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ABSTRACT 

Interactive debugging requires that the programmer be 
able to halt a program at interesting points in its execution. 
This paper presents a definition of distributed breakpoints with 
an algorithm for implementing the detection of these break- 
points, and presents an algorithm for halting a distributed pro- 
gram in a consistent state. The definition of distributed break- 
points is based on those events that can be detected in a distri- 
buted system. Events that can be partially ordered are detect- 
able and form the basis for the breakpoint predicates, and 
from the breakpoint definition comes the description of an 
algorithm that can be used in a distributed debugger to detect 
these breakpoints. The Halting Algorithm extends Chandy 
and Lamport’s algorithm for recording global state and solves 
the problem of processes that are not fully connected or tre- 
quently communicating. 

1. Introduction 

Interactive debugging requires that the programmer be 
able to halt a program at interesting points in its execution. 
Halting consists of the mechanisms to stop the program’s exe- 
cution and the predicates, called breakpoints, that are used to 
nigger the halting. This paper presents a definition of distri- 
buted breakpoints with an algorithm for implementing these 
breakpoints, and presents an algorithm for halting a distri- 
buted program in a consistent state. 

Breakpoints in a sequential program have an implied 
reference to time. When we say “stop when procedure. X is 
entered or when procedure Y is entered”, we mean to stop the 
program when any of these conditions becomes true. When 
we say “stop when procedure X is entered and iG]=7”, we 
mean to stop the program when, at the same instant, both of 
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these conditions are true. 

We have no single, global notion of time in a distributed 
system [l], so we may not be able to determine whether one 
condition really occurred before another. This means that we 
will have to tolerate breakpoints that occur independently on 
different machines. Likewise, we cannot determine whether 
events on different machines occurred simultaneously. This 
means that we must replace the concept of simultaneous 
events with one that is suitable for a distributed system. In 
Section 2, we present a definition of predicates for breakpoints 
in a distributed program. This definition is based on detect- 
able orderings of events. We describe an algorithm from 
which one can implement a satisfaction detector for these 
predicates. 

Halting a single-process, sequential program is well- 
understood. There is a single thread of execution that can be 
stopped without regard for other activities in the system. 
When a program consists of cooperating processes executing 
on different machines, halting decisions are affected by 
unpredictable communication delays between machines. We 
cannot instantly transmit a command to halt all processes, nor 
can we guarantee that the halt command will simultaneously 
reach all processes. In Section 3 of this paper we present an 
algorithm for consistently halting a distributed program given 
the inherent communication delays. This algorithm is derived 
from Chandy and Lamport’s algorithm for recording global 
state [2], and extends this algorithm to work for processes that 
communicate infrequently or are not fully connected. 

Section 4 discusses the application of these ideas to 
current research in distributed debugging. 

2. Distributed Breakpoints 

This section describes a definition of predicates for 
breakpoints in a distributed program. This definition is based 
on detectable ordering of events. 
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2.1. Types of Breakpoints in Distributed Debugger 

In a sequential programming, the decision to halt the pro- 
gram is usually done by specifying predicates about the 
program’s behavior and state. The satisfaction of these predi- 
cates corresponds to interesting points in the execution of the 
program, which we call breakpoints. The predicates are 
expressed in terms of events that correspond to a particular 
behavior or change in state of the program. 

A predicate that is based entirely on the execution 
behavior or state of a single process is called a Simple Predi- 
cate. We can combine the Simple Predicates using the dis- 
junctive operator to make a Disjunctive Predicate. Likewise, 
we can combine the Simple Predicates using the conjunctive 
operator to make a Conjunctive Predicate. 

Predicates can also be combined to describe a sequence 
of events. For example, a user may want to halt a program 
and examine its state when a specified sequence of events is 
observed during the execution of the program. We call such 
predicates Linked Predicates. Linked Predicates have been 
used with hardware-based debugging tools such as logic state 
analyzers. For example, the programmer specifies a non- 
contiguous sequence of values (such as program addresses) 
that must occur and the debugging tool detects when this 
sequence has occurred. 

There is usually more than one thread of control in a dis- 
tributed program and the breakpoint predicates can involve 
more than one process. We call such predicates distributed 
predicates. We now describe distributed predicates and how 
to detect the satisfaction of these predicates. When the distri- 
buted predicate is satisfied, the Halting Algorithm (described 
in Section 3) is used to halt the computation. 

2.2. Simple Predicates (SP) 
Simple Predicates consist of the typical predicates used 

in sequential program debuggers, such as entering a particular 
procedure. Simple Predicates also include interprocess events 
such as a message sent or received, a channel created or des- 
troyed, or a process created or terminated. The basic restric- 
tion is that a Simple Predicate is based only on the state local 
to a single process. 

2.3. Disjunctive Predicates (DP) 

the disjunctive operator “U”: 

The Disjunctive Predicate is satisfied when one or more of the 
Simple Predicates is satisfied. Halting can be initiated at the 
instant when any of the SP’s of the DP is satisfied. Multiple 
SP’s of the DP can be satisfied at the same virtual time. The 

Disjunctive Predicates are specified by expressions using 

DP ::= SP [ U  SP]*. 

Halting Algorithm described in Section 3 will work correctly 
for simultaneous initiations from multiple processes, so any 
process where an SP is satisfied can initiate the Halting Algo- 
rithm. 

2.4. Linked Predicates (LP) 

Linked Predicates specify sequences of events that can 
be ordered by the happened-before relation and are specified 
by expressions using the “+” operator: 

The semantics of LP can be interpreted as follows: 
Let Z be the set of DPi ’s such that 

Z =  ( D P i , i  = 1.n). 
Then, the Linked Predicate 

LP ::= DP [ + DP]*. 

LP = DPi 4 DPj -+ DPk . . . 
1 S i j , k  I n  

means that the detectable sequence of events 
can be described by the following regular ex- 
pression 

LP = DPi [Z - DPj]* DPj [Z - DPJ* 
DPk . .  . 

The implementation of the Linked Predicates is described in 
Section 2.6. 

2.5. Conjunctive Predicates (CP) 

using the conjunctive operator “n”: 
CP ::= SP [ n SP]*. 

Traditionally, a Conjunctive Predicate is said to be satisfied at 
the instant when all the Simple Predicates of the Conjunctive 
Predicate are satisfied. There is no single time reference 
across machine boundaries in a distributed system, so we can- 
not precisely detect the simultaneous events needed for the 
Conjunctive Predicate. This form of predicate is well defined 
within a single machine, but can have several interpretations 
in a distributed system. 

The remainder of this section describes our interpretation 
of Conjunctive Predicates in a distributed system. The goal of 
this interpretation is to more precisely define Conjunctive 
Predicates. As a result of this definition, we will get a clearer 
idea of how to incorporate these predicates in a distributed 
debugger. 

Given two processes P ,  and P ,  residing on different 
machines, each process has its own virtual time axis, called T ,  
and Tz respectively. Predicate SP is based on the state of P 
and SP, on the state of P 2  We define a pair of virtual time 
points ( t l ,  1 2 )  to describe a time when SP,  is satisfied such 
that t 1  E Tl  (written as: S P l ( t l )  is true), and the time when 
SP, is satisfied such that t 2  E T ,  (written as: SP,(t,) is true). 

The Conjunctive Predicates are specified by expressions 
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events at the time pair (tll, r21). We can use SP + ( S P d 2  to 
detect the events at the time pair (til, t22) .  Halting is initiated 
at the moment when the last predicate in the ordering is 
satisfied. 

Detecting events that occur at virtual times belonging to 
the unordered-SCP is more difficult. For example, if we 
detect that SP on P is satisfied, we must also detect SP2 on 
process P2 Since there is no common time reference in a dis- 
tributed system, it is necessary to have some process gather 
the information from the other process(es) before halting is to 
be initiated. We cannot decide until the last notification 
arrives at the information gathering process. The inherent 
time delay in such information gathering may make it impos- 
sible for the processes to halt soon enough to preserve the 
meaningful states of the processes. 

P l  p2 

Figure 2.1. Examples from the Set SCP 

We define a set of these virtual time pairs, called SCP, to be: 

At any point in the set SCP, ihe conjunctive predicate 

is satisfied. 

SCP = I O l ,  t 2 )  I t l  E T1, t 2  E T 2 ,  SPl(tl) nSP2( tz ) ) .  

S C P = S P , n S P ,  

Since T l  and T 2  are virtual time axes, it is not always 
possible to order a given virtual time t on P , and a given 
virtual time f on P according to Lamport's happened-before 
relationship. We can divide the SCP into two subsets, named 
ordered-SCP where there is an ordering between t and 2, 

and unordered-SCP where there is no ordering. Since the 
Linked Predicates introduced in the previous section is a 
mechanism to detect events with ordering, the two subsets can 
be expressed as follows: 

ordered-SCP = ( ( t l ,  t,) I (t , ,  t,) E SCP, 

such that 1 5 i, j): 
unordered-SCP = ( ( t l ,  t,) I (t l ,  t 2 )  E SCP, 

(Il,  t2)  d ordered-SCP}. 

((SP,)' + (SP2Y) U ((SPdi -+ (SP1)i) 

Figure 2.1 shows examples from each of these sets. We see 
an ordering in time pair (til, t Z )  and no ordering possible in 

(t12, t 22 ) .  

We can use the algorithm for detecting satisfaction of 
Linked Predicates (see Section 2.6) for detecting events that 
occur at virtual times belonging to the set ordered-SCP. For 
example, if SPl(tll) is true, and SP2(r21) and SP2(tZ2)  are 
true, we can use the Linked predicate SP , -+ SP, to detect the 

t We use (SP )' as a shorthand for SP + SP ' . ' -+ SP . For example, ( S P ) 3  
stands for SP -+ SP + SP . 

2.6. Implementation of Linked Predicate Detection 

Since the definition of the Linked Predicate is general 
enough to comprise the Simple Predicate and the Disjunctive 
Predicate, only one algorithm is needed to detect these predi- 
cates. In describing the implementation of Linked Predicates, 
we assume there exists a debugger process named d that has a 
connection with each user process. More detailed description 
of our model of the interactive distributed debugger system is 
given in Section 3, where our Halting Algorithm is described. 
In addition to the genuine messages originated by the user 
processes, we need a special message type named predicate 
marker that carries the Linked Predicate. We append to every 
message originated by the program some kind of tag so that 
each process can distinguish the genuine messages from predi- 
cate markers which are introduced by the debugging system. 

To issue the Linked Predicate DP + D P 2  + DP,, the 
debugger process sends a predicate marker containing the 
Linked Predicate to each process involved in DP,. Upon 
receiving the predicate marker, each process sets up the condi- 
tion to detect when DP , is satisfied. When DP , is satisfied at 
process p, process p creates a new predicate, newLP, from the 
remainder (DPz + DP,) of the original Linked Predicate. 
Then process p sends this new predicate on each channel c 
incident to and directed away from process p. There are two 
possible cases here. In the first case, process q that has 
received this new predicate is involved in DP2. In the second 
case, process q is not involved in DP,. 

In the first case, process q sets up the condition to detect 
when D P 2  is satisfied. In the second case, process q just sends 
the received predicate to each out-going channel. For each 
case, process q remembers the received predicate marker so 
that it can ignore the same predicate markers that arrive later 
from different in-coming channels. This process is repeated 



involved DP’s. 

Predicate-Marker-Sending Rule for a process p .  
Send a predicate marker containing the Linked Predicate 
on each channel c incident to and directed away from 
process p; 

if the same predicate marker has already been 
received then 

else if q is not involved in the first Disjunctive Predicate 
of the Linked Predicate then 

else 

Predicate-Marker-Receiving Rule for  a process q. 

Ignore it; 

Do the Predicate-Marker-Sending Rule; 

Separates the first Disjunctive Predicate from the 
Linked Predicate carried by the predicate marker; 
Make a newLP from the received Linked Predicate 
by excluding the first Disjunctive Predicate; 

When the extracted Disjunctive Predicate is met: 

Initiate the halting Algorithm; 

Send a new predicate marker containing the newLP 
as the new Linked Predicate according to the 
Predicate-Marker-Sending Rule. 

if the newLP is null then 

else 

Figure 2.2 Linked Predicate Detection Algorithm 

until last Disjunctive Predicate (in this case, D P 3 )  in the 
Linked Predicate is satisfied, at which time a process knows 
that it should initiate the Halting Algorithm. Figure 2.2 
describes the Linked Predicate Detection Algorithm. 

We can reduce the size of a predicate marker by making 
a small change to the predicate marker while leaving the 
structure of the Linked Predicate unchanged. To issue the 
Linked Predicate D P l  + DP2 -+ DP,, the debugger process 
sends the content of each DP directly to the processes 
involved in each DP. Then the debugger process sends the 
Linked Predicate devoid of the contents of the DP’s to the 
processes involved in D P , .  Upon receiving the predicate 
marker, each process sets up the condition to detect when DP , 
is satisfied by using the content of DP directly received from 
the debugger process. The size of newLP, to be created from 
the remainder (DP2 -+ DP,)  and to be sent on each channel c 
incident to and directed away from process p. will be smaller 
than that of the original newLP that contains the contents of 

3. Consistent Halting 

This section describes how to halt all processes belong- 
ing to a distributed program so that no critical information is 
lost when the processes halt. This problem is easy to solve for 
a single machine because there is only one active process at a 
given moment. When processes of the same program reside 
on different machines, they cannot be stopped simultaneously. 
Therefore, some information may be lost or recorded 
incorrectly. 

Our halting algorithm is derived from Chandy and 
Lamport’s algorithm for recording global states [2]. We first 
summarize Chandy and Lamport’s algorithm and then present 
an algorithm to halt the distributed computation in such a way 
that, in spite of the time delay in halting processes, the final 
halted states of the processes of the computation result in glo- 
bally consistent states. Although the physical instant of halt- 
ing each process by our algorithm is different, we show that 
all the processes halt at the same virtual time instant [I]. For 
any two halted processes of a computation, the halted state of 
a process is not affected by the halted state of the other pro- 
cess and, therefore, there can be no happened-before [l] rela- 
tionship between the two halted states. Each process’s view 
of event ordering is preserved by our algorithm. 

We show some problems with this basic halting algo- 
rithm and then present an extended algorithm that is suitable 
for a debugger. 

3.1. Chandy and Lamport’s Algorithm 

A distributed program consists of a finite number of 
processes and a finite number of channels between the 
processes. Figure 3.1 shows an example where each process 
is represented by a circle and channels are represented by 
directed edges. Processes in a distributed program communi- 
cate by sending and receiving messages. Channels are 

process process 

c1 

channel 

c2 

Figure 3.1. A Distributed System 
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Marker-Sending Rule for a Process p. 
For each channel c ,  incident on, and directed away from 
P: 

p sends one marker along c after p records its state 
and before p sends further messages along c. 

Marker-Receiving Rule for a Process 4. 
On receiving a marker along a channel c: 

if 4 has not recorded its state then 
4 records its state; 
q records the state c as the empty sequence 

4 records the state of c as the sequence of mes- 
sages received along c after 4’s state was record- 
ed and before 4 received the marker along c 

else 

Figure 3.2 C&L Algorithm 

assumed to have infinite buffers, to be error-free and to deliver 
messages in the order sent. Following are some definitions 
from [2]. 

Definitions: 
An event e is a 5-tuple 9, s, s’, M ,  c> wherep 
is a process, s and s ’  are states of the process 
before and after the event, M and c are the 
message and the channel through which the 
message is sent or received by p at that event. 
M and c can have the special value null if no 
message is involved in the event. 
A global state S, consists of the states of 
processes of the computation and the states of 
channels. 

Figure 3.2 shows the Chandy and Lamport’s algorithm, 
which we will call the C&L Algorithm, to record the global 
state. In that algorithm, each process records its own state, 
and the two processes upon which a channel is incident 
cooperate in recording the channel state. The C&L Algorithm 
can be initiated independently by more than one process at the 
same time. 

3.2. Halting Algorithm 

We now present an algorithm to halt the processes to 
yield a globally consistent halted state s h  that is equivalent to 
the recorded state S, . These states are equivalent in the sense 

Marker-Sending Rule for a Process p. 
Increment last-halt-id; 
Halt Routine (p)  

On receiving a halt marker along a channel c: 
Compare the halt-id with its last-halt-id; 
if halt-id is greater than last-halt-id then 

Marker-Receiving Rule For a Process q. 

Update last-halt-id; 
Halt Routine (4); 

Ignore; 
else 

Halt Routine (x: process): 
For each channel c, incident on and directed away from 
process x, send a halt marker with a halt-id equal to the 
last-halt-id along c; 
Halt: 

Figure 3.3 Halting Algorithm 

that the state of each process in the halted global state s,, is 
the same as the state of each process in the recorded global 
state S, and the undelivered messages in each channel in S,, 
are the same as the recorded messages in the state of the chan- 
nel in S, . We begin the discussion with the same model as in 
PI .  

3.2.1. Basic Algorithm 

Our model is the same as in[2] except that we use a halt 
marker instead of marker. This halt marker carries with it a 
sequence number referred to as halt-id. This halt-id enables 
each process to distinguish an old halt marker (to ignore) from 
a new halt marker. Each process also keeps track of the latest 
halt-id received as last-halt-id whose value is initially set to 
zero. Like the C&L Algorithm, halting can be initiated spon- 
taneously by more than one process. The decision as to when 
to halt can be made independently by each process. Figure 
3.3 describes our Halting Algorithm. 

A process halts either by receiving halt marker from any 
one of its adjacent neighboring processes or by spontaneously 
deciding to halt. If a process halts by receiving a halt marker, 
it does so on receiving the first halt marker with the new 
halt-id (old halt markers are left over from previous haltings). 
When all processes are finally halted, the state of each process 
is preserved. Each outgoing channel contains undelivered 
messages with a halt marker as the last one, or is empty if the 
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halt marker was delivered to the receiving process. Given the 
assumptions of reliable channels and each process observing 
the same algorithm, it can be shown that when all processes 
halt, the value of each process’s last-halt-id is the same. This 
is true because the initial value of each last-halt-id is zero and 
gets incremented exactly once during the Halting Algorithm 
(since a process can halt only once). The global halted state 
Shconsists of the halted states of the processes and 
undelivered messages in channels. We claim that S, is the 
same as S, in the sense that 

(1) the state of each process in s), is the same as the recorded 
state of the corresponding process in S, ; and 

(2) the undelivered messages in each channel in Sh are the 
same as the recorded state of the corresponding channel 
in S, . 

We begin the proof of our claim with two lemmas. 
Lemma2.1. 

The halted state of each process in Sh is the same as 
the recorded state of the process in S, . 

The Halting Algorithm is structurally identical to 
the C&L Algorithm. In the Halting Algorithm, each 
process halts at the instant it would record its state 
in the C&L Algorithm. So the halted state of each 
process p in Sh is the same as the recorded state of 
the process in S, . 0 

The undelivered messages in each channel in Sh are 
the same as the recorded messages of the state of the 
corresponding channel in S, . 

In the Halting Algorithm, a process p halts as soon 
as it receives a halt marker on any one of its incom- 
ing channels. When a halt marker is received on a 
channel, we know that the channel is now empty 
since the process that was sending on the channel 
halted as soon as it sent the halt marker on the chan- 
nel. All of process p’s  other incoming channels will 
contain pending messages. Since each process 
sends a halt marker before it halts, the last message 
in each of these pending channels i s  the halt marker. 
Therefore, the state of an incoming channel c of a 
process p in s), either consists of (zero or more) 
pending messages followed by a halt marker or is 
empty. 

Proof: 

Lemma 2.2. 

Proof: 

receives the first marker from any of the incoming 
channels. The state of an incoming channel c of a 
process p in S, consists of the sequence of recorded 
messages received on the channel until a marker is 
received on the channel. Since each process in C&L 
Algorithm sends a marker at the instant it would 
send a halt marker in the Halting Algorithm, the 
sequence of recorded messages in S, received on 
each incoming channel c until a marker is received 
is the same as the stored messages in the channel c 
in S h .  0 

s), is the same as S, . 

The proof follows from Lemma 2.1 and Lemma 2.2. 
0 

Theorem 2 .  

Proof: 

3.2.2. Problems with the Basic Algorithm 

There are two problems with our Halting Algorithm that 
also occur in the C&L Algorithm. The &st problem is how to 
halt a process that has only infrequent interactions with the 
other processes of the computation. The process would even- 
tually halt, potentially long after all other processes have 
halted. Even though nothing is conceptually wrong with this 
kind of process, it is awkward in practice. 

The second problem is one that can make both the Halt- 
ing Algorithm and the C&L Algorithm fail. This problem 
occurs when the network connection is acyclic, as in 
producer-consumer or pipeline relationship. Figure 3.4 shows 
an example of this case. 

If halting is initiated by the consumer process in this 
example, there is no way to send the halt marker to the pro- 
ducer process to halt the entire computation. The C&L Algo- 
rithm avoids this problem by assuming that the processes are 
strongly connected. 

producer consumer 

Figure 3.4. Producer - Consumer Connection 

In the C&L Algorithm, each process proceeds with 
its computation after it records its state when it 
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3.2.3. Extended Model 

We now present our model of the interactive distributed 
debugger system that works with our Halting Algorithm and 
solves the problems mentioned before. In our extended 
model, there is an additional process d as the debugger process 
of the system, and there are two additional control channels 
connecting the debugger process with each user process. The 
introduction of a debugger process solves not only the prob- 
lems mentioned above but is also a natural structure for an 
interactive debugging system [3]. 

Figure 3.5 shows the model with user processes p ,  q and 
debugger process d.  Since each process has two control chan- 
nels, one to and one from the debugger process, the network is 
strongly connected, i.e., there always is a message path from a 
process to any other process. In addition to guaranteeing 
strong connectivity of the network, the debugger process per- 
forms the typical functions of a debugger. The algorithm to 
halt the computation need not be changed except that the 
debugger process d never really halts. We insure that user 
processes are always willing to accept a message from the 
debugger process by making the arrival of a message from the 
debugger process asynchronously intermpt the user process. 

3.2.4. Order of Halting 

A process may have more than one incoming channel. 
This means that a halt marker could be received from any one 
of the processes attached to these channels, depending on 
when and from where the halting is initiated. The order in 
which the processes halt can provide useful information to the 
programmer, but this information is not available in our Halt- 
ing Algorithm. 

debugger process 

Figure 3.5. A Distributed System with a Debugger Process 

The halting order information can be obtained by making 
a small change to the halt markers while leaving the structure 
of the Halting Algorithm unchanged. Each process will 
append its name to the halt marker before sending the marker 
to the next process(es). The halt marker that a process 
receives then describes which processes have already been 
halted. 

4. Application to Current Research 

Distributed debugging is an area of active research. For 
our purposes, we can separate this research into two 
approaches. The first approach avoids the problem of stop- 
ping a program by providing tools only for monitoring a 
program’s execution [3-61. For example, Bates and 
Wileden[4] define an Event Description Language (EDL) that 
allows a programmer to group low-level events into high-level 
abstract events. EDL requires the ability to observe sequences 
of events and recognize pattem in these sequences. Our algo- 
rithm for recognizing distributed predicates (Section 2.6) 
could be used to support an EDL abstract event recognizer. 

A second approach to distributed debugging is one that 
more closely approximates traditional, single-process 
debuggers [7-91. For example, IDD [8] provides a stepping 
mode of execution for a collection of processes because IDD 
does not guarantee that a program can be halted in a timely 
and consistent manner. The suggested IDD strategy is for a 
programmer to individually halt processes early enough so 
that the entire computation is halted before the interesting 
points are reached. The programmer can then execute the pro- 
gram in single instruction steps to find the error. The Halting 
Algorithm using distributed breakpoints would simplify the 
programmer’s debugging task. 

A variation on the second approach re-routes all normal 
communications through a centralized debugger process 
[ 10,111. While this simplifies the detection of distributed 
breakpoints by providing a single point of event ordering, it 
also has several disadvantages. First, there can be substantial 
communication overhead in re-routing the messages through a 
central hub. Second, the change in message flow could sub- 
stantially change the execution of the program. Last, the 
facility to re-route the communications can be complex to 
build. 

The Linked Predicates are similar to Path Expressions 
[ 121. Our distributed predicate detection algorithm provides a 
vehicle to implement Path Expressions in a distributed system. 

5. Conclusion 

Interactive debugging is a familiar scenario to any pro- 
grammer. The definition of distributed breakpoints presented 
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in Section 2 and the Halting Algorithm in Section 3 provide 
the programmer with the necessary tools to apply these tech- 
niques to a distributed program. The fundamental idea is that 
the program’s view of event ordering and relative timing is 
preserved. 

Any software debugging tool will cause some change in 
the absolute timing of a program. We have not med to avoid 
this, but our algorithms should only impose a minimal change 
on the execution of a program. This change is one that should 
not affect any but the most timing sensitive programs - and 
for these programs, a hardware monitor may be the only suit- 
able forti1 of debugger. 
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