One interesting problem was
unifying our CFG transformations with Dyninst 7.0’s native instrumentation
capability, as we wanted to allow a user to use both mechanisms simultaneously.
We addressed this problem by introducing a callback mechanism to update
instrumentation when the CFG is modified. For example, if a user removed an
instrumented block, we will notify them that the instrumentation associated
with that block was also removed.

We also extended Dyninst 7.0’s internal code-generation mechanism. Dyninst
7.0’s instruction-relocation mechanism was limited to regenerating the original
CFG with instrumentation added. We extended this mechanism to allow us
to redirect edges by creating new branches or altering existing instructions.
The result is a buffer of code that instantiates the transformed CFG; we then
use Dyninst 7.0 to patch branches from original code to the new code where
appropriate (e.g., at corresponding function entry points). One challenge
with this approach is handing indirect branches, since we could not simply
update an offset in an existing branch. Dyninst 7.0 handles indirect branches
by emulating their original behavior, and then patching branches from each
original destination to the corresponding location in the instrumented code.
We extended this mechanism to instead branch to the target of the modified
edge.

Finally, we implemented our dynamic validity checker using the slicing ca-
pabilities provided by the DataflowAPI binary analysis component of Dyninst
7.0. This component gives us the ability to efficiently calculate local slices by
performing a search over the CFG; this mechanism is inspired by the EEL [36]
slicing algorithm. We implemented our analysis by calculating the slice from
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each indirect jump over the original CFG and then replicating the slice over
the transformed CFG. Our current implementation disallows any transforma-
tion that will alter a slice. As future work, we plan to instead re-analyze the
destinations of the modified jump.

3.6 Case Studies

We conclude this chapter with a presentation of two case studies that demon-
strate the efficacy of structured binary editing. The first case study presents a
tool for applying security patches to an executing Apache web server without
disrupting the server’s execution and compares this tool to an approach based
on instruction-level modification. The second case study presents ongoing
research that uses binary modification to alter the precision of floating-point
instructions; this research is being performed by Michael Lam at the University
of Maryland [35].

Patching Apache

Hot patching applies changes to a binary program while it is being executed.
This is an interesting problem, as it combines aspects of code analysis, code
specification, and binary modification. Hot patching a program requires three
steps. First, identifying the patch site(s) in the binary from an examination
of the source code patch. Second, constructing a new sequence of code that
matches the post-patch version of the source code. Third, removing the corre-
sponding original code and replacing it with the new code. Identifying the
code to be patched benefits from a representation such as a CFG that closely
matches the original code; however, code optimizations, such as function
inlining, can complicate identification. Constructing a new code sequence
is complicated by the need to refer to, and thus identify, program variables.
While it is possible to perform such construction in assembly code, it is often
more convenient to use a higher-level language that can refer to program vari-
ables, such as the Dyninst 7.0 AST or DynC languages. Removing code may be
performed on instructions, the CFG, or functions. Instruction removal requires
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precisely identifying which instructions should be removed; without some
structural information, such as functions, it can be difficult to identify these
instructions. In turn, function replacement is frequently too coarse-grained; if
functions were inlined in the original binary, it can be difficult to construct a
similarly inlined replacement function. CFG modification provides both the
structural characteristics that are helpful in identifying the code to replace
and the fine-grained control that allows replacement of small sequences of
instructions.

Hot patching is complicated by the differences in binaries generated by
different compilers, compiler versions, or optimization levels. Ideally, a hot
patching tool should be independent of a particular compilation of the code,
rather than needing to be specialized for every possible binary. Thus, the
method used for code identification, construction, and removal should be
related to structural characteristics rather than a particular instruction se-
quence. For example, the location where local variables are stored may vary,
or instructions may be reordered by different compilers.

Current binary modification toolkits are not well-suited to performing hot
patching. DynamoRIO [10] and Valgrind [50] can perform instruction-level
modification and thus can replace code, but do not provide the structural
characteristics helpful for identifying where to apply a patch and require
the user to manually construct the replacement code. Furthermore, such
identification would be particular to a particular binary since it is instruction
based. PIN [41] provides function-level modification, but suffers the same
problems as DynamoRIO and Valgrind. Dyninst 7.0 [11] represents the binary
as a CFG, thus easing identification, and provides a high-level language for
constructing the replacement code sequence. However, like PIN, 7.0 only
supports function-level replacement. Our structured binary editing technique
addresses this lack by providing CFG modification.

We investigated hot patching security vulnerabilities in a running Apache
HTTPD web server [4]. We selected Apache for three reasons. First, it is
widely used. Second, security flaws, as well as the patches necessary to fix
these flaws, are widely published and available. Third, as a long-running
process, Apache is an excellent test of our ability to modify a running process
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without corrupting its structure. We constructed a single tool that dynamically
patches three security vulnerabilities (CVE-2011-3368 [46], CVE-2011-3607 [47],
and CVE-2012-0021 [48]) in a running Apache process.

This evaluation has three goals. First, we should be able to patch an un-
modified, executing Apache HTTPD web server. Second, we should be able
to patch versions of the same server as compiled on different systems, which
requires identifying the locations to patch by structural characteristics (e.g.,
a subgraph of the CFG) rather than a literal sequence of instructions. Third,
we should be able to prepare the patch from the corresponding source code
patch instead of manually crafting it in assembly code. We accomplished these
goals as follows. We prepared our target binaries by compiling the appropriate
versions of Apache from source using default configuration options and sev-
eral different versions of GNU GCC [24]. We used different compiler versions
to ensure that our location match did not depend on the particular idioms
used by a single version of GCC. Finally, we wrote each patch in Dyninst 7.0’s
high-level AST language [11] instead of assembly code.

For each security flaw we patched, we began by installing several unpatched
versions of Apache compiled with different versions of GCC, from 4.1 to 4.6.
For each version, we began by benchmarking the server to verify that it was
working properly. Second, we confirmed that the security flaw was present
using the appropriate exploit code. Third, we executed our hot-patching tool
on the vulnerable web server while it was executing and serving requests.
Fourth, we used the exploit tool to verify that the flaw had been successfully
patched. Fifth, we benchmarked the server again to verify its correct operation;
for each patch, there was no identifiable slowdown in operation (as we would
expect, since the patched code was not exercised except by the specific exploit).

For conciseness, we describe how we created our hot patching tool for the
CVE-2011-3368 [46] vulnerability. This vulnerability allowed a user to use a
carefully crafted URL to gain full internal network access from a DMZ web
server. We began by examining the Apache source code and the vulnerability
patch to gain an understanding of the vulnerability and to locate where to
apply our patch; this code is shown in Figure 3.8.

We then examined the CFG of the binary to identify the corresponding
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point in the binary that required patching. Interestingly, we found from an
examination of the binary that the patched function (read_request_line)
was not present in the server binary. This function is declared static in its
source file, resulting in the compiler inlining it into its caller, ap_read_request.
However, we were still able to identify its characteristic CFG and prepared
the fingerprint shown in Figure 3.9. This fingerprint matched a portion of the
ap_read_request function that had incorporated read_request_line. This
fingerprint was unique in the binary; however, this may not be true for binaries
built for other compilers. We designed our hot patching tool to exit without
modifying the binary if it either fails to find the fingerprint or finds multiple
matches, since this would indicate the fingerprint may have falsely identified
the location to modify. We performed this step manually; however, we believe
it could be partially automated by generating the expected CFG from source
code and then manually refining the fingerprint.

Next, we converted the source-code patch file, as shown in Figure 3.10, into
a Dyninst 7.0 code snippet. We divided the patch into two sections: a condition
that identified when server was being attacked and a body that took corrective
action. Both the condition and body required access to two local variables
in read_request_line, r (a status structure) and uri (the input URI). Since
Apache is compiled with debugging information, we were able to identify
r and its fields. However, debugging information for uri was not present.
However, it is an argument to a function call to ap_parse_uri immediately
before the patch location. We could not use the argument register directly
because it was modified by the call; instead, we used Dyninst 7.0’s dataflow
analysis capabilities to identify the register that contained the authoritative
value for uri. Once we had created AST nodes for these two variables, building
the snippet was a straightforward operation of manually translating C code.
As with the previous step, we generated the code snippet manually. We used
the Dyninst AST language to construct the snippet. A simpler alternative
would have been to use the DynC [53] C-like language; we did not simply
because of lack of familiarity with DynC.

Finally, we constructed a CFG transformation that injected the snippet
into the binary; we show the transformed CFG subgraph in Figure 3.11. This
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1 ap_parse_uri(r, uri);
2 if (ll[0]) {
3 r->assbackwards = 0;
4 pro = ll;
5 len = strlen(ll);
6 } else {
7 r->assbackwards = 1;
8 pro = "HTTP/0.9";
9 len = 8;
10 }
11 r->protocol = apr_pstrmemdup(r->pool, pro, len);

Figure 3.8: Code fragment from Apache HTTPD 2.2.21 that surrounds the
security fix site; all variables are as named by the Apache developers. The fix
is inserted between the the call to ap_parse_uri (line 1) and the following if
statement (line 2).

b1

ap parse uri

b2

b3 b4

strlen

b5

Call

Call

Ret

Ret

CallFt

CallFt

Figure 3.9: CFG fingerprint corresponding to the code fragment shown in
Figure 3.8.
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1 ap_parse_uri(r, uri);
2

+ 3 if (r->method_number != M_CONNECT
+ 4 && !r->parsed_uri.scheme
+ 5 && uri[0] != ’/’
+ 6 && !(uri[0] == ’*’ && uri[1] == ’\0’)) {
+ 7 r->args = NULL;
+ 8 r->hostname = NULL;
+ 9 r->status = HTTP_BAD_REQUEST;
+ 10 r->uri = apr_pstrdup(r->pool, uri);
+ 11 }

12
13 if (ll[0]) {
14 r->assbackwards = 0;
15 pro = ll;

Figure 3.10: Code listing for the CVE-2011-3368 security patch; the lines pre-
fixed with a “+” are inserted. For clarity, this listing omits call to a logging
function ap_log_rerror.

injection was straightforward, as the patch did not contain complex control
flow. We then verified that our tool closed the security flaw while not impacting
the normal execution of the web server.

This case study demonstrates that our structured binary editing approach
is capable of patching security vulnerabilities in an unmodified, executing
Apache web server. We are able to use the same tool on Apache binaries
compiled with several different compiler versions. This is due to our use of the
CFG to identify the patch site and apply the patch; although the underlying
instructions in each compiled version of Apache are different, their CFGs are
the same.

In all, our tool consisted of 498 lines of code, of which 93 were responsible
for identifying the patch location, 187 were responsible for creating the snippet,
and 120 were responsible for transforming the CFG; the remainder was utility
code. The small size of our tool is due to two factors: the expressive power of
our CFG transformations and the analysis capabilities of the Dyninst 7.0 toolkit.
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Figure 3.11: The resulting CFG after our transformations were applied to insert
the patch shown in Figure 3.10. User-inserted snippets are shown in blue (pred
and patch), and automatically generated code in green (cond and call). The pred
snippet corresponds to lines 3-6 and the patch snippet to lines 7-10; for clarity,
we have omitted a logging call to ap_log_rerror. The cond block represents
the conditional branch used to implement the if statement in line 3, and the
call block represents the call to apr_pstrdup in line 10. We composed three
types of transformations to create this CFG: interception insertion, predicate
insertion, and call insertion.
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We believe these sizes would be representative of other uses of structured
binary editing.

Floating Point Precision Modification

Our second case study presents a tool, CRAFT (Configurable Runtime Analysis
for Floating-point Tuning), that uses binary modification to alter the precision
of floating-point instructions. This work is being performed by Michael Lam
at the University of Maryland as part of his doctoral research.

Floating-point operations can be performed at varying levels of precision.
Low-precision operations, such as IEEE single precision, have the advantage
of significant speed over the double-precision representation. Imprecision in
a computation can be dangerous; real-world incidents involving imprecise
floating-point computation include the Patriot missile failure in 1995 [32] and
the Vancouver stock index slump in the 1970s [27]. However, performing all
operations at high precision leads to unnecessary overhead, memory usage,
and energy usage. The goal of CRAFT is to automatically determine which
operations in a binary must be performed at high precision to maintain a low
error rate, and which operations can be performed at low precision instead.
CRAFT does this by replacing individual high-precision instructions with
low-precision equivalents and determining whether this replacement results
in an unacceptable increase in the imprecision of the resulting computation.

CRAFT was designed to use static binary modification instead of source or
compile-time modification to allow it to operate on binaries that use vendor-
provided math libraries. These libraries are critical to floating-point math
performance on recent systems. However, they are typically provided as
binaries with minimal debugging information, which prevents them from
being included in a compile-time modification step. Instead, they can only
be modified at the binary level. Furthermore, CRAFT was designed to use
binary rewriting to allow the cost of modification to be amortized over multiple
executions of the modified program.

CRAFT uses binary modification to replace individual floating-point in-
structions with sequences that perform the appropriate floating-point opera-
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tion in a lower precision, converting the input values to the lower precision
if necessary. It tracks the resulting imprecision to determine if the overall
computation has unacceptable imprecision.

These operations of instruction replacement and instrumentation are well-
supported by instruction-level modification toolkits such as DynamoRIO [10]
or Valgrind [50]. However, these tools do not provide binary rewriting. Instead,
CRAFT was implemented on a version of Dyninst 7.0 extended with structured
binary editing, thus leveraging Dyninst 7.0’s binary rewriting capabilities. We
show the instruction replacement transformations in Figure 3.12. Replacing
an instruction in the middle of a basic block is a straightforward matter of
removing the original instruction and using an interception transformation to
insert the replacement snippet of code. Instructions at the start of a block are
more complicated, since there are multiple in-edges that must be handled.

This case study demonstrates that structured binary editing can be used to
provide instruction-level binary modification in addition to CFG modification.
As with our hot patching tool, such modification can be performed with a small
tool. While CRAFT includes 18,000 lines of code, only 3,400 are responsible
for modifying the binary.

3.7 Summary

We presented a technique for modifying binaries by transforming their con-
trol flow graphs. Our technique, structured binary editing, uses an algebra of
graph transformations that preserve the validity of the CFG. It also uses a
dataflow analysis that determines whether a particular transformation will
alter any indirect control flow. We evaluated our technique in two ways. First,
we developed a tool for hot patching executing Apache processes; this tool
leveraged the capabilities of Dyninst 7.0 to identify where to patch and our
algebra for performing the modification itself. Second, we described a tool,
CRAFT, developed by Michael Lam that uses structured binary editing to
perform instruction-level replacement of floating point instructions. In the
next chapter, we extend structured binary editing to operate on functions and
loops.
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Figure 3.12: Examples of the transformations used by CRAFT. Figures (a)
through (d) show replacing an instruction in the middle of the block using
block splitting, edge redirection, and edge insertion transformations. Figure (e)
shows the result of replacing the first instruction in a block. Instead of the first
block split transformation, we instead redirect all in-edges to the replacement
snippet.





61

4
Projections on the CFG: Functions and Loops

In this chapter, we build upon our structured binary editing approach for
modifying binaries and extend it to modify the higher-level structural abstrac-
tions of functions and loops. These abstractions provide a familiar interface
for encapsulating binary complexity. For example, a user can clone a function
or insert code at its entry point without understanding any of the details of the
underlying code. This approach allows us to handle complexities arising from
compiler optimizations or features of the instruction set that cannot be handled
by previous function-level instrumentation or modification approaches.

We begin by defining our function abstraction, extending the abstraction
used by Dyninst 7.0 [11]. Modern compilers focus on generating efficient
binary code instead of preserving the structure of the original source code. As
a result, source code functions may be combined, split into multiple segments,
or optimized to share code. This frequently makes recapturing the original
functions of the source code impossible. Instead, we define an abstraction that
is similar at the conceptual level to source code functions but that are derived
entirely from the binary.

Next, we discuss modification of functions. We define two classes of
function transformations. The first class inserts code at function entry, ex-
its, or call sites; these are familiar points based on the semantic structure
of a function. Current binary modification toolkits map these points to un-
derlying instructions, such as mapping function entry to its first instruction
[11, 36, 38, 41, 52, 57, 68, 69]. This approach does not correctly handle certain
code sequences, such as functions that omit preamble code (e.g., stack frame
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setup) or that use conditional return instructions. We instead use graph trans-
formations to ensure that code inserted at these points executes precisely as
the user expects. The second class of transformations operate on a function
as a collection of blocks, and allow users to copy or remove whole functions
instead of operating a block at a time.

We then define our loop abstraction which is based on the Dyninst 7.0
loop abstraction [15]. Like functions, loops have well-understood structural
characteristics: the entry and exit of the loop as well as the loop back-edge or
back-edges. We define transformations to insert code based on these charac-
teristics. As with functions, we also define transformations that act upon the
loop as a collection of blocks.

We conclude the chapter with a presentation of experimental results. We
compare our approach with other binary modification toolkits, and show that
graph transformation-based code insertion can handle code complexities that
are not correctly handled by these toolkits.

4.1 Function Definition

The concept of a function is well-defined in source code, and programming
languages specify both the semantics and syntax of this construct. For example,
functions have well-defined entry points and exit points, and function bodies
are contiguous. The same is not true of binaries. Support for function call and
return behavior was proposed as early as 1946 by Alan Turing in his Automatic
Computing Engine [71], and supported in hardware in the EDSAC machine
[73] in 1947. However, no modern architecture mandates the use of call and
return instructions to enter and leave functions. For example, the PowerPC
architecture does not have a dedicated return instruction; the blr instruction
that performs a return may also be used as an indirect branch. Similarly, while
functions often have code to set up and tear down a stack frame, such code
is not required and thus may be eliminated as an optimization. Finally, the
debugging information provided by the compiler to help map binary code
back to the source code may be missing or (surprisingly often) erroneous. As
a result, it is difficult to identify the code regions corresponding to the original
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source code functions.
Recall that we define our CFG as a graph G = (V, E, Ve, Vx, T ), where V is

a set of vertices consisting of basic blocks and a unique sink node, E represents
the edge set between blocks, Ve and Vx represent the entry and exit blocks,
and T is a function that assigns types to edges.

We use the conventional definition of a function as the set of blocks reach-
able from a single entry block traversing only intraprocedural edges. Blocks
can be identified as entries by several criteria, including having a call in-edge,
being identified in the symbol table as a function entry point, or being identi-
fied by a parsing heuristic. When we reach a block that ends in one or more
call edges, we instead traverse the corresponding call fallthrough edge if it
exists (e.g., if the callee is a returning function). If it does not, we conclude the
call is non-returning, such as a call to exit, and label the call block as an exit
block. Functions do not return if they either halt execution, such as abort or
exit, or call only such functions; thus, there may be chains of non-returning
functions in the CFG. If we reach a block with one or more return edges we
also label it as an exit block. Similarly, if we identify a tail call we conclude
this is an exit point; otherwise, we treat such constructs as jumps. As a result,
function bodies may include code that was logically a callee in source code
but was optimized to be reached via jumps rather than calls. By using a CFG
traversal, we can navigate around data embedded in code, such as a jump
table. Similarly, we can identify interleaved function blocks.

Our function model uses a single entry block. This is a common approach
in function representations [11, 36, 38, 41, 52, 57, 68, 69], and derives from
the common programming language requirement that functions have single
entries. However, languages may allow functions to have multiple entry points,
such as provided by the Fortran ENTRY statement. We represent such functions
as a set of single-entry functions that may share code; this approach is inherited
from Dyninst 7.0 [11]. This approach represents multiple-entry functions
with a minor cost in efficiency. Let M be a function with multiple entries and
S1, . . . , Sm be the equivalent set of single-entry functions. With the single-entry
approach, a dataflow analysis of M can be performed by instead analyzing
S1, . . . , Sm and combining the results. Similarly, modification of M can be
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performed by applying an equivalent modification to each S1, . . . , Sm.
We define functions as subgraphs of the CFG: fi = (Vi, Ei, vi, Xi, T ′) where

Vi ⊆ V , Ei ⊆ E, vi ∈ Vi is the entry block of the function, Xi ⊆ Vi are the exit
blocks, and T ′ assigns types to edges. Unlike the CFG labeling function T , T ′

can only assign intraprocedural edge types.
Our function abstraction is permissive enough to allow us to represent

functions on a wide range of binaries, from conventional to highly optimized.
In addition, we handle multiple architectures; while we currently support
IA-32/x86-64 and PowerPC, we have supported SPARC and IA-64, and expect
that this model can support ARM without further modification as it is similar
to PowerPC from a control-flow perspective. Specifically, functions may be
noncontiguous in the binary or overlap; entry blocks may have intraprocedural
in-edges from other blocks in the function body; and exit blocks may have
intraprocedural out-edges to other blocks in the function body.

Functions may share blocks, and we say these functions overlap. This is a
natural result of our definition of functions as subgraphs of the CFG; if a block is
reachable from two different entry blocks traversing only intraprocedural edges
then it is shared. Clearly, if a block is shared then all of its successor blocks
are also shared until an exit block is reached. Modern compilers frequently
share common code between functions, such as register restores or error code,
to increase code density; we show an example in Figure 4.1.

Overlapping functions complicate modification because users frequently
expect functions to be independent; that is, a modification of a block in one
function should not affect other functions. This assumption is broken by
overlapping functions. We handle this as follows. We represent shared blocks
in our interprocedural CFG (Figure 4.2a), but hide it at the function layer; as a
result, overlapping functions can be treated as disjoint. We do this with block
aliases (Figure 4.2b). A block alias represents a shared block in the context
of one particular function, and any analysis or instrumentation performed
on the alias is restricted to that function. More formally, let bs be a block
shared by functions f1, . . . , fn. For each such function fi we create a block
alias, denoted as,i. Block aliases replace their corresponding blocks in each
function’s CFG. We maintain a link between the underlying block and its block
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<memcpy_chk >:
63 bb40: mov 0xc(% esp ),% eax
63 bb44: cmp %eax ,0 x10 (% esp)
63 bb48: jb 6b0930 <__chk_fail >

<stpcpy_chk >:
6afcb0: push %ebp
6afcb1: mov %esp ,% ebp
6afcb3: mov 0x8(% ebp ),% ecx
6afcb6: push %esi
6afcb7: mov 0xc(% ebp ),% edx
6afcba: mov 0x10 (% ebp ),% esi
6afcbd: jmp 6afcc3 <__stpcpy_chk +0x13 >

. . .
6afcc3: sub $0x1 ,% esi
6afcc6: cmp $0xffffffff ,% esi
6afcc9: je 6afcde <__stpcpy_chk +0x2e >

. . .
6afcde: call 6b0930 <__chk_fail >

<__chk_fail >:
6b0930: push %ebp
6b0931: mov %esp ,% ebp
6b0933: push %edi
6b0934: push %esi
6b0935: push %ebx
6b0936: call 5dfce0 <__i686.get_pc_thunk.bx >
6b093b: add $0x6e6b9 ,% ebx
6b0941: sub $0xc ,% esp
6b0944: lea 0 xfffd21e9 (% ebx ),% edi
6b094a: lea 0 xfffd46cc (% ebx ),% esi
6b0950: mov 0x31f0 (% ebx ),% eax
6b0956: mov (% eax ),% eax
6b0958: mov %esi ,0x4(% esp)
6b095c: movl $0x2 ,(% esp)
6b0963: test %eax ,% eax
6b0965: cmove %edi ,% eax
6b0968: mov %eax ,0x8(% esp)
6b096c: call 62 b190 <__libc_message >
6b0971: jmp 6b0950 <__chk_fail +0x20 >

Figure 4.1: Example of two functions sharing code taken from GNU libc on
IA-32 compiled with GNU GCC 4.x. Both memcpy_chk and stpcpy_chk share
code with the __chk_fail function; this code is also shared by several other
libc functions. Both of these functions take an extra parameter representing the
size of the destination buffer, and abort via the shared code if the destination
is smaller than the source.
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Figure 4.2: An example of functions sharing blocks. Figure (a) shows the
interprocedural CFG, with two functions sharing the same block bs. Figure
(b) shows the corresponding function representations, with the return block
represented by two aliases, as,1 and as,2.

aliases; therefore, a user can determine if a block belongs to multiple functions
by checking for the existence of block aliases.

We allow the entry blocks of functions to have intraprocedural in-edges
as well as interprocedural in-edges, such as shown in Figure 4.3c. A common
cause of such functions is the compiler omitting preamble code. This situation
complicates modification, as inserting code at the entry of a function cannot
be performed by inserting code at the entry of the entry block.

Similarly, an exit block may have an intraprocedural out-edge in addi-
tion to its interprocedural out-edges, such as shown in Figure 4.4c. This is
caused by architectures that support conditional return instructions, such as
PowerPC and ARM. An example of such instructions is the PowerPC bclr
instruction (branch conditional to link register), which performs a conditional
return. PowerPC also supports conditional calls through the bcctrl instruc-
tion (branch conditional to count register, linking). The ARM architecture
provides conditional execution of all instructions by allowing the user to spec-
ify an optional predicate. Thus, both the ARM return instruction (mov pc,
lr) and call instruction (bl) may be emitted in a conditional form.
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i n t main ( i n t argc ) {
do {

argc −= 1 ;
} while ( argc > 0 ) ;
return argc ;

}

(a) Code Listing

400450: sub $0x1 , %edi
400453: test %edi , %edi
400455: jg 400450
400457: mov %edi , %eax
400459: ret

(b) Disassembly

(c) Function CFG

Figure 4.3: Code listing, disassembly, and CFG for an example function whose
first instruction executes multiple times per function invocation. This example
was generated by GNU GCC version 4.1.2 at optimization level O2.

4.2 Function Modification

In this section, we extend our graph transformation algebra to operate on
functions. We describe two classes of function transformations. The first class
inserts code into functions at semantically interesting points in execution:
entry, exit, before calls, and after calls. The second class operates on functions
as collections of basic blocks: function removal, function cloning, and function
unsharing. The unsharing transformation is a refinement of function cloning
that clones basic blocks to ensure that the transformed function does not share
code with another function.

We define four types of code insertion transformations on functions: func-
tion entry, function exit, pre-call, and post-call. These transformations are
shown in Figures 4.5 and 4.6. Function entry insertion adds code that is exe-
cuted immediately before the body of a function executes. If the entry block
has no intraprocedural in-edges, this is logically equivalent to adding code at
the start of the block; if such in-edges exist, we transform the function to have
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i n t i ;

void bar ( i n t j ) {
i f ( j < 5 ) return ;
i = j + 1 ;
return ;

}

(a) Code Listing

<bar >:
100004 a0: cmpwi cr7 ,r3 ,4
100004 a4: blelr cr7
100004 a8: lis r9 ,4097
100004 ac: addi r0 ,r3 ,1
100004 b0: stw r0 ,4108( r9)
100004 b4: blr

(b) Disassembly

Ft

Ret

Ret

(c) Function CFG

Figure 4.4: Code listing, disassembly, and CFG for an example function with a
conditional return instruction. The function first compares its input parameter
(in r3) to 4 and stores the result in condition register 7 (cr7). If the parameter
is less than or equal to 4 it returns immediately via a bclr, written as blelr
to encode the comparison. Otherwise, writes the global variable via a load
(lis), add (addi), and store (stw) before returning (blr). This example was
generated by GNU GCC version 4.3.2 at optimization level O2.

a distinct entry block. This approach is similar to CFG representations that
use a virtual entry block to ensure that such entries have no intraprocedural
in-edges, such as done by PLTO [63]. We insert code post-call similarly, so it is
executed immediately after the called function returns and before any other
function code executes.

Exit and pre-call code insertion is more complex. These points are char-
acterized by a control transfer instruction. For example, a function exit point
normally corresponds to a return instruction, although other control trans-
fers might be used, such as a jump in a tail call or a call to a non-returning
function. Binary modification toolkits conventionally insert code immediately
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b

b

snip

Other
Edge(s)

Call
Call

(a) Function Entry Transformation

b

snip

b0

CondFt

Ret

p

CondFt

r

Ret

Cond

Ft

Ft

(b) Function Exit Transformation

Figure 4.5: CFG transformations for function entry and exit code insertion;
in each case, the inserted code is represented by a blue-shaded block snip.
Function entry instrumentation is performed by redirecting all interprocedural
edges to snip, while intraprocedural edges remain unaffected. Function exit
instrumentation is complicated by conditional return instructions, such as
supported by the PowerPC architecture. We first split the exit block b into two
blocks b′ and r, where r contains only the return instruction. The blue-shaded
block p represents a predicate equivalent to that used by the return instruction.

before such instructions execute so that the new code executes in the context
of the transformed function instead of its caller (for code inserted at exit) or
callee (for code inserted pre-call) [11, 36, 38, 41, 52, 57, 68, 69]; we use this
convention. However, these tools unconditionally insert such code, and thus
will erroneously execute the inserted code if the call or return is conditional.
Our design ensures that the inserted code executes only if the call or return is
taken.

The second class of transformations operates on functions as collections of
blocks. Function removal destroys a function f and blocks that belong only
to f ; any shared blocks are not removed. For removal to be valid, the entry
block vf of f may not have any in-edges from outside the body of f , since
such in-edges are not removed. We define this algorithm in Figure 4.7. Loop
removal operates similarly; as with function removal, the entry block of the
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snip

b

b0

CallFt

Call

Ret

f

b00

b0

CallFt

Call

Ret

f

p

cCondFt

Ft

(a) Pre-Call Transformation

b

b0

CallFt

Call

Ret

f

b

b0

CallFt

Call

Ret

f

snip

(b) Post-Call Transformation

Figure 4.6: CFG transformations for pre-call and post-call code insertion; in
each case, the inserted code is represented by a blue-shaded block snip. Pre-
call instrumentation is performed by splitting the block b into two blocks b′′

and c, where c only contains the call instruction. We introduce a predicate
snippet p before the inserted snippet. Post-call instrumentation is simpler; we
simply interpose the new code along the call fallthrough and return edges.
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1 Algorithm: Function Removal
input :A graph CFG and function f = (Vf , Ef , vf , Xf , Tf , Lf )
output :A modified graph CFG′ with any non-shared blocks in Vf removed

2 CFG′ ← CFG, ToDel ← ∅;
3 for each block b ∈ Vf do
4 if b is not shared and b 6= v⊥ then
5 ToDel ← ToDel ∪ {b};
6 for each in-edge e = (b′, b) ∈ In(b) do
7 EdgeRedirect(e, v⊥, CFG′);
8 end for
9 end if

10 end for
11 for each block b ∈ ToDel do
12 BlockRemove(b, CFG′);
13 end for

Figure 4.7: An algorithm for removing a function f and all of its non-shared
blocks. The entry block vf of f must have no interprocedural in-edges; in-
traprocedural in-edges will be deleted as part of the transformation. We begin
by redirecting all in-edges to non-shared blocks to the sink node; this ensures
that all blocks we wish to remove will have no in-edges remaining (lines 3-10).
We then iterate and remove all such blocks (lines 11-13).

loop cannot have any in-edges from outside the loop body.

Function cloning creates a copy f ′ of a function f by cloning all blocks in
f and redirecting the out-edges of these cloned blocks appropriately. Note
that the entry block v′

f of f ′ will have no interprocedural in-edges (as it was
just created and thus is not reachable from outside of f ′) but may have in-
traprocedural in-edges from other blocks in f ′. We define an algorithm for
function cloning in Figure 4.8, and show an example in Figure 4.10. Loop
cloning operates similarly, creating copies of all blocks in the loop body.

Function unsharing eliminates sharing of blocks between functions. We
do this by cloning all shared basic blocks, with the exception of the sink node.
This algorithm is similar to function cloning, but has two key differences. First,
function unsharing only copies shared blocks rather than all blocks. Second,
it does not create a new function, instead copying blocks within the original.
We define this algorithm in Figure 4.9.
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1 Algorithm: Function Cloning
input :A graph CFG and function f = (Vf , Ef , vf , Xf , Tf , Lf )
output :A modified graph CFG′ and new function f ′

2 CFG′ ← CFG, V ′
f ← ∅, E′

f ← ∅, v′
f ← v⊥, X ′

f ← ∅;
3 for each block b ∈ Vf do
4 if b 6= v⊥ then
5 b′ ← BlockClone(b, CFG′);
6 else
7 b′ ← v⊥;
8 end if
9 V ′

f ← V ′
f ∪ {b′};

10 if b = vf then
11 v′

f ← b′;
12 end if
13 if b ∈ Xf then
14 X ′

f ← X ′
f ∪ {b′};

15 end if
16 end for
17 for each block b′ ∈ V ′

f do
18 for each out-edge e′ = (b′, bt) ∈ Out(b′) do
19 E′

f ← E′
f ∪ {e′};

20 if e′ is intraprocedural then
21 b′

t ← the clone of bt;
22 EdgeRedirect(e′, b′

t, CFG′);
23 end if
24 end for
25 end for

Figure 4.8: An algorithm for cloning a function f into a function f ′. As with
block cloning, the entry of f ′ has no interprocedural in-edges. This algorithm
constructs the blocks, edges, entry block, and exit blocks of f ′; the construction
of the type and context labeling functions are omitted. We begin by cloning
each block b ∈ Vf and constructing V ′

f , v′
f and X ′

f (lines 3-16). After each
block has been cloned, we iterate over each and redirect all intraprocedural
out-edges to the corresponding cloned blocks (lines 17-25).

4.3 Loops

We also support transformations of loops. We use Dyninst 7.0’s definition
of a loop [15], which is an extension of natural loops [1]. Loops are defined
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1 Algorithm: Function Unsharing
input :A graph CFG and function f = (Vf , Ef , vf , Xf , Tf , Lf )
output :A modified graph CFG′ such that f shares no blocks with any other

function
2 CFG′ ← CFG, Tmp ← ∅;
3 for each block b ∈ Vf do
4 if b is shared then
5 b′ ← BlockClone(b, CFG′);
6 else
7 b′ ← b;
8 end if
9 Tmp ← Tmp ∪ {b′};

10 end for
11 for each block b′ ∈ Tmp do
12 for each out-edge e = (b′, bt) ∈ Out(b′) do
13 if e is intraprocedural then
14 b′

t ← the clone of bt;
15 EdgeRedirect(e, bt, b′

t);
16 end if
17 end for
18 end for

Figure 4.9: An algorithm for cloning all shared blocks in a function f . It is often
convenient to operate on all blocks in a function in isolation, assuming they
are not shared by other functions; this transformation algorithm can enforce
this assumption. Unlike the function cloning algorithm, this does not create a
new function f ′. We begin by cloning all shared blocks (lines 3-10). We then
redirect all edges that originally targeted a shared block to its clone, leaving
edges that target non-shared blocks unmodified (lines 11-18).

similarly to functions, as subgraphs of the CFG: lj = (Vj , Ej , vj , Xj , T ′) where
Vj ⊆ V , ej ⊆ E, vj is the unique entry node, Xj are exit nodes, and T ′ assigns
types to edges. Like functions, T ′ assigns only intraprocedural edge types. A
natural loop is defined by its back edges, and we identify these edges with a
depth-first search using Tarjan’s algorithm [39]. An edge is a back edge if its
source is within the body of the loop and its target is the loop head; that is, an
edge e = (v, vj) is a back edge if v ∈ Vj . Loops may be nested and share entry
blocks. However, the combination of entry block, exit blocks, and back-edges
uniquely identifies a loop.
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bf bf bf 0

Figure 4.10: Example of function cloning; we copy the function with entry
block bf and consisting of four blocks to a new function with entry block bf ′ .

b

b

snip

Loop
Backedge(s)

(a) Loop Entry Transformation

b

snip

b

Loop
Backedge(s)

(b) Loop Exit Transformation

b0

snip

b

...

b0

b

...

(c) Loop Iteration Transformation

Figure 4.11: CFG transformations for our loop code insertion transformations.
These transformations insert a snippet (snip) along the in-edges, out-edges, or
back-edges of loops.



75

SBE Dyninst
7.0

PIN PEBIL

Overlapping Functions Yes Yes No No
Omitted Preambles Yes No No No
Conditional Return Yes No - -

Table 4.1: Summary of results comparing our structured binary editing (SBE)
function transformations to Dyninst 7.0, PIN, and PEBIL. A yes entry indicates
that the toolkit successfully instrumented that case; a no entry indicates that
the toolkit failed. A dash indicates that the experiment was not performed
with that particular toolkit.

We define code insertion transformations for loop entry, loop exit, and per-
iteration. Like Dyninst 7.0 [15], these transformations are based on inserting
this code along edges. We show these loop transformations in Figure 4.11.
Since loops are also collections of blocks, we can clone or remove loops by
operating on their component blocks in the same way as we do for functions.

4.4 Experimental Results

We conclude the chapter with three experiments that test the effectiveness
of our function transformations. We verified that these transformations can
correctly insert code in functions that share code, have omitted preambles, or
conditional returns. We also performed these tests on the PIN [41], Dyninst 7.0
[11], and PEBIL [38] toolkits, in each case using the function instrumentation
interface provided by these toolkits. We did not include SecondWrite [52],
DynamoRIO [10], or Valgrind [50] in our experiments. SecondWrite is not
publicly available, and neither DynamoRIO nor Valgrind provide a function
abstraction. The summary of these experiments is shown in Table 4.1. The
first three experiments were performed on a 2.27 GHz Intel quad-core Xeon
machine with 6GB of memory, installed with Red Hat Enterprise Server 5.7.
The fourth experiment was performed on a 1.2 GHz PowerPC machine with
2GB of memory, installed with OpenSUSE 11.1.

Our first experiment performed function entry and exit instrumentation
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of overlapping functions (Figure 4.1). Each toolkit we tested provides a single-
entry function model. We thus instrumented both the entry and exit of
memcpy_chk and stpcpy_chk and executed each function in succession. We
consider a toolkit to have succeeded if the entry and exit output correspond,
and failed if the wrong exit instrumentation was executed. Both Dyninst 7.0
and our approach succeeded, due to their explicit handling of overlapping
functions in their CFG definitions. PEBIL marked one function as uninstru-
mentable and so failed this experiment. PIN failed to recognize either function
and so did not instrument them.

Our second experiment performed function entry instrumentation of a
function with an omitted preamble (Figure 4.3). This code is representative of
the optimized code found in larger programs. We instrumented the entry of the
function, and consider an toolkit to have succeeded if the entry instrumentation
executed once. Dyninst 7.0, PIN, and PEBIL each incorrectly mapped function
entry instrumentation to instrumentation of the first instruction, and thus
failed this test since the entry instrumentation executed multiple times. Our
approach constructed a new entry block that only executed once and thus
passed.

Our third experiment performed exit instrumentation of a binary with
conditional returns. Unlike the previous experiments, we performed this
experiment on a PowerPC machine since that architecture supports these in-
structions (as bclr), using the binary shown in Figure 4.4. We considered
the toolkit to have succeeded if the exit instrumentation only executes when
the corresponding instruction was taken. We included only Dyninst 7.0 and
our approach in this experiment, as the other toolkits do not support Pow-
erPC. Dyninst 7.0 unconditionally executed instrumentation before the return
instructions, failing the experiment. Our approach correctly executed instru-
mentation conditionally.

4.5 Summary

We extended our structured binary editing technique to operate on functions
and loops as well as the CFG. Functions and loops represent code structures
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with well-understood semantic structures that are derived from programming
languages; however, their definitions in terms of binary code are complicated
by compiler optimizations and architectural features. We define an efficient,
single-entry abstraction of a function that can be applied to highly optimized
code across a variety of architectures, and reuse the Dyninst 7.0 loop abstraction
[15]. We then defined code transformations for functions and loops. Our
experimental results demonstrated that these transformations can successfully
insert code in functions where other binary modification toolkits fail. In the
next chapter, we briefly digress from binary modification to discuss how we
use our graph transformation approach to provide simplified, annotated views
of a CFG.
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5
Instrumentation and Other Views on the CFG

An interesting and important application of binary modification is binary
instrumentation, which inserts code that adds functionality to the program
but has no semantic effect on the original code. Instrumentation is used for
several purposes, including performance monitoring [34, 66], debugging [20],
attack detection [51], cyberforensics [45], and behavior monitoring [21]. Since
instrumentation has no effect on the semantics of the original program, tool
builders internally represent inserted instrumentation as an annotation of
their program representation [10, 11, 22, 36, 38, 41, 50, 57, 68], and may either
expose this annotation to the user [11, 36, 57, 68] or hide it from user view
[10, 22, 38, 41, 50].

The transformations required to insert instrumentation can be naturally
expressed with our structured binary editing algebra. However, while these
transformations provide the capability to insert instrumentation, they cause
visible changes to the structure of the CFG. This conflicts with the desires of
tool builders and users to not have the presence of instrumentation reflected
in the CFG. Our approach to this is to provide views of the CFG that allow tool
builders present a simplified CFG to the users while internally maintaining
the full, transformed CFG. In this chapter, we define a view and the associated
concept of an annotated CFG that adds additional, non-structural information
to the underlying CFG.

Interestingly, the concept of a view can be applied to other uses besides
instrumentation. For example, we can represent the block aliases defined in
Section 4.1 as a view on the CFG and thus hide shared code from the user.
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Similarly, we can use a view to provide alternate representations of the effects
of predicated instructions, such as those supported by ARM, on the CFG. We
describe these views below.

5.1 Definitions

We begin with the concept of an annotated CFG. CFG annotation allows users
to associate labels with vertices or edges in the CFG, such as labeling a block
as instrumentation. The CFG is a natural target for annotation, and previous
annotations have included the results of dataflow analysis or other semantic
information [1]. We could represent such annotations by either extending our
block and edge definitions to include this information or using an additional
set of mapping functions that associate annotation labels with blocks and
edges. As a practical concern, and to better match the application of this
concept to existing tools, we use the mapping approach.

We first define an annotation on the CFG as a function A : (V ∪ E) → L,
where V is the vertex set of the CFG (including the sink), E are edges, and
L is a set of annotation-specific labels. We can apply a set of annotations
to a CFG; this is denoted as a set A = (A1, . . . , An) of annotations to a set
L = (L1, . . . , Ln) of labels.

We define an annotated CFG, or ACFG, as a tuple ACFG = (CFG,A)
where CFG is a CFG as defined in Section 3.1 and A is a set of annotations
as above. Trivially, an unannotated CFG can be treated as an annotated CFG
with an empty annotation set.

We define a view of an annotated CFG as two components: a view definition
and a view application. A view definition is a tuple VD = (TV ,AV ) where
TV : CFG→ CFG is a graph transformation that maps from the input CFG to
the viewed CFG andAV is an annotation set that the view adds to the resulting
CFG. A view application is a function VA : ACFG × VD → ACFG applies a
view definition to an input ACFG.

Given an input ACFG = (CFG,A) and a view V = (TV ,AV ), we compute
the resulting ACFG ′ = (CFG ′,A′) as follows. We determine CFG′ by enu-
merating all subgraphs of CFG that are isomorphic to the left hand side of TV
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and applying the transformation to each such subgraph. We require that these
subgraphs are disjoint and thus there is a unique way to apply TV to CFG; if
not, the results of applying the view are undefined. We merge the annotations
associated with the input graph with the annotations specified by the view:
A′ = A ∪AV .

5.2 Instrumentation and Other Views

The instrumentation view hides the presence of instrumentation code in a CFG,
taking advantage of the net zero characteristics of instrumentation. Unlike other
binary modification, executing a region of instrumentation code will have no
cumulative effect on the surrounding original code or data. This characteristic
has two important consequences. First, a region of instrumentation must
have a single entry and single exit, which is a natural consequence of it not
altering the control flow of the program. Second, it cannot cause a change in
indirect control flow, since doing so would similarly effect the execution of the
program.

For simplicity, we assume that all blocks corresponding to instrumentation
are labeled in the CFG; doing so is straightforward when the instrumentation
is first inserted. We generate the instrumentation view by applying the graph
transformation shown in Figure 5.1a; this transformation removes instrumen-
tation blocks from the CFG. The annotations associated with this view consist
of a representation of the removed instrumentation. We show an example of
the instrumentation view as applied to a CFG in Figure 5.1.

Interestingly, the CFG resulting from the instrumentation view may not be
identical to the original program CFG. For example, if we split a block to insert
instrumentation, then the block will remain split in the instrumentation view.
Similarly, if we clone a block, such as to provide function-specific instrumenta-
tion of a shared block, those blocks will remain cloned in the instrumentation
view. However, the resulting CFG will still be valid, if non-minimal, for the
original program. Reversing the transformations to split or clone blocks would
require labeling such blocks as well as instrumentation blocks. While our
current implementation does not do this for reasons of memory efficiency, it
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(a) Graph Transformation
(b) Reference CFG

s1

s3

s4

s2

(c) Modified CFG

s1

s2

s3

s4

(d) Instrumentation View

Figure 5.1: Example of our instrumentation view on the CFG. Figure a) shows
the graph transformation associated with this view; this transformation re-
moves a region of instrumentation from the CFG. For simplicity, we represent
this region as a single shaded block; however, it could be any arbitrary single-
entry, single-exit subgraph of the CFG that contains only instrumentation code.
Figure b) shows an original CFG for reference. Figure c) shows a modified
CFG with instrumentation code inserted; for this example, function entry
(s1), edge (s2), function exit (s3), and loop iteration (s4). Figure d) shows the
instrumentation view of the modified CFG, with instrumentation represented
as an annotation (blue boxes).
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b2b1

(a) Original CFG

b1 b2

(b) Unshared View

Figure 5.2: Example of our function unsharing view on the CFG. Figure a)
shows the original CFG, with two entry blocks labeled b1 and b2 that result in
two overlapping functions. Figure b) shows the unsharing view on the CFG,
with the functions entered at b1 and b2 having distinct bodies.

would be straightforward to do.
The non-overlapping view simplifies overlapping functions by duplicating

all shared blocks so that no functions appear to share code. This view supports
the CFG representation used by Dyninst 7.0 [11]. It is implemented with the
function unsharing graph transformation defined in Figure 4.9; we show an
example in Figure 5.2. Unlike the previous instrumentation view, which re-
moves blocks from the CFG, this view adds additional blocks; these additional
blocks serve the same purpose as the block aliases defined in Section 4.1. The
annotation function for this view labels each cloned block with its original
source block.

Our third view example provides an alternative interpretation of predi-
cated instructions. Such instructions are executed unconditionally, but only
have an effect on process state if the encoded predicate (a function of the status
flags) evaluates to true. The PowerPC and IA-32/x86-64 architectures support
a small number of predicated instructions, including the PowerPC conditional
call and return instructions and the IA-32/x86-64 conditional move instruction.
The ARM and IA-64 architectures support predication of the majority of their
instructions.
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CondFtCond

Ft

(a) Graph Transformation

<bar >:
100005 a0: cmpwi cr7 ,r3 ,4
100005 a4: blelr cr7
100005 a8: lis r9 ,4097
100005 ac: addi r0 ,r3 ,1
100005 b0: stw r0 ,4108( r9)
100005 b4: blr

(b) PowerPC Code Fragment

   cmpwi   cr7,r3,4

   blelr   cr7

    lis      
    addi    
    stw     
    blr

r9,4097
r0,r3,1
r0,4108(r9)

(c) CFG View for PowerPC Example

Figure 5.3: Example of our predicate CFG view. Figure a) shows the graph
transformation associated with this view; this transformation splits a block
around a predicated instruction. Figure b) shows an example of PowerPC code
that contains a conditional return (blelr) instruction, and Figure c) shows
the CFG view associated with this code fragment. For clarity, we only show
intraprocedural edges. Note that this view does not annotate the CFG; instead,
it splits blocks in the input ACFG that contain predicated instructions. We
provide an additional example in Figure 5.4.

There are two ways to consider the effects of such instructions on the CFG:
as implicit or explicit control flow. The implicit approach considers the control
flow caused by the predicate to be internal to the instruction, and thus does
not represent the effects of the predicate in the graph. As a result, predicated
instructions do not split basic blocks. This approach reduces the size of the
CFG, and is the approach used by the parsing algorithm referenced in Section
3.1. However, this approach requires any user of the CFG to recognize and
appropriately handle predicated instructions.

The explicit approach makes the control flow introduced by predicates



85

<__libc_longjmp >:
...

loop:
32118300 cf: test %ebx ,% ebx
32118300 d1: mov $0x1 ,% eax
32118300 d6: mov %rbp ,% rdi
32118300 d9: cmov %eax ,% ebx
32118300 dc: mov %ebx ,% esi
32118300 de: callq <__longjmp >
32118300 e3: lea 0x48 (% rbp ),% rsi
32118300 e7: xor %edx ,% edx
32118300 e9: mov $0x2 ,% edi
32118300 ee: callq <sigprocmask >
32118300 f3: jmp <loop >

(a) x86-64 Code Fragment

    test     %ebx,%ebx
    mov    $0x1,%eax
    mov    %rbp,%rdi

    lea       0x48(%rbp),%rsi
    xor       %edx,%edx
    mov     $0x2,%edi
    callq    <sigprocmask>

    jmp     <loop>

    cmov   %eax,%ebx

    mov     %ebx,%esi
    callq    <__longjmp>

(b) CFG View

Figure 5.4: Example of our predicate CFG view, continued. Figure a) shows
a more complex example of x86-64 code that contains a conditional move
(cmov) instruction; this example was taken from the internal GNU libc longjmp
function. Figure b) shows the CFG view associated with the x86-64 code
fragment. For clarity, we only show intraprocedural edges.

obvious in the CFG. Two techniques have been developed to do this: block
splitting and predicate bundling. The block splitting technique splits blocks
around each predicated instruction. This approach results in a larger CFG
with more blocks, but maintains the original instruction order; since we wish
to represent the original code, we use this approach in our predicate view.
We show our predicate view transformation in Figure 5.3a, along with two
examples of its application in Figures 5.3 and 5.4.

The predicate bundling technique analyzes the program to determine
which instructions will execute together since they rely on the same predicate,
and then constructs basic blocks from these sequences. An example of this
technique is the ILTO whole-program binary optimizer [67]. While this tech-
nique results in a more compact CFG than the block splitting technique, the
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instruction order in this CFG may differ from the original program and thus
the CFG may diverge from the underlying code. Since we wish to represent
the original code as closely as possible, we do not use this technique.

5.3 Summary

We applied our graph transformation approach to providing simplified views
of the CFG and extended the CFG to provide annotation capabilities. We
briefly introduced these concepts and provided three examples of views on
the CFG: an instrumentation view, a function unsharing view, and a predicated
instruction view. In the next chapter, we return to binary modification and
discuss our patch-based code replacement technique that we use to incorporate
transformed code into the binary.
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6
Anytime Code Replacement

In Chapters 3 and 4, we discussed the techniques we use to modify a binary
in terms of modifying its CFG. In this chapter, we describe the underlying
techniques we use to generate new binary code from the modified CFG and
replace the original binary code with this new, modified code. Our goals are
to replace code at any time during execution while imposing proportional cost.
A binary modification toolkit that provides any time code replacement can
modify a program at any point during the execution continuum, including:

• Pre-execution, by modifying the binary on disk via binary rewriting.
Binary rewriting allows the user to amortize the cost of producing a
modified binary over multiple executions.

• During execution, but executing code that will not be modified. Dynamic
instrumentation of such code is similar to binary rewriting since there is
no active process state corresponding to the modified region of code.

• During execution, and executing within the modified region. In this case,
any modification should take effect immediately to avoid indeterminate
delays before the effects of modification are felt by the process. For
example, if a user instruments immediately after the currently executing
instruction, such instrumentation should also execute immediately.

A toolkit imposes proportional cost if two things hold. First, the size
increase of the binary is proportional to the amount of code modified plus
the size of any new code. Second, execution overhead is only incurred when
executing modified code and not original, unmodified code.
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Our anytime code replacement approach extends previous work in patch-
based code replacement [11, 36, 38, 68]. We selected patch-based code replace-
ment because it provides proportional cost and operates on arbitrary binaries.
In contrast, JIT-based code replacement imposes fixed overhead due to its
incremental parsing and code relocation requirement, as discussed in Section
2.3, and in-place code replacement requires specially prepared binaries, as
discussed in Section 2.3.

Previous research into patch-based code replacement developed techniques
to support both binary rewriting and dynamic instrumentation of arbitrary
binaries while imposing proportional cost. However, these patch-based tech-
niques have three weaknesses. First, they assume a one-to-one mapping
between basic blocks in the original code and basic blocks in the modified
code; this may not hold if the user removed original basic blocks or inserted
additional blocks. Second, they treat each basic block or function indepen-
dently instead of treating all modified blocks or functions as a global unit,
and therefore may miss opportunities to reduce overhead by reducing the
number of patched interception branches. Third, they cannot ensure that the
replacement of actively executing code takes effect immediately.

We describe two novel techniques that address these problems. The first,
region patching, can replace a region of code, from a single basic block to a set
of functions, as a single unit. This technique allows us to both correctly map
between the original and replacement regions when modification of the CFG
has been performed and reduce the number of interception branches inserted.
The second, state interception, provides the ability to replace code that is being
actively executed.

We conclude the chapter with a comparison of the overhead imposed by
anytime code replacement with the techniques used by other toolkits, and
show that we impose competitive or lower overall cost. We demonstrate that
anytime code replacement imposes proportional cost, and compare this to the
non-proportional cost imposed by a toolkit using JIT code replacement. Finally,
we show that anytime code replacement can instrument actively executing
code that other techniques fail to instrument correctly.
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6.1 Region Patching

The goal of code replacement is to replace the execution of original code
with the user-modified version. Patch-based code replacement does this by
copying a region of original code, modifying the copy, and appending the
modified copy to the end of the binary; the original code is then overwritten
(or patched) with interception branches to the modified copy. Thus, when the
original code would have been executed by the program, the program will
instead branch to and execute the modified code. We rely on a technique
called code relocation, which we describe in the next chapter, to allow us to
construct this modified region at the end of the binary, instead of in-place,
without changing its behavior.

We describe patch-based code replacement as a further application of CFG
transformation, and show an overview of the CFG transformations for this
technique in Figures 6.1 and 6.2. We begin with the original CFG, represented
as CFG, and the user-modified CFG, CFG ′; from CFG ′ we derive a set T of
transformations that the user applied.

Next, we identify a region R ⊆ CFG of blocks to copy, as shown in Fig-
ure 6.1a. At a minimum, R must contain all blocks whose out-edges were
redirected or whose sizes would otherwise have increased; however, R may
contain other blocks as well. We discuss the tradeoffs involved in selecting
these additional blocks below.

We then copy R and apply the set T of CFG transformations to the copy,
creating a modified region R′; this is shown in Figure 6.1b. We use the code
relocation technique described in the next chapter to allow us to move R′

without changing the behavior of the moved code. This step leaves the original
region R unmodified; instead, we will logically replace R with R′.

Finally, we replace selected blocks in R with interception branches to blocks
in R′, as shown in Figure 6.2. This step requires three things. First, a mecha-
nism to select the set I ⊆ R of blocks that will be overwritten with interception
branches. Second, a way to map between blocks in I and blocks in R′. Third,
a mechanism to represent this code patching in the CFG. We select a block
r ∈ R to be be in I if it satisfies one of the following criteria. First, it has an
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b b b0

Call edges

Return edges

Call edges

Return edges Return edges

(a) Copying CFG to create CFG′

b b0

Call edges

Return edges

Return edges

(b) Applying transformations to CFG′

Figure 6.1: Example of region-based code replacement. Instead of modifying
the code corresponding to the original CFG in place, we instead copy the
original CFG (Figure a) and modify the copy (Figure b). This figure continues
in Figure 6.2.
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b b0

Call edges

Return edges

Return edges

Figure 6.2: Example of region-based code replacement, continued. After
copying the original CFG (Figure 6.1), we use an interception transformation to
replace the entry block b of the original CFG with a branch to the corresponding
location in the modified CFG. We shade b in red to indicate that it has been
replaced by a branch, and shade the remaining original blocks in gray to
indicate that they will no longer be executed.

b

b

snip

Other
Edge(s)

Call
Call

(a) Function Entry

b

b

snip

Loop
Backedge(s)

(b) Loop Entry

Figure 6.3: For reference, our transformations for inserting code at function
entry and loop entry. In these two cases, we map the original block to the
inserted snippet block rather than to the copy of the original block.
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in-edge from a block outside of R; that is, if r is an entry block of R. Second, if
r corresponds with a return address on the stack; such blocks are also logically
entry points into R from other currently executing code. Third, if r is the entry
block of a function, since we make the safe assumption that all functions may
be reached by indirect call edges not represented in the CFG.

If we are modifying a running program, we use the debugger interface
to write interception branches, as well as the new region R′, to the binary.
We assume this interface ensures that these changes take immediate effect by
flushing the instruction cache; this is true of every modern operating system we
have evaluated, including Linux, AIX, Solaris, FreeBSD, and Windows. If this
is not the case, or if these techniques are applied from within the executing
program, an explicit flush of the cache may be necessary. In addition, we
assume this interface allows us to make arbitrary writes to the program. If
certain pages are not writeable, such as to prevent code rewrite attacks, we
first disable write protection, write R′ and the set of interception branches,
and then re-enable write protection.

We perform the mapping by extending our graph transformations to iden-
tify the equivalent blocks. If a transformation does not add a block this is a
straightforward process. This is not the case for three transformations: func-
tion entry code insertion, loop entry code insertion, and function unsharing.
For the two code insertion transformations, as shown in Figure 6.3, we branch
from the original block to the inserted snippet block; this ensures that the
snippet block will be executed. For function unsharing, we branch from each
function’s entry block to the appropriate copy.

We perform the code patching with another graph transformation, in-
terception transformation, which replaces the contents of a basic block with a
branch to a specified destination block; we show this transformation in Figure
6.4. This transfer models the effects of patching original code with a intercep-
tion branch. We apply this transformation to the blocks in I , targeting their
equivalent blocks in R′.

Once we have created the modified R′ and identified the blocks in I that
will be patched, we generate corresponding binary code. In general, standard
code generation techniques, such as updating the target address of a branch,
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b b b0b0

Dir

Figure 6.4: Our interception transformation, which replaces the contents of a
given block, here represented b, with a branch to a specified destination block,
here represented b′. In essence, this transformation redirects all in-edges to b to
target b′ instead. We shade b in red to indicate that its contents are overwritten
with an interception branch.

suffice to generate code corresponding to R′. In some cases we may need to
add additional branch instructions, such as if the target of a fallthrough edge
is no longer laid out immediately after the source of the edge; in these cases
we use techniques derived from compile-time modification toolkits [29]. We
use the code relocation technique described in the next chapter to allow us
to move this generated code to the end of the binary instead of its original
location in the binary. Finally, we overwrite each block in I with branches.

As mentioned above, R must contain any block whose out-edges were
redirected or whose size would be increased. However, we frequently include
additional blocks in R. We do this for two reasons. First, if R is small, we may
not be able to fit the branches to R′. For example, on x86-64 or PowerPC a
single branch instruction cannot reach anywhere in the address space. Instead,
we must first calculate the destination address in a register or on the stack and
branch using that address; we show examples of such code in Figure 6.5. Such
sequences may not fit in a single block. If we increase the size of R we can
use the space occupied by the additional adjacent blocks to fit such branch
sequences.

The second reason is efficiency. Executing an interception branch imposes
surprising overhead, as we discuss in Appendix A. By including additional
blocks in R (and thus R′) we may be able to reduce how frequently interception
branches are executed; this, in turn, can reduce overhead. In our experience,
selecting code on a function basis results in lower overhead than selecting
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1000: jmp $332200fb

(a) IA-32 Branch Sequence

1000: push $7766
1004: push $5544
1008: push $3322
100c: push $1100
1010: ret

(b) x86-64 Branch Sequence

1000: addis r0 ,r0 ,3322
1004: ori r0 ,r0 ,1100
1008: mtlr r0
100c: blr

(c) PowerPC-32 Branch Sequence

1000: addis r0 ,r0 ,7766
1004: ori r0 ,r0 ,5544
1008: rldicr r0 ,r0 ,32 ,31
100c: oris r0 ,r0 ,3322
1010: ori r0 ,r0 ,1100
1014: mtlr r0
1018: blr

(d) PowerPC-64 Branch Sequence

Figure 6.5: Examples of interception branch sequences that can reach anywhere
in the address space. We use 0x33221100 as an example destination on 32-
bit platforms, and 0x7766554433221100 as an example destination on 64-bit
platforms. Figure (a) shows an example branch on IA-32; since a single branch
can use a 4-byte offset, it is possible to reach anywhere in the address space.
Branch offsets are calculated from the end of the jump, so this branch uses an
offset of (0x33221100 - 0x1005) = 0x332200fb. Figure (b) shows an example on
x86-64. Like IA-32, x86-64 only supports 4 bytes of offset for a direct branch. We
perform a longer branch by building the target address on the stack and using
a return instruction. We use 16-bit pushes since they are not sign-extended;
a 32-bit push is sign-extended to 64 bits. An alternative would be to load
the destination address in a free register and use an indirect branch. Figure
(c) shows an example for 32-bit PowerPC. This platform can encode 26 bits
of offset in a branch, which again is not sufficient to reach anywhere in the
address space. Instead, we must build the destination address in a register (r0),
move it to the link register (lr), and branch. We assume r0, or another GPR, is
available for use; if not, a GPR must be saved before the branch and restored at
the destination. Similarly, either lr (or ctr, another special-purpose register)
must either be free or saved. Finally, Figure (d) shows an example for 64-bit
PowerPC; since only the lower 32 bits of a register is directly modifiable, we
include a shift (rldicr) instruction to set the high 32 bits.
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individual blocks within the function; we believe the improvement in overhead
from only executing an interception branch at function entry dominates the
increase in overhead from relocating additional code. However, we have not
fully studied this relationship; for example, we may be able to further reduce
overhead by moving multiple functions or a subregion of a function. We
believe this to be an interesting area of further study.

6.2 State Interception

Region patching places interception branches at the entry points of modified
regions of code. This technique is sufficient for binary rewriting or dynamic
instrumentation of code that is executing outside such regions. However, it
is not sufficient for replacing code that is actively executing; the process may
continue to execute original code or execute part of an interception branch
that overwrote multiple instructions. To handle this case, we augment region
patching with another technique, state interception, that allows us to modify
programs that are actively executing within a modified region by directly
modifying process state to move execution from the replaced code to the
replacement code. State interception is only necessary when code is first
replaced; the interception branches inserted by region patching are used to
intercept subsequent executions of the replaced code.

State interception only modifies the current program counter; all other
aspects of program state, such as function pointers or return addresses on
the stack, are handled by region patching by inserting additional interception
branches, as discussed in the previous section. An alternative would be to
update these values in memory; for example, we could rewrite the stack
with the appropriate new return addresses. However, this approach requires
significant analysis to be safe.

State interception has several similarities to region patching. Like region
patching, we identify a mapping between the original code and its replacement.
Instead of identifying entries to this region, though, we map from the current
execution point (or points for multithreaded programs) to the corresponding
point in the copied and modified code; this may be at an arbitrary instruction
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(a) Case 1
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(b) Case 2
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State
Interception
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(c) Case 3

b

State
Interception

snip

b1 b2

b
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(d) Case 4

Figure 6.6: Examples of the four cases of state interception. We denote the
interception operation with a dashed line from the location in original code to
the location in modified code. Case 1 shows the straightforward case where we
move from the original instruction i in a block b to corresponding instruction
i′ in the modified block b′. Case 2 shows our technique for handling inserted
code; instead of moving to i′ we move execution to the beginning of the inserted
code. Case 3 shows our technique for handling cloned blocks; we select block
b′

i (assuming an executing function fi) as the destination. Case 4 shows our
technique for handling code inserted along some, but not all, in-edges; we
skip this code (unlike case 2) since we cannot guarantee it should execute.
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rather than known entry points to the region. We begin by identifying the cur-
rently executing instruction i, and use this to identify the currently executing
basic block b. We then map b to its equivalent modified block b′, and use this
to find the instruction i′ in b′ that is the equivalent of i.

We then consider the following cases:

1. b was not modified at the instruction i: transfer execution to i′ in b′. This
is the simplest case. We show an example of this case in Figure 6.6a.

2. b was modified to insert code immediately before i, such as for pre-
instruction instrumentation: transfer execution to this code rather than
i′, since the code was specified to execute immediately before i. We show
an example of this case in Figure 6.6b.

3. b was cloned as part of function unsharing. In this case, there will not be
a single b′; instead, there will be a set B′ = {b′

1, . . . , b′
n} with one block

for each function that shared b. We examine the call stack to identify
the currently executing function fi, and use this function information to
distinguish the appropriate b′

i ∈ B′ to use. We show an example of this
case in Figure 6.6c.

4. New code was inserted before b and i is the first instruction in b. If the
new code would be executed for all in-edges, then we transfer to the
new code, as in the second case. If it would only be executed for some
in-edges, such as code inserted at function or loop entry, we transfer
to the entry of b′ since we cannot guarantee that the new code should
execute. We show an example of this case in Figure 6.6d.

Once we have determined the appropriate destination, we modify the
program counter to the appropriate value.

This technique assumes that b′ exists in the CFG. This may not be the case
if the user modified the CFG to remove b. In these cases, we take the simple
approach of skipping state interception; as a result, the program will continue
to execute original code until it reaches an interception branch.
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Figure 6.7: Performance of our techniques, Dyninst 7.0, PEBIL, DynamoRIO,
and PIN. We used each toolkit to insert code into each basic block that incre-
ments a counter variable. The y-axis is the overhead of the instrumented binary.
Missing values indicate the tool did not successfully instrument that bench-
mark; PEBIL failed on gcc and omnetpp, and Dyninst 7.0 failed on omnetpp.

6.3 Experimental Results

Region patching and state interception provide anytime code replacement
while imposing proportional cost. We verified these characteristics with the
following experiments. We began with an end-to-end experiment that shows
the overhead involved in instrumenting each basic block. This experiment
measures the total overhead imposed by this benchmark, which includes code
replacement, relocation, and executing instrumentation. We selected this
benchmark, rather than one that attempted to specifically measure the cost of
code replacement, for two reasons. First, instrumenting every basic block is a
common benchmark used to compare binary modification toolkits. Second,
it is impossible to separate the overhead imposed by code replacement from
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relocation in a real program, as code replacement without relocation will cause
the program’s behavior to differ and thus invalidate any measurements we
might take.

Next, we demonstrate that our approach imposes proportional cost by
instrumenting a subset of basic blocks and measuring the overhead resulting
from executing a partially instrumented program. We compare this overhead
to other patch-based tools, which display similar proportional cost charac-
teristics, and JIT-based tools, which impose fixed overhead even when no
instrumentation is inserted.

Our final experiment demonstrates that we can instrument actively ex-
ecuting code. We do this by stopping an executing program and inserting
instrumentation code immediately after the currently executing instruction.
Our state interception technique ensures such instrumentation is executed
immediately, while other approaches either delay execution until the next time
the replaced region is entered or fail to execute the instrumentation entirely.

For our first experiment, we instrumented each program in the SPEC2006
integer suite to count how many basic blocks were executed. We compared
our approach with Dyninst 7.0 [11], PIN [41], DynamoRIO [10], and PEBIL
[38]. We did not compare our overhead to that of the popular Valgrind tool
[50], as previous research has shown that its overhead is higher than both PIN
and DynamoRIO. Similarly, we did not include SecondWrite [52], as it is not
publicly available. We measured the total time to instrument and execute each
benchmark.

The performance results for this experiment are shown in Figure 6.7; the
y-axis is the overhead imposed. The overhead incurred by anytime code re-
placement is competitive or better on all benchmarks, with the exception of
bzip where DynamoRIO incurred lower overhead; we believe this is due to
the improved code layout algorithms DynamoRIO uses. Dyninst 7.0 performs
worse due to its more frequent execution of interception branches, which
particularly harmed it on the xalancbmk benchmark due to its heavy use of
small functions, and failed on the omnetpp benchmark since omnetpp relies on
exceptions, a language feature Dyninst 7.0 does not handle correctly. While
Dyninst represents exceptions in the CFG as additional edges, its code reloca-
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Figure 6.8: Performance of each toolkit on partially instrumented programs.
The x-axis shows the percentage of total block executions that were of instru-
mented blocks, and the y-axis is overhead normalized to the overhead of full
instrumentation for each toolkit.

tion mechanism causes exception handling to fail because it modifies the return
addresses this mechanism relies on. We address this problem in Chapter 7.

The PEBIL rewriter incurs overhead close to our techniques on many bench-
marks; this is unsurprising since the design of PEBIL is derived from Dyninst
7.0. It performs substantially worse on the xalancbmk benchmark, produced
an invalid gcc program that crashed when executed due to data corruption,
and failed to correctly instrument omnetpp for the same reasons as Dyninst
7.0. The DynamoRIO overheads are competitive due to their focus on instru-
mentation efficiency. Finally, PIN performs worse than other toolkits with the
exception of Dyninst 7.0. We believe this is due to their more conservative code
relocation mechanism; this was particularly apparent on the h264ref bench-
mark, which executes a large number of calls and returns that PIN emulates
instead of executing natively.

For our second experiment, we determined the overhead of partially in-
strumenting the program. We did this by instrumenting randomly chosen
blocks in the perl benchmark with a simple counter. We normalized the
overhead of each execution by the ratio of instrumented block executions to
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uninstrumented block executions; the data is graphed in Figure 6.8. The y-axis
shows the total time for each run, with an unmodified running time of 130
seconds. The x-axis is the percentage of total basic block executions that were
of instrumented blocks. The overhead imposed by each binary modification
toolkit decreases as fewer instrumented blocks are executed. The overhead
imposed by anytime code replacement, Dyninst 7.0 [11], and PEBIL [38] de-
creases to zero, with our technique providing slightly lower overhead. The
overhead imposed by DynamoRIO [10] and PIN [41] decreases as well, but to
a fixed cost imposed by their JIT-based code replacement technique.

For our third experiment, we verified the timeliness of each toolkit by
determining whether instrumentation inserted immediately after the current
instruction would execute immediately. We did so as follows. For anytime
code replacement and Dyninst 7.0 [11], we constructed a sample program
consisting of a loop that increments a variable and then performs some other
work. Our instrumenter waits for a random amount of time, stops the sample
program, reads the value of the loop variable directly, inserts instrumenta-
tion at the current instruction to also read the value of the loop variable, and
continues the sample program. When executed, anytime code replacement re-
ports identical values for the loop variables; thus, the inserted instrumentation
executed immediately. Dyninst 7.0 reports different values, with the instru-
mentation reporting a value one larger than the directly read value; thus, the
instrumentation was executed in the next loop iteration. We did not perform
this experiment on PEBIL, as it does not provide dynamic instrumentation.

PIN does not provide the ability to insert instrumentation at an arbitrary
time; instead, instrumentation must be inserted before the code has executed
the first time. We approximate the behavior described above with their block
invalidation mechanism, which triggers re-instrumentation of a sequence of
code. This invalidation is triggered by a second sequence of instrumentation
which mimics the stop behavior described above. When executed, the loop
was never re-instrumented despite our request. We believe this is a side-effect
of the PIN code cache behavior; PIN only checks for invalidations lazily, such
as when new code is parsed and instrumented. This does not occur in a loop.
We did not perform this experiment on DynamoRIO, as they do not provide a
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re-instrumentation capability.

6.4 Summary

We presented a patch-based code replacement technique that provides anytime
code replacement and proportional cost. Patch-based code replacement can
be used at any point in the execution continuum without imposing the non-
proportional overhead imposed by JIT-based code replacement or requiring
the extensive semantic information required by in-place code replacement.
We extended previous work with two new techniques: region patching, which
lowers the overhead of code replacement, and state interception, which allows
us to replace code that is being actively executed.

When compared with existing techniques, anytime code replacement pro-
vides the novel ability to modify actively executing code while imposing similar
or lower overhead to other methods and preserving the proportional cost ex-
pected of patch-based instrumentation. In the next chapter, we discuss our
sensitivity-resistant code replacement technique that allows us to perform
patch-based code replacement without affecting the behavior of the original
code.
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7
Sensitivity-Resistant Code Relocation

In the previous chapters, we presented two techniques. The first, structured
binary editing, used graph transformations as an abstraction for binary modi-
fication. The second, anytime code replacement, allows the incorporation of
new or modified code into the binary. In this chapter, we discuss sensitivity-
resistant code relocation, a technique for transforming original program code
to compensate for the effects of instrumentation or code replacement on that
code. Code replacement adds new code to the binary, moves original code, and
may overwrite original code with branches to the new code. These operations
change the contents of registers and memory as well. For example, moved code
perceives a different value of the program counter, and overwriting code also
changes the contents of memory. These effects, in turn, may alter the behavior
of sensitive code that references changed registers and memory, causing the
program to execute incorrectly.

Binary modification toolkits seek to compensate for the altered behavior of
sensitive instructions using code relocation, a technique that produces code that
has compatible visible behavior with the original code. Previous approaches
have relied on ad-hoc definitions of sensitivity and visible behavior and thus
impose unnecessary overhead [10, 41, 50] or may fail to preserve compatible
behavior [10, 11, 36, 38, 41, 50, 52, 57, 68, 69]. We describe sensitivity-resistant
code relocation, a technique that relies on a formal specification of sensitivity
to both preserve correct behavior while often imposing lower overhead than
previous approaches. This technique consists of four components: a model
of instruction sensitivity, a formalization of the compatible visible program



104

behavior that we wish to preserve, an analysis for identifying externally sensi-
tive instructions that will alter this behavior, and an efficient compensation
technique for handling such instructions.

This discussion assumes that the binary is only being instrumented, not
modified. We assume such instrumentation does not explicitly modify the
behavior of the original code; this assumption clearly does not hold for program
modification. The techniques we describe in this chapter may be useful in
certain cases of program modification, such as in forensic investigation of
malware that prevents certain code sequences from executing [9]. Such changes
take us into a semantic gray region and depend heavily on the expertise of the
analyst to be performed correctly; however, they still have practical use. We
believe an attempt to formalize the interaction of code relocation and explicit
binary modification is an interesting area of future research.

We begin by introducing the notation we use in this chapter. In addition
to the CFG, our analysis is performed over the data dependence graph (DDG).
We also introduce a simple program model that treats a program as a function
from input to output; we use this model to define the program behavior we
wish to preserve.

Next, we introduce compatible visible behavior. Conceptually, we wish to en-
sure that code replacement does not change the externally visible behavior of
the original binary, although its internal behavior may change and instrumen-
tation may produce additional output. We formalize these characteristics as an
extension of denotational semantics [65]. Two characteristics of our approach
render the frequently-undecidable problem of determining semantic equiva-
lence tractable. First, since code replacement does not delete code, there is a
correspondence between each original basic block and a relocated basic block.
Second, the execution order of the relocated code should be equivalent to the
original code, since code replacement also does not alter this characteristic. We
formalize these characteristics and define output flow compatibility, a stricter
approximation of compatible visible behavior that uses these characteristics to
simplify verification of compatibility.

We then define a model of instruction sensitivity. We define four classes of
sensitivity to code replacement. Three of these categories represent instruc-
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tions whose behavior is affected because their inputs are affected by modi-
fication: program counter (PC) sensitivity, code as data (CAD) sensitivity, and
allocated vs. unallocated (AVU) sensitivity. The fourth category, control flow (CF)
sensitivity, represents instructions whose control flow successors are moved.
PC-sensitive instructions access the program counter and thus will perceive a
different value when they are moved. CAD-sensitive instructions treat code
as data, and thus will perceive different values if they access overwritten code,
such as code replaced with an interception branch. AVU-sensitive instructions
attempt to determine what memory is allocated by accessing unallocated mem-
ory and thus may be affected when new memory is allocated to hold moved
and added code; we believe this is a newly identified sensitivity characteris-
tic of programs. CF-sensitive instructions have had a control flow successor
moved and thus may transfer control to an incorrect location. For each category
of sensitivity we define how the inputs and outputs of the sensitive instruction
are changed by modification. For example, a moved call is PC-sensitive, since
it will save a different return address.

Adding code to a binary may alter its behavior in other ways, such as by
introducing delays in execution, altering library or operating system state, or
modifying the layout of the heap by allocating additional memory. We do not
address these additional forms of sensitivity in this work; however, we believe
that our model would suffice. For example, sensitivity to execution delays,
such as timing checks, could be modeled by identifying the instructions that
calculate the elapsed time and modeling the difference in the behavior of such
instructions. Malware writers typically avoid such checks because they are
difficult to implement and may be error prone. These difficulties stem from
the complexities of processor execution models, and unpredictable memory
delays and context switches.

Next, we define an analysis for identifying externally sensitive instructions.
First, we define the characteristics of an instruction that make an instruction
sensitive to code replacement. Second, we define a slicing-based analysis that
identifies the instructions whose behavior may be affected by the different
behavior of a sensitive instruction. Third, we define a technique based on
symbolic evaluation that determines if this change in behavior will alter the
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overall program behavior. If it does, we conclude the instruction is externally
sensitive.

We then define a technique for low-overhead preservation of original pro-
gram behavior. We do this with the standard approach, by applying compen-
satory transformations to externally visible instructions. These transformations
replace such instructions with sequences of code that emulate the original
behavior of the instruction. These transformations are typically applied to each
instruction individually [10, 36, 38, 41, 50, 52, 57, 68, 69]. This is not always the
most effective approach; in some cases, it is possible to transform groups of
instructions to further reduce overhead. We introduce an example, based on a
technique from Dyninst 7.0 [11], that further reduces overhead when handling
a code sequence often seen in position-independent code.

We conclude the chapter with a discussion of the results of this approach.
First, we demonstrate that our approach is capable of handling defensive
programs that explicitly attempt to detect any modification, and thus are
extremely sensitive to code replacement. We do this by processing a simple
test program with a set of malware packers and then instrumenting the result.
Second, we compare the overhead imposed by our approach to the overheads
imposed by other code relocation approaches.

This chapter presents work that was done jointly with Kevin Roundy. In
this work, we describe our contributions to this effort: the definition of com-
patible visible behavior and output flow sensitivity, as described in Section
7.2; the definition of instruction sensitivity, as described in Section 7.3, the ex-
ternal sensitivity analysis, as described in Section 7.4; and the implementation
necessary for the experimental results on non-malware code. Kevin Roundy
extended these techniques to defeat the sensitivity-resistance techniques used
by malware programs. This extension involved developing efficient ways to
compensate for CAD and AVU sensitivity, significant effort in implementing
compensatory transformations for these binaries, and integration of these
techniques into the SD-Dyninst research prototype [60]. Roundy’s work is
described in his dissertation [61].
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7.1 Notation

We represent a binary program in terms of a process state, control flow graph
(CFG), and data dependence graph (DDG). We use the CFG as defined in
Section 3.1. We extend the conventional definition of a process state to include
input and output spaces; this extension allows us to represent an input opera-
tion as a read from an abstract input location and an output operation as a write
to an abstract output location. Finally, the conventional definition of a DDG over
binaries [33] may over-approximate data dependences between instructions
that define multiple locations, as is common on real machines (Figure 7.1a). We
provide more precise dependence information by splitting such instructions
into sets of single-definition operations and using these operations as nodes in
the DDG (Figure 7.1b).

Process states (or simply states) are represented in terms of a set of abstract
locations AbsLoc = Reg∪Mem∪In∪Out. The registers Reg and memory Mem
are defined conventionally; we assume the machine has a dedicated register
pc that represents the program counter. For purposes of this work, we refer to
the IA-32 architecture; however, we believe our approach is equally applicable
to other architectures. We represent input and output with two sets of abstract
locations, In and Out. The set In = {in0, . . . , inm} represents input to the
program; we model each execution of an input operation (e.g., scanf) as an
access of a unique input location. Output is similarly represented as the set
Out = {out0, . . . , outn}. A process state is a mapping from abstract locations
to values; we use ⊥ to represent an unallocated abstract location.

The input and output spaces of a program P are denoted InP ⊆ In and
OutP ⊆ Out, respectively. We define the function Execute to relate program
inputs and outputs as follows. Let the map x : InP → Values⊥ represent an
assignment of values to all locations in InP ; we refer to the set of all possible
input assignments as InputsP . Then the output produced by executing P on x

is denoted by y = Execute(P, x) where the map y : OutP → Values⊥ represents
an assignment of values to all locations in OutP . Executing a program traverses
a path of nodes through the CFG; we denote this by ExecPath(P, x), where
x ∈ InputsP .
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i0: pop %eax

i1: pop %ebx

i2: add %eax, %ebx

i3: push %ebx

%esp

%eax

%esp%ebx

%ebx

%espMem[%esp]

Mem[%esp]

%esp

(a) Instruction Nodes

i3:%esp

i0:%eax

i1:%ebx

i2:%ebx

i3: Mem[%esp]

%esp

%esp

%eax

%ebx

%ebx

%espMem[%esp]

i0:%esp

i1:%esp

%esp

%esp

%esp

Mem[%esp]

(b) Operation Nodes

Figure 7.1: Data dependency graphs. Figure (a) illustrates the problems of
representing instructions as single nodes. In this graph it is possible for paths
to “cross” definitions; for example, there is a path from the definition of %eax by
i0 to the definition of the stack pointer %esp by i3, when in the actual program
there is no such dependence. Our extended DDG, shown in (b), makes the
intra-instruction data dependencies explicit and excludes erroneous paths.
For clarity, we omit the flags register %eflags and the program counter %eip.

We represent the data flow of a program with a data dependence graph
(DDG). To provide more precise dependence information, we split instructions
into a set of single-definition operations. These operations form the nodes of our
extended DDG. Formally, the DDG of a program P is a digraph DDG = (V, E).
We use a virtual operation called initial to represent the initial assignment of
abstract locations. A vertex in this graph is a pair of an instruction and an
abstract location defined by that instruction, and the set of vertices is V =
{(initial, a)|a ∈ AbsLoc}∪{(i, a)|i ∈ P ∧a ∈ defs(i)}, where defs(i) represents
the set of abstract locations defined by i. The set of edges E ⊆ V ×V represents
use-def chains between operations. We show an example of our extended
DDG in Figure 7.1b. We represent the DDG of a particular program P as
DDGP .
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7.2 Output Flow Compatibility

We formalize our intuition of visible behavior in terms of denotational seman-
tics. Two programs have the same denotational semantics if, for the same
input, they produce the same output [65]. Requiring strict semantic equiva-
lence would not allow instrumentation to consume input or produce output;
we address this limitation by assuming instrumentation code has its own in-
put and output spaces and defining compatible visible behavior as denotational
semantic equivalence over the input and output spaces of only the original
program. We assume that the original and instrumented programs must have
equivalent control flow in addition to compatible visible behavior. We formal-
ize this in terms of a stricter approximation of visible behavior called output
flow compatibility.

We define the original program P and instrumented P ′ to be visibly compat-
ible, written P ′ w P , if the following three conditions hold. First, InP ′ ⊇ InP ,
and all input locations in InP ′ \ InP are only read by instrumentation code.
Second, OutP ′ ⊇ OutP , and all output locations in OutP ′ \OutP are only writ-
ten by instrumentation code. Third, for compatible inputs, P and P ′ produce
compatible outputs. We define input compatibility as follows. Let x ∈ InputsP ;
then x′ ∈ InputsP′ is compatible with x, written x′ w x, if ∀l ∈ InP , x(l) = x′(l).
We define output compatibility in a similar way. Let x ∈ InputsP be some
input to P , and x′ be an input to P ′ such that x′ w x. P and P ′ are output
compatible if ∀x, x′, Execute(P ′, x′) w Execute(P, x).

We define output flow compatibility as follows:
Control flow constraint: The instrumented and original programs must,

when executed on compatible inputs, traverse equivalent paths through the
CFG (disregarding instrumentation). For simplicity, we assume that instru-
mentation is only inserted on a basic block boundary; we can always split
blocks to ensure this is the case. Since instrumenting a program does not delete
original code, there is a natural correspondence between each original basic
block bi and a basic block b′

i in the instrumented program. We do not consider
the execution of instrumentation in our definition of control flow equivalence;
we represent this with a function Filt that removes all blocks representing
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instrumentation from a path p′ through CFGP ′ . P and P ′ have equivalent con-
trol flow if ∀x ∈ InputsP and ∀x′ ∈ InputsP′ : x′ w x, Filt(ExecPath(P ′, x′)) =
ExecPath(P, x). This definition does not handle blocks that were split to insert
instrumentation; for simplicity, we assume such blocks were also split in the
original CFG.

Output constraint: The control flow constraint means P ′ and P will write
to all output locations in OutP in the same order. In addition, they must both
write the same values. P ′ satisfies this constraint if the following holds for all
inputs x to P and compatible inputs x′ to P ′. Let 〈b0, . . . , bm〉 = ExecPath(P, x)
and 〈b′

0, . . . , b′
n〉 = Filt(ExecPath(P ′, x′)); by the above constraint m = n. Then

for each block pair bi, b′
i, 0 ≤ i ≤ n, each output operation in bi and b′

i must
produce the same values.

7.3 Sensitivity Model

In this section, we present our model of operation sensitivity. We use oper-
ations rather than instructions to increase precision; it is possible for some
operations within an instruction to be sensitive without all operations necessar-
ily being sensitive. An operation is sensitive to code replacement if its behavior
will be directly affected by replacement. This occurs in two ways. First, an
input value to the operation may be changed, such as a moved operation that
reads the program counter or an operation that accesses modified memory.
Second, the required output of the operation may change, such as a branch
whose successor was moved. We define four classes of sensitivity to the effects
of code replacement: PC-sensitivity to code being moved, AVU sensitivity to
code being added, CAD sensitivity to code being overwritten, or CF-sensitivity
to a successor being moved.

We determine whether an operation is sensitive to code replacement using
the algorithm shown in Figure 7.2. We consider two general types of sensitivity:
the operation’s (i.e., its containing instruction’s) sensitivity to being moved and
the sensitivity of the remainder of the program to being modified. Moving
an operation changes its address but does not modify the operation in any
other way. All inputs to the operation will be unaffected with the exception
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1 Algorithm: IsSensitive
input : An operation o in an instruction i, a set A of added memory, a set M of

moved instructions, and a set O of overwritten memory
output :Whether o is sensitive

2 if i ∈M ∧ Uses(o, pc) then
3 return true // o is PC-sensitive
4 if Uses(o, A) then
5 return true // o is AVU-sensitive
6 if Uses(o, O) then
7 return true // o is CAD-sensitive
8 if Defines(o, pc) then
9 foreach instruction i′ ∈ Successors(i) do

10 if i′ ∈M then
11 return true // o is CF-sensitive
12 return false // o is not sensitive

Figure 7.2: An overview of our algorithm for identifying operation sensitivity
to code replacement. We test for four classes of sensitivity: PC-sensitivity to
being moved (line 2), AVU sensitivity to added code (line 4), CAD sensitivity
to overwritten code (line 6), and CF-sensitivity to successors being moved
(lines 8-10).

of the pc, which contains the address of the operation and thus will change.
We define an operation to be PC-sensitive if it uses the program counter and
its containing operation will be moved (line 2).

Allocating new memory or overwriting existing memory changes the con-
tents of the corresponding abstract locations. This will affect all operations
that use these abstract locations. We define an operation to be AVU-sensitive if
it uses an abstract location that represents added memory (line 4); similarly,
an operation is CAD-sensitive if it uses an abstract location that represents
overwritten memory (line 6).

The final type of sensitivity is sensitivity to the program being modified.
Moving an instruction also affects its immediate control flow predecessors.
We also define this sensitivity in terms of operations, in this case, the operation
that writes pc. We define an operation to be CF-sensitive if it writes pc and one
or more of its successors will be moved (lines 8-10), since executing the CF-
sensitive operation may cause the control flow of the instrumented program
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to diverge from that of the original.
It is straightforward to precisely identify both PC-sensitive and CF-sensitive

instructions, as no pointer analysis is required. Identifying CAD and AVU-
sensitive instructions requires pointer analysis to identify whether an oper-
ation reads from overwritten or added memory, respectively. However, it is
safe to over-approximate an operation as sensitive, and thus our analysis is
conservative.

7.4 External Sensitivity Analysis

In this section, we present an analysis for identifying whether an instruction
is externally sensitive to the program being instrumented. As in the previous
section, we describe this algorithm in terms of operations; an instruction is
externally sensitive if it contains an externally sensitive operation. While it
is straightforward to identify sensitive operations, not all sensitive operation
will cause a change in overall program behavior. Identifying the externally
sensitive operations that will do so requires analysis of the effects of a sensitive
operations on the remainder of the program. For example, if we move a call
as part of a region of code, the return address saved by the call will change;
however, this changed address will correspond with the new location of the
call and thus the control flow of the program will not be affected. However, if
the return address is used for a different purpose, such as part of a pointer to
data, changing the value may affect the program’s behavior.

For example, consider the effects of changing the location of a function
that contains a call instruction. Call instructions contain two operations: one
that sets the pc and one that saves the return address. This return address will
change if the call is moved, and thus the second operation will be sensitive
to movement. If this return address is used only for returning from the call
then the overall control flow of the program will not be altered, rendering
the operation internally sensitive. However, if the address is used as a data
value, such as in a pointer calculation, then moving the call may affect visible
behavior, rendering the call externally sensitive.

We determine whether an operation is externally sensitive with the algo-
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1 Algorithm: IsExternallySensitive
input :An operation o
output :Whether o is externally sensitive

2 if isSensitive(op)) then
3 Let S = ForwardSlice(op) ;

// S stops at visible operations foreach visible operation v in S do
4 Let c = ChangedResult(v) ;
5 if ChangesOutputFlow(c) then
6 return true
7 return false

Figure 7.3: An overview of our algorithm for determining whether an op-
eration is externally sensitive. We begin by determining if the operation is
sensitive to code replacement (line 2). If so, we determine its affected opera-
tions with a forward slice (line 3) and determine the changed results of each
affected operation (lines 4-6). If these changed results will change output flow
(line 7), we conclude the input instruction is externally sensitive.

rithm in Figure 7.3. First, we identify whether an operation is sensitive and
skip those that are not (line 2). For each sensitive operation, we determine its
forward slice (line 3); this slice includes the set of operations whose behavior
may be affected by the sensitive operation [33]. We then examine each opera-
tion in the slice to determine whether it can affect output flow equivalence,
either by changing control flow or an output value (lines 4 and 5); we call these
operations visible operations. For each visible operation, we determine how
code replacement would change its results (line 6) and identify whether the
change in result (if any) might break output flow equivalence (line 7); in this
case we conclude the original instruction is externally sensitive. We describe
each of the major component functions below.

IsSensitive: We determine whether an operation is sensitive to code re-
placement using the algorithm shown in Figure 7.2 and discussed in the
previous section.

ForwardSlice: Our analysis operates over the set of operations whose exe-
cution may be affected by the sensitive operation. Any operation that is
not affected by the sensitive operation will not have its behavior changed
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and thus can not change the program’s visible behavior. We define the
affected set of operations affected by a sensitive operation o as the forward
slice from o, terminating at visible operations that may affect output flow.
This includes any operation that sets the program counter or produces
output. We assume that a compensatory transformation will ensure that
the effects of code replacement will not propagate past these points. As
a result of this termination, we do not include control dependence edges
in the slice. We discuss why this approximation is valid at the end of
this section.

IsVisible: An operation is visible if it can directly affect control flow or
output. All other operations can only affect internal elements of data
flow and thus will not directly cause output flow equivalence to fail. We
identify visible operations as follows. An operation affects control flow if
it writes to pc; we call such operations CF-visible. Similarly, an operation
affects output if it writes to an abstract location in OutP ; we call such
operations output-visible. These are the only operations whose changed
behavior we must model to determine whether output flow equivalence
is affected by code replacement.

ChangedResult: Our analysis models how code replacement would change
the output of each visible operation using symbolic execution. We do
this as follows. First, we calculate the chop [31] chop(os, ov) from the
sensitive operation os to the visible operation ov. Second, we use symbolic
execution to derive a symbolic representation of the chop. We represent
the result as follows:

Symbolic Representation: The symbolic representation of a chop chop(os, ov)
is a function

Symos,ov
(x0, . . . , xn)

where (x0, . . . , xn) represent inputs to operations in the chop; the
result of this function is the value produced by ov.
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Third, we derive an expression of how code replacement would change
the output of ov as follows. We determine the input difference for each
input xi:

Input Difference: We represent how code replacement will change the
value of xi with a function fi; these functions are defined below.

The new output of ov will be Symos,ov
(f0(x0), . . . , fn(xn)). Fourth, we

determine if there exists a binding of values to inputs that will cause ov

to break output flow equivalence; if this is true then we conclude os is
externally sensitive. We describe each of these steps below.

We derive the chop chop(os, ov) with a forward traversal of the DDG
and use symbolic evaluation to derive Symos,ov

[16]. We determine how
code replacement will change the inputs to the chop as follows. For each
xi ∈ {x0, . . . , xn}we define the mapping function fi as follows. If code
replacement will not change the value of xi then fi is the identity; this
is the case with any input to an operation other than os. Otherwise, fi

depends on what class of sensitivity os belongs to:

PC-sensitive: If os is PC-sensitive then xi represents the pc. Let i repre-
sent the moved instruction, a its original address, and a′ its new
address. Then xi must equal a, and fi(xi) = a′.

AVU-sensitive: If os is AVU-sensitive then xi represents an abstract loca-
tion a in memory that was added by code replacement. In this case
xi = ⊥, as this memory originally was unallocated, and fi(xi) = v′

where v′ represents the new value written into a by code replace-
ment.

CAD-sensitive: If os is CAD-sensitive then xi represents an abstract lo-
cation a in memory that was overwritten by code replacement. In
this case xi = v, where v represents the original contents of a; we
assume that such memory is read-only and thus v is known. Instru-
mentation would overwrite a new value v′ into a; thus fi(xi) = v′.
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CF-sensitive: Unlike the previous three cases, the inputs to a CF-sensitive
operation will not be changed by code replacement unless the oper-
ation also depends on a PC, AVU, or CAD sensitive operation. Thus
fi(xi) = xi for all inputs.

ChangesOutputFlow: The final step in our external sensitivity analysis de-
termines whether code replacement would cause a visible operation to
change the program’s control flow or output. Clearly, changing the value
produced by an output-visible operation breaks output flow equivalence.
However, this is not necessarily the case for CF-visible operations. The
values written to pc by these control flow operations may change without
changing the control flow of the program (and thus breaking output
flow equivalence) so long as any changes precisely correspond with the
movement of a control flow successor. Consider the call example from
above. In this example, the return address stored by the call would be
changed by code replacement since the call is moved; this change will
cause the corresponding return instruction to write a different value
to pc. However, since this new value is the new address of the call’s
successor, the control flow of the instrumented program would not be
changed and thus the call is not externally sensitive.

We consider the following two cases:

Output-visible: As we mention above, any change in output will break
output flow equivalence. Therefore, if there exists an assignment
of values to x0, . . . , xn such that

Symos,ov
(f0(x0), . . . , fn(xn)) 6= Symos,ov

(x0, . . . , xn)

then ov is output flow breaking, and thus we would conclude that os

is externally sensitive.

CF-visible: This case is more complex as we must account for the move-
ment of instructions. Recall that an output-visible operation ov sets
pc, and therefore we can treat the value it produces as an address.
Let Move be a mapping function from the original address of an
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instruction to its moved address. For example, if an instruction i

was moved from an address a to an address a′ then Move(a) = a′;
if i was not moved then Move is the identity. Then ov is output flow
breaking if there exists an assignment of values to x0, . . . , xn such
that

Symos,ov
(f0(x0), . . . , fn(xn)) 6= Move(Symos,ov

(x0, . . . , xn))

Our external sensitivity analysis relies on static slicing and symbolic evalu-
ation; both of these techniques are notoriously imprecise and expensive when
applied to binaries. We handle imprecision by being overly conservative, since
it is always safe to falsely assume an operation is externally sensitive. We
reduce the expense of slicing by sharply limiting the size of the slice, since we
terminate slices at any visible operation. Since control flow instructions are
by definition visible operations, this ensures the slice will contain no control-
dependence edges. By eliminating control-dependence edges, we greatly
reduce the cost of symbolic evaluation, as we do not have to consider the
effects of multiple possible execution paths.

7.5 Efficient Compensation

The final step in our sensitivity-resistant code relocation algorithm is to trans-
form the instrumented program to preserve its original visible behavior. We
do this by applying a compensatory transformation to externally sensitive in-
structions affected by code replacement. This transformation must preserve
the original visible behavior of the transformed code and avoid imposing un-
necessary overhead. We describe three transformation strategies, instruction
transformation, group transformation, and control flow interception. Instruction
transformation replaces each externally sensitive instruction with code that
emulates its original behavior; all other instructions are left unchanged. This
strategy is derived from the ad-hoc transformations used by previous work
[10, 11, 41, 42, 50], and is described in Section 9.

Group transformation preserves the behavior of a group of instructions
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input :A region R of instructions
output :A new region R′ of transformed instructions

1 Let R′ = ∅ ;
2 foreach externally sensitive instruction i ∈ R do
3 if ∃ a group G and group transformation GT of i then
4 R′ = R′ ∪GT (G) ;
5 Mark instructions in G as transformed
6 else
7 Let T be an instruction compensation transformation ;
8 R′ = R′ ∪ T (i)
9 return R′

Figure 7.4: An overview of our transformation algorithm. For each externally
sensitive instruction, we first attempt to identify a group G that includes i
(line 3). If such a group exists, we apply the appropriate group transforma-
tion GT and mark the entire group as transformed (lines 4-5). If not, we
apply an instruction transformation (lines 6-8). Section 9 describes instruction
transformations and Section 9 describes group transformations.

rather than each instruction individually. We describe an overview and proof
of concept of this approach in Section 9. This strategy is a generalization
of the approach used by Dyninst 7.0 [11], which recognizes and transforms
pre-defined patterns of instructions. Our algorithm instead uses our symbolic
representation of the code to determine a correct and efficient transforma-
tion. In addition to the lower overhead offered by transforming a group of
instructions, we can further reduce overhead by applying code optimization
techniques such as constant propagation (e.g., of pc), function inlining, or
partial evaluation.

Control flow interception is used by anytime code replacement and other
patch-based code replacement approaches [11, 36]. This control flow inter-
ception strategy handles CF sensitive instructions by overwriting the original
locations of moved code with branches to their new locations. Thus, during
execution, the instruction will transfer control to the original address of a
moved instruction and the branch will redirect execution to its moved location.
Since this strategy overwrites original code it may affect the behavior of CAD
sensitive instructions. However, it results in significantly lower overhead than
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Sensitivity Original Instruction Transformed Instruction
PC-sensitive call foo push $orig

jmp foo
push $offset(%rip) push $(offset-delta)(%rip)

CAD-sensitive mov (%eax), %ebx cmp %eax, $textEnd
jge L1
mov $offset(%eax), %ebx
jmp L2
L1: mov (%eax), %ebx
L2: . . .

CF-sensitive jmp %eax jmp %eax

Figure 7.5: Examples of instruction transformations for PC, CAD, and CF
sensitive instructions. The PC transformation is derived from current binary
modification toolkits [10, 11, 41]. The PC sensitive call instruction is trans-
formed by splitting it into two operations that piecewise emulate the call. We
transform PC sensitive memory accesses by subtracting the distance delta the
instruction was moved from the encoded offset. The CAD sensitive move
instruction is transformed by redirecting memory accesses to overwritten
code (bounded above by $textEnd) to a copy of the code by adding $offset.
For simplicity, this example assumes no data resides at a lower address than
modified code. The CF sensitive indirect jump is not transformed; we assume
the instruction sequence that generates a value in %eax is emulated. When
executed the jump will transfer back to original code, where an interception
branch will capture execution.

an instruction transformation of the CF sensitive instruction.
Our compensatory transformation algorithm is shown in Figure 7.4. We

iterate over each externally sensitive instruction in the region. We first de-
termine whether it has a known group transformation; if so we apply the
appropriate transformation (lines 3 through 5) and mark all other instructions
in the group as transformed (line 5). Otherwise, we apply the appropriate
instruction transformation (lines 7 through 8). We do not show the use of the
control flow interception strategy to handle CF sensitive instructions since it
may modify code outside the provided region.

These transformations may further modify the program. For example,
these transformations frequently increase the size of the input code and thus
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Original Code Instruction Group
Transformation Transformation

main:
i1: call thunk i1a:push $(orig) i1: call thunk

i1b:jmp thunk
i2: add $(tOff), %ebx i2: add $(tOff), %ebx i2: add $(tOff - delta), %ebx

thunk:
i3: mov (%esp), %ebx i3: mov (%esp), %ebx i3: mov (%esp), %ebx
i4: ret i4: ret i4: ret

Figure 7.6: Example of a thunk group transformation applied to an IA-32
jump table fragment. Transformed code is shown in bold. The original code
calculates a pointer by using thunk to access the current PC and adding an
offset. Instruction transformation will emulate the call i1 as shown in Figure
7.5; orig represents the original return value. While i4 is not transformed under
this approach, we will require an interception branch at the original address of
i4. Group transformation results in only i2 being transformed; delta represents
the distance i1 was moved, and no interception branch is required at i4.

may require that the transformed code be moved. This movement, in turn,
may increase the number of sensitive instructions. We handle this problem by
iterating until the set of moved code converges.

Instruction Transformations

Instruction transformation replaces each externally sensitive instruction i with
a new sequence that emulates its original behavior; all other instructions are
left untransformed. We implement this strategy with a translation table that
maps from an input externally sensitive instruction to a replacement code
sequence. Examples of such transformations for PC, CAD, and CF sensitive
instructions are shown in Figure 7.5. We discuss the transformation of these
and AVU sensitive instructions below.

PC sensitive instructions have the original and changed values of pc differ
by a constant. If the value of pc is known when the code is transformed (e.g.,
at runtime) we simply replace the new value with the original (as shown).
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Otherwise, we subtract the distance the instruction was moved to recover the
original value.

We transform CAD sensitive instructions by making a copy of the modified
regions of code; accesses to these addresses are redirected to the copy while
accesses of other addresses are not modified.

CF sensitive instructions must be transformed to account for movement
of their successors and not necessarily changes in their inputs. The distance
each successor has been moved is frequently different due to the presence of
inserted instrumentation. Therefore there is no linear function that can be used
to convert from original to moved addresses. We transform the instruction to
jump to its original address and add interception branches at those addresses
[11]. An alternative approach is to use a hash table to perform this conversion
[10, 41, 42, 50].

Transforming AVU instructions is more complex. Attempting to access
unallocated memory will cause a fault. We need to emulate this fault instead
of emulating the original output of the instruction, which we do by using
a fault handler interposition approach similar to that of DIOTA [42]. We
redirect the memory access to read from an illegal address (typically 0); this
causes the operating system to report a fault to the process. However, the
reported address will be incorrect. We address this by interposing our own
fault handler. This replacement handler intercepts the fault, emulates the
original fault information (e.g., faulting instruction address and accessed
memory address), and calls the original fault handler.

Group Transformations

Group transformation preserves the overall behavior of a group of instructions
rather than that of each instruction in the group. As we show in Figure 7.6,
instruction transformation may unnecessarily emulate instructions, resulting
in unnecessary overhead. This is due to that strategy’s limited scope; it consid-
ers transforming only externally sensitive instructions. Group transformation
addresses this problem by considering instructions that are not externally sen-
sitive for transformation. In this work, we characterize group transformation
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call thunk

mov (%esp), %ebx

add $tOff, %ebx

ret

pc
(%esp)

pc

%ebx

(%esp)

pc

Figure 7.7: The group of instructions for the example in Figure 7.6. The shaded
nodes are included for clarity but are not included in the group as they may
be called from other locations as well. The externally sensitive call instruction
has three outputs that must be preserved. Defining these instructions as a
group reduces this to a single output.

and provide a motivating example; in future work we intend to implement
and test this concept.

A group transformation algorithm has two requirements: selecting each
group G of instructions to transform and generating the replacement group
G′. Selecting groups rather than individual instructions is key to improving
performance.

We first define a group. Intuitively, a group containing an externally sensi-
tive instruction i consists of all instructions that can be modified to compensate
for the changed behavior of i, but whose modification will not affect the in-
structions outside of the group. Such instructions can be transformed without
causing unintended side-effects. We formalize this intuition in terms of the
DDG. A set of operations O is an op-group of an externally sensitive operation
s if all operations t ∈ O are dominated by s (if s is data sensitive) or post-
dominated by s (if s is control sensitive), and the corresponding instruction
group G consists of all instructions that contain an operation in O. Consider
the example code shown in Figure 7.6; for this code, the group consists of i1
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and i2 as shown in Figure 7.7.
A group transformation algorithm must select a group G for each externally

sensitive instruction i and construct a replacement group G′ that has the same
behavior as G. Selection is done as described above. Our proof of concept
implementation both identifies G and constructs G′ using a set of templates.
Picking a beneficial group G is an open problems; if G is too small then we miss
opportunities for reducing overhead, and if G is too large then constructing G′

is made more difficult. Similarly, constructing G′ from a general group G is an
open problem. We believe it should be done using the DDG and can leverage
compiler optimization techniques, but have not done any work in the area.

7.6 Experimental Results

Our code relocation algorithm properly preserves the semantics of the instru-
mented program while frequently reducing the overhead imposed by code
replacement. We verified these characteristics with the following experiments.
First, we instrumented several tamper-resistant malware programs to show
that we properly compensate for attempts by a program to detect modifica-
tion to the contents or shape of its address space. Second, we instrumented
the SPECint 2006 benchmarks, Apache, and MySQL to show that our code
relocation algorithm results in lower average overhead than either the Dyninst
7.0 or PIN binary modification toolkits. We chose Dyninst 7.0 since several
of our techniques are derived from this toolkit, and PIN as an example of a
conservative code relocation approach.

We implemented our algorithm in the Dyninst 7.0 binary modification
toolkit, creating the SR-Dyninst research prototype. We identify sensitive
instructions using information provided by the InstructionAPI component of
Dyninst 7.0, and built a new symbolic evaluation and slicing component to
assist in our identification of externally sensitive instructions. This component
uses a semantic instruction model provided by the ROSE compiler suite [58].
While these experiments were done in the context of the Dyninst 7.0, the
techniques and software we built can be used to extend other toolkits, such as
PIN, to have the same capabilities as those we added to Dyninst 7.0.
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Packer Tool Market CAD Anti- Success
Share Sensitive Debug

UPX 9.45% yes
PolyEnE_CAD 6.21% yes yes
EXECryptor 4.06% yes yes
Themida 2.95% yes yes
PECompact_CAD 2.59% yes yes
UPack 2.08% yes
nPack 1.74% yes
ASPack 1.29% yes
FSG 1.26% yes
Nspack 0.89% yes
ASProtect 0.43% yes yes
Armadillo 0.37% yes yes
Yoda’s Protector 0.33% yes yes yes
WinUPack 0.17% yes
MEW 0.13% yes

Figure 7.8: SR-Dyninst applied to the binary protection tools that are most
prevalent in malware, with optional CAD features (e.g., self-checksumming,
data masquerading as code) enabled for PolyEnE and PECompact. Packers
successfully instrumented by SR-Dyninst are labeled in bold. Gaps in the
table represent packers with anti-debugging techniques that are unrelated to
sensitivity analysis and that we have yet to defeat.

Tamper-Resistant Binaries

To demonstrate that we can safely instrument CAD and AVU-sensitive pro-
grams, we incorporated the SD-Dyninst research prototype built by Kevin
Roundy [60] into SR-Dyninst. Malware typically uses three categories of
anti-analysis techniques: attempts to hinder static analysis (e.g., control flow
obfuscation and runtime code modification), attempts to resist tampering with
the binary code by adding CAD sensitivities (e.g., self checksumming), and
attempts to detect the presence of an analysis tool (e.g., detecting the presence
of a debugger). SD-Dyninst is focused on defeating packers that resist static
analysis or use anti-debugging techniques and does not correctly instrument
binaries that employ CAD sensitivity; SR-Dyninst overcomes this limitation.
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We generated samples that exhibit the same defensive techniques used by
malware by applying the packer tools that are most popular with malware
authors to a sample program. We used these synthetic test programs rather
than actual malware to allow us to test our work without the complexity of
operating directly on malware. SD-Dyninst’s previous evaluation used the
default settings of the packer tools. To demonstrate that our approach would
successfully handle CAD-sensitive binaries, we enabled all features in the
packer tools that would add CAD sensitivity to the packed binaries. The
results listed in Figure 7.8 show that SR-Dyninst successfully instrumented
four of seven packed binaries that had defeated SD-Dyninst with sensitivity.
We believe our failure to instrument the remaining three packers is due to their
anti-debugging features rather than their CAD sensitivity, and are working to
overcome these features.

Performance Results

We also measured the performance impact of our new relocation technique
on the execution time of instrumented programs. Our scenario includes the
cost of code replacement and relocation without inserting any additional code
that would impose its own overhead. Unlike the results presented in Section
6.3, this is not an end-to-end study; instead, we wished to focus on only the
overhead imposed by code relocation.

Our performance experiments were run on an input set of binaries con-
sisting of the SPECint 2006 benchmark suite, Apache, and MySQL. Each of
these programs was built from source with default settings. We instrumented
both the program binary and any libraries on which it depended. We ran the
SPECint suite using reference inputs and tested Apache and MySQL with their
provided benchmarking tools. These experiments were run on a 2.27 GHz
Intel quad-core Xeon machine with 6GB of memory.

We measured the execution overhead caused by executing moved and
transformed code instead of original code. In our experiments, we forced
relocation of every basic block in the binary. For Dyninst 7.0 and SR-Dyninst
we measured execution time. For PIN, we measured dynamic translation and
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Figure 7.9: Performance of our approach compared to Dyninst 7.0 and PIN.
We show two sets of results for our approach. The first uses only instruction
transformations, while the second includes the thunk group transformation of
Section 9. The y-axis is execution time normalized to the unmodified execution
time.

execution time, since the toolkit does not provide any way of distinguishing
these values. However, from their previously published results [41], the cost
of dynamic translation is small for long-running benchmarks and thus we do
not believe it significantly impacts our results.

The performance results are shown in Figure 7.9. The y-axis is the exe-
cution time normalized to the uninstrumented run time (0%). SR-Dyninst
results in an average overhead of 35%, which is lower than both Dyninst 7.0
(66%) and PIN (90%). The group transformation results in a distinct improve-
ment in the Apache (12% to 0.4%) and MySQL (66% to 51%) benchmarks, but
does not have a significant impact on the SPECint benchmarks. This is not
surprising, since only position independent code (e.g., library code) includes
the thunk functions targeted by the group transformation. The Apache and
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MySQL benchmarks execute a significant amount of library code, but the SPEC
benchmarks do not.

Our poorer performance on two benchmarks (hmmer and h264ref) is due
to the cost of compensating for AVU and CAD sensitivity. Our current imple-
mentation uses a simple pointer analysis that over-approximates many pointer
accesses as AVU and CAD sensitive; this could be greatly reduced with a more
sensitive analysis. This cost is not shared by Dyninst 7.0 or PIN, which do not
use such analysis. Dyninst 7.0 does not compensate for either AVU or CAD
sensitivity, and PIN does not compensate for AVU sensitivity (as PIN does not
modify the original code, there will be no CAD sensitive instructions). This
lack of compensation can be exploited by tamper-resistant programs to detect
modification and is therefore dangerous. Finally, Dyninst 7.0 failed to correctly
run the omnetpp benchmark due to an incorrect handling of exceptions; our
approach transparently handled this problem since the exception code was
determined to be externally sensitive and therefore emulated.

7.7 Summary

We presented a technique for preserving the original behavior of code that was
affected by code replacement or instrumentation. Our technique, sensitivity-
resistant code relocation, identifies both instructions that are sensitive to code
replacement or instrumentation. We then use a slicing-based dataflow analysis
to identify which of these sensitive instructions are externally sensitive and
will cause the overall program behavior to be altered in a way that is visible in
the output of the program. We apply compensatory transformations to such
instructions to preserve their original behavior. We evaluated this technique
in two ways. First, we applied this technique when instrumenting a set of
tamper-resistant binaries created with popular malware packing tools, and
demonstrated that sensitivity-resistant code relocation is capable of hiding
the alterations made by patch-based code replacement from such binaries.
Second, we evaluated the overhead imposed by this approach and showed it
was competitive with other current relocation techniques that rely on ad-hoc
heuristics to identify sensitivity rather than analysis. In the next chapter, we
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summarize this dissertation and discuss avenues of future research.
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8
Conclusion

Our goal for this research has been to further develop binary modification,
the ability to extend or change the behavior of a binary program. In this
work, we have been guided by four principles: abstraction, that a user should
manipulate high-level representations of the binary rather than binary code
directly; timeliness, that a user should be able to manipulate code at any point
from pre-execution to while the modified code executes; safety, that the user
should not be able to accidentally introduce undesired behavior or create
an invalid binary; and efficiency, that the overhead imposed by modification
should be proportional frequency with which modified code is executed. In
this final chapter, we review our technical contributions and suggest possible
directions for future research and areas where we might leverage research in
other areas for further refine and improve our techniques.

8.1 Contributions

This dissertation makes the following four main contributions:

CFG-based binary modification We developed the concept of modifying bi-
naries by transforming their CFGs. By operating on the CFG, rather
than individual instructions, we allow users to modify binaries without
requiring detailed knowledge of the idiosyncrasies of both the binary
being modified and the instruction set the binary was written in. We
defined CFG validity, which ensures that the transformed CFG can be
instantiated in a valid binary. Leveraging this concept of validity, we
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defined a structured binary editing algebra of CFG transformations that
allow detailed modification without creating an invalid binary. Finally,
we presented an analysis for determining if a CFG transformation would
cause invalid indirect control flow. We demonstrated these techniques
were useful by applying them to two tools: a hot-patching tool for ap-
plying security fixes to a running Apache web server, and a instruction-
level replacement tool, written by Michael Lam, for evaluating when
floating-point operations are performed at an unnecessarily high level
of precision.

Function and loop abstractions We further developed the concepts of func-
tions and loops, abstractions that encapsulate binary complexity behind
familiar interfaces. We defined a efficient, single-entry abstraction for
functions that can be applied to highly optimized code across a variety
of instruction sets, and reused the Dyninst 7.0 loop abstraction [15]. We
then extended our algebra to include function and loop transformations.
We demonstrated that these techniques could be used to successfully
insert code at function entries and exits in highly optimized code that
could not be successfully handled by previous techniques.

Code replacement We extended the concept of patch-based code replacement
with two novel techniques, region patching and state interception. Re-
gion patching replaces a set of blocks or functions as a single unit, which
lowers the overhead imposed by patching. State interception allows us
to replace actively executing code by directly modifying process state
in addition to using branches. We demonstrated that our approach al-
lows us to modify actively executing code while imposing similar or
lower overhead to other methods and preserving the proportional cost
expected of patch-based instrumentation.

Code relocation We formalized the effects of code replacement and inserting
code upon the behavior of the program and presented a technique for
preserving the original behavior of code that was not explicitly modified.
This technique allows the execution of a modified program to differ
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from the original as long as these differences are not visibly apparent
in the output of the program. We defined instruction sensitivity to
code replacement, and defined an analysis for identifying the externally
sensitive instructions that will cause the visible behavior of the program
to change. We demonstrated that this code relocation technique results in
lower overhead, and allows us to instrument sensitive malware samples
that attempt to detect modification.

8.2 Future Directions

We see several opportunities to build upon the ideas we have presented here.

Visual binary editing Our CFG transformations suggest a visual editing id-
iom for binaries that would allow users to interactively modify the binary,
a concept first suggested by the LANCET tool [72]. This idiom would
benefit users wishing to perform a manual investigation or modification
of a binary; for example, developing a patch or testing an optimization.
Visual, interactive editing would require several extensions on this work.
First, it seems natural that the user should be able to observe the effects
of CFG modification at the instruction layer. This raises questions as
to what they should perceive: the raw generated binary, including the
effects of code replacement and code relocation, or some abstracted view
that hides these details. Second, an expert user may want to directly
modify the binary in addition to transforming the CFG. While we did
not investigate this area, instead preferring to operate only on the CFG,
modifying instructions directly provides a finer granularity of control
that may be beneficial. Doing so would require developing a two-way
consistency model between instructions and the CFG.

Modifying binaries using other representations We have demonstrated that
transforming the CFG is a useful mechanism for altering a program’s
structure and execution. However, it is not amenable to all forms of
binary modification. For example, adding a field to a data structure,
while possible to perform on the CFG by individually modifying each
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instruction that accesses the structure, is more naturally expressed as a
transformation of the data dependence graph (DDG). Doing so would
also require updating existing process state, such as by the techniques
described in [49].

Selecting code regions to replace Our work has shown that replacing code
at the granularity of a function or set of functions reduces overhead
even when the overhead imposed by relocating more code is taken into
account. We believe this is due to the reduced number of interception
branches executed by the program, but we have not fully character-
ized that relationship. For example, it may be possible to obtain lower
overhead by replacing a subset of blocks within a function, such as a
loop, or replacing additional, unmodified functions. We believe this
determination will take three factors into account. First, the structural
characteristics of the program, such as the call graph and loops. Second,
the cost of code relocation, as discussed in Chapter 7. Third, the proces-
sor characteristics, including the cost of executing branches or the size
of the cache.

Group compensatory transformations We performed an initial study of trans-
forming a group of instructions during code relocation to further reduce
overhead. Our approach was based on the pattern-matching approach
used by Dyninst 7.0 [11], which itself was based on manual user exami-
nation of binaries. We believe that groups can be derived automatically
based on data dependencies instead of identified by hand, and that
compiler optimization techniques can be applied to groups to improve
efficiency of the generated code.

Other forms of sensitivity We address four classes of instruction sensitiv-
ity in Chapter 7: PC-sensitive, CF-sensitive, CAD-sensitive, and AVU-
sensitive. Inserted code may alter the behavior of the program in other
ways, such as by altering library state, operating system state, the layout
of the heap, or the time required to execute; programs that are sensitive
to such alterations may have their visible behavior changed. We believe



133

our techniques could be extended to handle these forms of sensitivity. To
do so, we would need to specify which instructions would be sensitive
to these changes and how their inputs would be changed.

In addition to these new areas, there are several aspects of our work that
could be improved by leveraging work in other areas. The foremost of these
are our dataflow analyses, both for indirect control flow validity and external
sensitivity detection, which would benefit greatly from improved pointer
analysis. There are several techniques for thorough pointer analysis of binaries,
such as Value Set Analysis [6]; however, these analyses are too computationally
complex to be be in the critical path of binary modification. Such analyses
could be applied off-line and the results stored, or calculated on a secondary
thread of computation that is not on the critical path. Alternatively, we could
use a light-weight approximation.

Finally, we believe there are several applications of binary modification
that have not been explored simply due to the lack of flexible, easy to use
binary modification toolkits. In our personal experience, each improvement
we’ve made has been welcomed by the tools community, who immediately
found new applications. We have had discussions with various colleagues who
want to apply these techniques in such areas as updating the algorithms used
by legacy simulation binaries or testing the resistance of a binary to random
memory errors. We hope that this work will inspire both new directions in
the area of binary modification and new applications of the technique.





135

A
Branch Overhead

Patch-based code replacement uses interception branches to transfer execution
between original and replacement code. These interception branches are
frequently performed by unconditional direct branches, such as the IA-32/x86-
64 jmp or PowerPC b instructions. In rarer cases, a sequence that constructs
the target address in a register and performs an unconditional indirect branch
to that target address is required. We had expected that the first form, direct
branches, would have minimal impact on the program’s performance due
to the optimizing capabilities of the processor. Specifically, we expected the
branch prediction unit to elide any fetch penalty involved in frequent branching.
However, in our experience this is not the case: frequently branching between
two separate code regions enlarges the working set of the program, harms
code locality, and introduces overhead due to cache stalls. In this appendix,
we discuss our findings, provide detailed performance results, and discuss
the impact of branch overhead on binary modification toolkit design.

We first characterize the branching characteristics of Dyninst 7.0 and any-
time code replacement. Dyninst 7.0 moves code at two granularities: basic
block and function. First, it attempts to relocate each instrumented basic block
individually. As a result, Dyninst 7.0 will execute two branches per relocated
block: one from the original code to the relocated code at the start of the block,
and one from the relocated code to the original code at the end. We refer to
this behavior as ping-pong. If Dyninst 7.0 encounters a block that is too small
to be patched with an interception branch, it will instead relocate the entire
function, padding each block in the function with enough space to contain
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Figure A.1: Example of code patched by Dyninst 7.0, with functions repre-
sented by rectangles, blocks by dashed lines within functions, and branches
by solid arrows. Dyninst 7.0 may patch either at the basic block level or the
function level, as shown. The first function consists of blocks b1 to b4, with
blocks b1 and b3 instrumented. These blocks are each large enough to contain
an interception branch and so are patched directly to blocks b′

1 and b′
3. The

second function consists of blocks b5 to b8, with blocks b5 and b7 instrumented.
These blocks are not large enough to contain interception branches, and so the
entire function is relocated first and the instrumented blocks (b′

5 and b′
7) are

padded out to contain additional interception branches to b′′
5 and b′′

7 .

an interception branch. In these cases, Dyninst 7.0 will execute two sets of
branches; one at the entry of the function, and then two per block inside the
function. We show an example of both block- and function-level relocation in
Figure A.1.

Anytime code replacement replaces all instrumented blocks or functions
as a single group. Thus, interception branches will only be executed for the
following four cases: first, when execution enters the relocated code region
from outside the region, such as when a relocated function is called from an
original function; second, when execution returns to a block corresponding
with a return address on the stack; third, when a patched function is called
through a function pointer; fourth, when a patched block is reached with an
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indirect branch. If the entire binary is rewritten, the first behavior will only
occur once. The second does not occur during binary rewriting, or if functions
are replaced before they are first executed. The third and fourth behaviors are
due to our method of handling indirect control flow; we calculate the original
target, branch to that location, and intercept control flow with an interception
branch.

Not surprisingly, executing interception branches imposes overhead. How-
ever, we would expect this overhead to be small, since a processor should be
able to predict the target of the branch and begin fetching instructions from
this target with a minimal delay. In practice, this is not the case; reducing
the number of branches executed has a significant, not minimal, impact on
reducing the overhead imposed by code replacement. We investigated this as
follows.

We began by identifying two sample programs to analyze. We selected two
programs in the SPEC benchmark suite, hmmer and Xalan. The hmmer program
consists of a small kernel and makes infrequent use of indirect control flow.
This program exhibits low overhead with anytime code replacement, because
execution is contained in the replacement code region, and higher overhead
with Dyninst 7.0, because execution returns to original code at the end of
each block before being intercepted. The Xalan program is larger and makes
extremely frequent use of indirect control flow, and thus execution returns
to original code and must be intercepted for both anytime code replacement
and Dyninst 7.0. By using these two programs, we could distinguish between
performance metrics that correlated with poor overall performance and those
that did not.

We then measured the execution behavior of each test case. Unlike our
previous performance results, these results were gathered from an Intel Core
i7 machine running at 2.93GHz; we used this more modern machine because
it supported a wider range of hardware performance counters. We used Intel’s
VTune performance analysis software [30], which uses hardware performance
counters to record detailed processor-level behavior in addition to measuring
total execution time. Since we believed the overhead was due to additional
branches, we focused on the processor’s front-end (the ITLB, L1 cache, and
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decode stages) and execution pipeline (issue, execution, and instruction retire-
ment stages) rather than on the memory subsystem. We show the results of
running these analyses on our six test cases in Tables A.1 (for hmmer) and A.2
(for Xalan).

For hmmer, anytime code replacement imposed low total overhead (2%).
This is as expected, since hmmer does not make use of indirect control flow
and thus execution would remain almost entirely in the relocated code region.
Interestingly, anytime code replacement actually resulted in a decrease in ITLB
misses and L1 stalls. This is a side-effect of our current relocation approach,
which removes padding bytes and other unreachable code. As a result, the
relocated code is often smaller than the original code. Dyninst 7.0’s ping-pong
behavior imposed higher total overhead (16%), corresponding with an increase
in ITLB misses and L1 stalls; this in turn resulted in an increase in decode,
issue, execute, and retire stalls.

For Xalan, both approaches imposed higher overhead (146% and 390%,
respectively) due to the program’s greater use of indirect control flow. These
increases again correspond with an increase in ITLB misses and L1 stalls; these
misses and stalls also induce decode, issue, execute, and retire stalls in the
processor pipeline.

The increase in execution time correlates well with the increased number of
ITLB misses and L1 stalls. We hypothesized that the ITLB was under pressure
from the additional relocated code. To investigate this behavior, we measured
the working set size (in code pages) of each test case. We did so using PIN [41]
by recording each unique page that contained executed code; we used PIN
since it would record execution in both original code and our relocated code.
We show the working set sizes on the final lines of Tables A.1 (for hmmer) and
A.2 (for Xalan).

The data support a hypothesis that branches impose overhead by increasing
the working set of the program, which in turn causes poor cache performance.
The increase in execution time for each test case is correlated to a higher ITLB
miss rate and L1 cache miss rate. These, in turn, create stalls in the processor
pipeline at the decode, issue, execute, and retire stages. Since anytime code
replacement eliminates ping-pong behavior for direct control flow, it results
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Unmodified Anytime Dyninst 7.0
Execution Time (seconds) 534 544 102% 621 116%
ITLB Misses (millions) 12 9 73% 20 167%
L1 Stalls (millions) 856 832 97% 1,472 172%
Decode Stalls (millions) 346,944 364,794 105% 693,970 200%
Issue Stalls (millions) 344,094 369,252 107% 664,476 193%
Execute Stalls (millions) 153,702 156,996 102% 419,208 273%
Retire Stalls (millions) 422,994 447,666 106% 873,670 207%
Working Set (pages) 221 234 106% 277 125%

Table A.1: Performance results for hmmer for an unmodified binary, a binary
rewritten with anytime code replacement, and a binary rewritten with Dyninst
7.0. For the unmodified binary we show total times or performance counter
values. For the rewritten binaries we show both total times and percentage
increases (or decreases) from the unmodified base case. Values are rounded
by VTune as a result of its sampling-based approach.

Unmodified Anytime Dyninst 7.0
Execution Time (seconds) 69.8 102 146% 273 390%
ITLB Misses (millions) 57 298 524% 1,766 3,108%
L1 Stalls (millions) 9,440 35,728 378% 144,448 1,530%
Decode Stalls (millions) 71,196 125,940 177% 464,946 653%
Issue Stalls (millions) 68,130 121,698 179% 460,770 676%
Execute Stalls (millions) 36,696 67,908 185% 360,174 982%
Retire Stalls (millions) 74,766 123,714 165% 439,320 588%
Working Set (pages) 658 984 150% 1,712 260%

Table A.2: Performance results for Xalan for an unmodified binary, a binary
rewritten with anytime code replacement, and a binary rewritten with Dyninst
7.0. For the unmodified binary we show total times or performance counter
values. For the rewritten binaries we show both total times and percentage
increases (or decreases) from the unmodified base case. Values are rounded
by VTune as a result of its sampling-based approach.
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in lower overhead than Dyninst 7.0. Our next avenue of investigation is to
also try to eliminate ping-pong behavior for indirect control flow. Several
approaches to this problem have been described in the literature; for example,
we could update the values used to calculate the indirect control flow target
[36] or insert address translation code at the indirect call or branch [10, 41, 52].
This remains an open area of implementation.

Clearly, our initial intuition that branches were inexpensive was incorrect.
This impacts the design of a binary modification toolkit, particularly patch-
based toolkits. Dyninst 7.0 made the assumption that branches were free, and
instead focused on two other capabilities: first, the ability to quickly insert and
remove instrumentation by only updating a single basic block, and second, a
simple, one-pass code generation design. While Dyninst 7.0 supports these
capabilities better than anytime code replacement, it pays the cost in execution
overhead of the instrumented binary, and this cost tends to dominate. In
contrast, anytime code replacement must regenerate entire regions of code
when instrumentation is inserted or removed, and must use multiple iterations
to determine control flow targets. Both of these characteristics complicate
the design of anytime code replacement and increase the time necessary to
generate the replacement code. For example, rewriting hmmer took 4.55 seconds
with Dyninst 7.0 and 6.55 seconds with anytime code replacement; however,
the execution time decreased from 621 seconds to 544 seconds. We believe
the performance benefits of reducing branches outweighs the increase in
complexity in a binary modification toolkit.
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