
Breakpoints and Halting in Distributed Programs

Barton P . Miller
Jong-Deok Choi

Computer Sciences Department
University of Wisconsin - Madison

1210 W, Dayton Street
Madison, Wisconsin 53706

ABSTRACT

Interactive debugging requires that the programmer be
able to halt a program at interesting points in its execution.
This paper presents a definition of distributed breakpoints with
an algorithm for implementing the detection of these break-
points, and presents an algorithm for halting a distributed pro-
gram in a consistent state. The definition of distributed break-
points is based on those events that can be detected in a distri-
buted system. Events that can be partially ordered are detect-
able and form the basis for the breakpoint predicates, and
from the breakpoint definition comes the description of an
algorithm that can be used in a distributed debugger to detect
these breakpoints. The Halting Algorithm extends Chandy
and Lamport’s algorithm for recording global state and solves
the problem of processes that are not fully connected or tre-
quently communicating.

1. Introduction

Interactive debugging requires that the programmer be
able to halt a program at interesting points in its execution.
Halting consists of the mechanisms to stop the program’s exe-
cution and the predicates, called breakpoints, that are used to
nigger the halting. This paper presents a definition of distri-
buted breakpoints with an algorithm for implementing these
breakpoints, and presents an algorithm for halting a distri-
buted program in a consistent state.

Breakpoints in a sequential program have an implied
reference to time. When we say “stop when procedure. X is
entered or when procedure Y is entered”, we mean to stop the
program when any of these conditions becomes true. When
we say “stop when procedure X is entered and iG]=7”, we
mean to stop the program when, at the same instant, both of

Research supported in part by the National Science Foundation grant CCR-
8703373, an Office of Naval Research Contract, and a Digital Equipment Corpora-
tion Extemal Research Grant.

these conditions are true.

We have no single, global notion of time in a distributed
system [l], so we may not be able to determine whether one
condition really occurred before another. This means that we
will have to tolerate breakpoints that occur independently on
different machines. Likewise, we cannot determine whether
events on different machines occurred simultaneously. This
means that we must replace the concept of simultaneous
events with one that is suitable for a distributed system. In
Section 2, we present a definition of predicates for breakpoints
in a distributed program. This definition is based on detect-
able orderings of events. We describe an algorithm from
which one can implement a satisfaction detector for these
predicates.

Halting a single-process, sequential program is well-
understood. There is a single thread of execution that can be
stopped without regard for other activities in the system.
When a program consists of cooperating processes executing
on different machines, halting decisions are affected by
unpredictable communication delays between machines. We
cannot instantly transmit a command to halt all processes, nor
can we guarantee that the halt command will simultaneously
reach all processes. In Section 3 of this paper we present an
algorithm for consistently halting a distributed program given
the inherent communication delays. This algorithm is derived
from Chandy and Lamport’s algorithm for recording global
state [2], and extends this algorithm to work for processes that
communicate infrequently or are not fully connected.

Section 4 discusses the application of these ideas to
current research in distributed debugging.

2. Distributed Breakpoints

This section describes a definition of predicates for
breakpoints in a distributed program. This definition is based
on detectable ordering of events.

CH2541-1/88/oooO/0316$01.00 0 1988 IEEE
3 16

2.1. Types of Breakpoints in Distributed Debugger

In a sequential programming, the decision to halt the pro-
gram is usually done by specifying predicates about the
program’s behavior and state. The satisfaction of these predi-
cates corresponds to interesting points in the execution of the
program, which we call breakpoints. The predicates are
expressed in terms of events that correspond to a particular
behavior or change in state of the program.

A predicate that is based entirely on the execution
behavior or state of a single process is called a Simple Predi-
cate. We can combine the Simple Predicates using the dis-
junctive operator to make a Disjunctive Predicate. Likewise,
we can combine the Simple Predicates using the conjunctive
operator to make a Conjunctive Predicate.

Predicates can also be combined to describe a sequence
of events. For example, a user may want to halt a program
and examine its state when a specified sequence of events is
observed during the execution of the program. We call such
predicates Linked Predicates. Linked Predicates have been
used with hardware-based debugging tools such as logic state
analyzers. For example, the programmer specifies a non-
contiguous sequence of values (such as program addresses)
that must occur and the debugging tool detects when this
sequence has occurred.

There is usually more than one thread of control in a dis-
tributed program and the breakpoint predicates can involve
more than one process. We call such predicates distributed
predicates. We now describe distributed predicates and how
to detect the satisfaction of these predicates. When the distri-
buted predicate is satisfied, the Halting Algorithm (described
in Section 3) is used to halt the computation.

2.2. Simple Predicates (SP)
Simple Predicates consist of the typical predicates used

in sequential program debuggers, such as entering a particular
procedure. Simple Predicates also include interprocess events
such as a message sent or received, a channel created or des-
troyed, or a process created or terminated. The basic restric-
tion is that a Simple Predicate is based only on the state local
to a single process.

2.3. Disjunctive Predicates (DP)

the disjunctive operator “U”:

The Disjunctive Predicate is satisfied when one or more of the
Simple Predicates is satisfied. Halting can be initiated at the
instant when any of the SP’s of the DP is satisfied. Multiple
SP’s of the DP can be satisfied at the same virtual time. The

Disjunctive Predicates are specified by expressions using

DP ::= SP [U SP]*.

Halting Algorithm described in Section 3 will work correctly
for simultaneous initiations from multiple processes, so any
process where an SP is satisfied can initiate the Halting Algo-
rithm.

2.4. Linked Predicates (LP)

Linked Predicates specify sequences of events that can
be ordered by the happened-before relation and are specified
by expressions using the “+” operator:

The semantics of LP can be interpreted as follows:
Let Z be the set of DPi ’s such that

Z = (D P i , i = 1.n).
Then, the Linked Predicate

LP ::= DP [+ DP]*.

LP = DPi 4 DPj -+ DPk . . .
1 S i j , k I n

means that the detectable sequence of events
can be described by the following regular ex-
pression

LP = DPi [Z - DPj]* DPj [Z - DPJ*
DPk . . .

The implementation of the Linked Predicates is described in
Section 2.6.

2.5. Conjunctive Predicates (CP)

using the conjunctive operator “n”:
CP ::= SP [n SP]*.

Traditionally, a Conjunctive Predicate is said to be satisfied at
the instant when all the Simple Predicates of the Conjunctive
Predicate are satisfied. There is no single time reference
across machine boundaries in a distributed system, so we can-
not precisely detect the simultaneous events needed for the
Conjunctive Predicate. This form of predicate is well defined
within a single machine, but can have several interpretations
in a distributed system.

The remainder of this section describes our interpretation
of Conjunctive Predicates in a distributed system. The goal of
this interpretation is to more precisely define Conjunctive
Predicates. As a result of this definition, we will get a clearer
idea of how to incorporate these predicates in a distributed
debugger.

Given two processes P , and P , residing on different
machines, each process has its own virtual time axis, called T ,
and Tz respectively. Predicate SP is based on the state of P
and SP, on the state of P 2 We define a pair of virtual time
points (t l , 1 2) to describe a time when SP, is satisfied such
that t 1 E Tl (written as: S P l (t l) is true), and the time when
SP, is satisfied such that t 2 E T , (written as: SP,(t,) is true).

The Conjunctive Predicates are specified by expressions

317

events at the time pair (tll, r21). We can use SP + (S P d 2 to
detect the events at the time pair (til, t22) . Halting is initiated
at the moment when the last predicate in the ordering is
satisfied.

Detecting events that occur at virtual times belonging to
the unordered-SCP is more difficult. For example, if we
detect that SP on P is satisfied, we must also detect SP2 on
process P2 Since there is no common time reference in a dis-
tributed system, it is necessary to have some process gather
the information from the other process(es) before halting is to
be initiated. We cannot decide until the last notification
arrives at the information gathering process. The inherent
time delay in such information gathering may make it impos-
sible for the processes to halt soon enough to preserve the
meaningful states of the processes.

P l p2

Figure 2.1. Examples from the Set SCP

We define a set of these virtual time pairs, called SCP, to be:

At any point in the set SCP, ihe conjunctive predicate

is satisfied.

SCP = I O l , t 2) I t l E T1, t 2 E T 2 , SPl(tl) nSP2(tz)) .

S C P = S P , n S P ,

Since T l and T 2 are virtual time axes, it is not always
possible to order a given virtual time t on P , and a given
virtual time f on P according to Lamport's happened-before
relationship. We can divide the SCP into two subsets, named
ordered-SCP where there is an ordering between t and 2,

and unordered-SCP where there is no ordering. Since the
Linked Predicates introduced in the previous section is a
mechanism to detect events with ordering, the two subsets can
be expressed as follows:

ordered-SCP = ((t l , t,) I (t , , t,) E SCP,

such that 1 5 i, j):
unordered-SCP = ((t l , t,) I (t l , t 2) E SCP,

(Il, t2) d ordered-SCP}.

((SP,)' + (SP2Y) U ((SPdi -+ (SP1)i)

Figure 2.1 shows examples from each of these sets. We see
an ordering in time pair (til, t Z) and no ordering possible in

(t12, t 22) .

We can use the algorithm for detecting satisfaction of
Linked Predicates (see Section 2.6) for detecting events that
occur at virtual times belonging to the set ordered-SCP. For
example, if SPl(tll) is true, and SP2(r21) and SP2(tZ2) are
true, we can use the Linked predicate SP , -+ SP, to detect the

t We use (SP)' as a shorthand for SP + SP ' . ' -+ SP . For example, (S P) 3
stands for SP -+ SP + SP .

2.6. Implementation of Linked Predicate Detection

Since the definition of the Linked Predicate is general
enough to comprise the Simple Predicate and the Disjunctive
Predicate, only one algorithm is needed to detect these predi-
cates. In describing the implementation of Linked Predicates,
we assume there exists a debugger process named d that has a
connection with each user process. More detailed description
of our model of the interactive distributed debugger system is
given in Section 3, where our Halting Algorithm is described.
In addition to the genuine messages originated by the user
processes, we need a special message type named predicate
marker that carries the Linked Predicate. We append to every
message originated by the program some kind of tag so that
each process can distinguish the genuine messages from predi-
cate markers which are introduced by the debugging system.

To issue the Linked Predicate DP + D P 2 + DP,, the
debugger process sends a predicate marker containing the
Linked Predicate to each process involved in DP,. Upon
receiving the predicate marker, each process sets up the condi-
tion to detect when DP , is satisfied. When DP , is satisfied at
process p, process p creates a new predicate, newLP, from the
remainder (DPz + DP,) of the original Linked Predicate.
Then process p sends this new predicate on each channel c
incident to and directed away from process p. There are two
possible cases here. In the first case, process q that has
received this new predicate is involved in DP2. In the second
case, process q is not involved in DP,.

In the first case, process q sets up the condition to detect
when D P 2 is satisfied. In the second case, process q just sends
the received predicate to each out-going channel. For each
case, process q remembers the received predicate marker so
that it can ignore the same predicate markers that arrive later
from different in-coming channels. This process is repeated

involved DP’s.

Predicate-Marker-Sending Rule for a process p .
Send a predicate marker containing the Linked Predicate
on each channel c incident to and directed away from
process p;

if the same predicate marker has already been
received then

else if q is not involved in the first Disjunctive Predicate
of the Linked Predicate then

else

Predicate-Marker-Receiving Rule for a process q.

Ignore it;

Do the Predicate-Marker-Sending Rule;

Separates the first Disjunctive Predicate from the
Linked Predicate carried by the predicate marker;
Make a newLP from the received Linked Predicate
by excluding the first Disjunctive Predicate;

When the extracted Disjunctive Predicate is met:

Initiate the halting Algorithm;

Send a new predicate marker containing the newLP
as the new Linked Predicate according to the
Predicate-Marker-Sending Rule.

if the newLP is null then

else

Figure 2.2 Linked Predicate Detection Algorithm

until last Disjunctive Predicate (in this case, D P 3) in the
Linked Predicate is satisfied, at which time a process knows
that it should initiate the Halting Algorithm. Figure 2.2
describes the Linked Predicate Detection Algorithm.

We can reduce the size of a predicate marker by making
a small change to the predicate marker while leaving the
structure of the Linked Predicate unchanged. To issue the
Linked Predicate D P l + DP2 -+ DP,, the debugger process
sends the content of each DP directly to the processes
involved in each DP. Then the debugger process sends the
Linked Predicate devoid of the contents of the DP’s to the
processes involved in D P , . Upon receiving the predicate
marker, each process sets up the condition to detect when DP ,
is satisfied by using the content of DP directly received from
the debugger process. The size of newLP, to be created from
the remainder (DP2 -+ DP,) and to be sent on each channel c
incident to and directed away from process p. will be smaller
than that of the original newLP that contains the contents of

3. Consistent Halting

This section describes how to halt all processes belong-
ing to a distributed program so that no critical information is
lost when the processes halt. This problem is easy to solve for
a single machine because there is only one active process at a
given moment. When processes of the same program reside
on different machines, they cannot be stopped simultaneously.
Therefore, some information may be lost or recorded
incorrectly.

Our halting algorithm is derived from Chandy and
Lamport’s algorithm for recording global states [2]. We first
summarize Chandy and Lamport’s algorithm and then present
an algorithm to halt the distributed computation in such a way
that, in spite of the time delay in halting processes, the final
halted states of the processes of the computation result in glo-
bally consistent states. Although the physical instant of halt-
ing each process by our algorithm is different, we show that
all the processes halt at the same virtual time instant [I]. For
any two halted processes of a computation, the halted state of
a process is not affected by the halted state of the other pro-
cess and, therefore, there can be no happened-before [l] rela-
tionship between the two halted states. Each process’s view
of event ordering is preserved by our algorithm.

We show some problems with this basic halting algo-
rithm and then present an extended algorithm that is suitable
for a debugger.

3.1. Chandy and Lamport’s Algorithm

A distributed program consists of a finite number of
processes and a finite number of channels between the
processes. Figure 3.1 shows an example where each process
is represented by a circle and channels are represented by
directed edges. Processes in a distributed program communi-
cate by sending and receiving messages. Channels are

process process

c1

channel

c2

Figure 3.1. A Distributed System

3 19

Marker-Sending Rule for a Process p.
For each channel c , incident on, and directed away from
P:

p sends one marker along c after p records its state
and before p sends further messages along c.

Marker-Receiving Rule for a Process 4.
On receiving a marker along a channel c:

if 4 has not recorded its state then
4 records its state;
q records the state c as the empty sequence

4 records the state of c as the sequence of mes-
sages received along c after 4’s state was record-
ed and before 4 received the marker along c

else

Figure 3.2 C&L Algorithm

assumed to have infinite buffers, to be error-free and to deliver
messages in the order sent. Following are some definitions
from [2].

Definitions:
An event e is a 5-tuple 9, s, s’, M , c> wherep
is a process, s and s ’ are states of the process
before and after the event, M and c are the
message and the channel through which the
message is sent or received by p at that event.
M and c can have the special value null if no
message is involved in the event.
A global state S, consists of the states of
processes of the computation and the states of
channels.

Figure 3.2 shows the Chandy and Lamport’s algorithm,
which we will call the C&L Algorithm, to record the global
state. In that algorithm, each process records its own state,
and the two processes upon which a channel is incident
cooperate in recording the channel state. The C&L Algorithm
can be initiated independently by more than one process at the
same time.

3.2. Halting Algorithm

We now present an algorithm to halt the processes to
yield a globally consistent halted state s h that is equivalent to
the recorded state S, . These states are equivalent in the sense

Marker-Sending Rule for a Process p.
Increment last-halt-id;
Halt Routine (p)

On receiving a halt marker along a channel c:
Compare the halt-id with its last-halt-id;
if halt-id is greater than last-halt-id then

Marker-Receiving Rule For a Process q.

Update last-halt-id;
Halt Routine (4);

Ignore;
else

Halt Routine (x: process):
For each channel c, incident on and directed away from
process x, send a halt marker with a halt-id equal to the
last-halt-id along c;
Halt:

Figure 3.3 Halting Algorithm

that the state of each process in the halted global state s,, is
the same as the state of each process in the recorded global
state S, and the undelivered messages in each channel in S,,
are the same as the recorded messages in the state of the chan-
nel in S, . We begin the discussion with the same model as in
PI .

3.2.1. Basic Algorithm

Our model is the same as in[2] except that we use a halt
marker instead of marker. This halt marker carries with it a
sequence number referred to as halt-id. This halt-id enables
each process to distinguish an old halt marker (to ignore) from
a new halt marker. Each process also keeps track of the latest
halt-id received as last-halt-id whose value is initially set to
zero. Like the C&L Algorithm, halting can be initiated spon-
taneously by more than one process. The decision as to when
to halt can be made independently by each process. Figure
3.3 describes our Halting Algorithm.

A process halts either by receiving halt marker from any
one of its adjacent neighboring processes or by spontaneously
deciding to halt. If a process halts by receiving a halt marker,
it does so on receiving the first halt marker with the new
halt-id (old halt markers are left over from previous haltings).
When all processes are finally halted, the state of each process
is preserved. Each outgoing channel contains undelivered
messages with a halt marker as the last one, or is empty if the

3 20

halt marker was delivered to the receiving process. Given the
assumptions of reliable channels and each process observing
the same algorithm, it can be shown that when all processes
halt, the value of each process’s last-halt-id is the same. This
is true because the initial value of each last-halt-id is zero and
gets incremented exactly once during the Halting Algorithm
(since a process can halt only once). The global halted state
Shconsists of the halted states of the processes and
undelivered messages in channels. We claim that S, is the
same as S, in the sense that

(1) the state of each process in s), is the same as the recorded
state of the corresponding process in S, ; and

(2) the undelivered messages in each channel in Sh are the
same as the recorded state of the corresponding channel
in S, .

We begin the proof of our claim with two lemmas.
Lemma2.1.

The halted state of each process in Sh is the same as
the recorded state of the process in S, .

The Halting Algorithm is structurally identical to
the C&L Algorithm. In the Halting Algorithm, each
process halts at the instant it would record its state
in the C&L Algorithm. So the halted state of each
process p in Sh is the same as the recorded state of
the process in S, . 0

The undelivered messages in each channel in Sh are
the same as the recorded messages of the state of the
corresponding channel in S, .

In the Halting Algorithm, a process p halts as soon
as it receives a halt marker on any one of its incom-
ing channels. When a halt marker is received on a
channel, we know that the channel is now empty
since the process that was sending on the channel
halted as soon as it sent the halt marker on the chan-
nel. All of process p’s other incoming channels will
contain pending messages. Since each process
sends a halt marker before it halts, the last message
in each of these pending channels i s the halt marker.
Therefore, the state of an incoming channel c of a
process p in s), either consists of (zero or more)
pending messages followed by a halt marker or is
empty.

Proof:

Lemma 2.2.

Proof:

receives the first marker from any of the incoming
channels. The state of an incoming channel c of a
process p in S, consists of the sequence of recorded
messages received on the channel until a marker is
received on the channel. Since each process in C&L
Algorithm sends a marker at the instant it would
send a halt marker in the Halting Algorithm, the
sequence of recorded messages in S, received on
each incoming channel c until a marker is received
is the same as the stored messages in the channel c
in S h . 0

s), is the same as S, .

The proof follows from Lemma 2.1 and Lemma 2.2.
0

Theorem 2 .

Proof:

3.2.2. Problems with the Basic Algorithm

There are two problems with our Halting Algorithm that
also occur in the C&L Algorithm. The &st problem is how to
halt a process that has only infrequent interactions with the
other processes of the computation. The process would even-
tually halt, potentially long after all other processes have
halted. Even though nothing is conceptually wrong with this
kind of process, it is awkward in practice.

The second problem is one that can make both the Halt-
ing Algorithm and the C&L Algorithm fail. This problem
occurs when the network connection is acyclic, as in
producer-consumer or pipeline relationship. Figure 3.4 shows
an example of this case.

If halting is initiated by the consumer process in this
example, there is no way to send the halt marker to the pro-
ducer process to halt the entire computation. The C&L Algo-
rithm avoids this problem by assuming that the processes are
strongly connected.

producer consumer

Figure 3.4. Producer - Consumer Connection

In the C&L Algorithm, each process proceeds with
its computation after it records its state when it

32 1

3.2.3. Extended Model

We now present our model of the interactive distributed
debugger system that works with our Halting Algorithm and
solves the problems mentioned before. In our extended
model, there is an additional process d as the debugger process
of the system, and there are two additional control channels
connecting the debugger process with each user process. The
introduction of a debugger process solves not only the prob-
lems mentioned above but is also a natural structure for an
interactive debugging system [3].

Figure 3.5 shows the model with user processes p , q and
debugger process d. Since each process has two control chan-
nels, one to and one from the debugger process, the network is
strongly connected, i.e., there always is a message path from a
process to any other process. In addition to guaranteeing
strong connectivity of the network, the debugger process per-
forms the typical functions of a debugger. The algorithm to
halt the computation need not be changed except that the
debugger process d never really halts. We insure that user
processes are always willing to accept a message from the
debugger process by making the arrival of a message from the
debugger process asynchronously intermpt the user process.

3.2.4. Order of Halting

A process may have more than one incoming channel.
This means that a halt marker could be received from any one
of the processes attached to these channels, depending on
when and from where the halting is initiated. The order in
which the processes halt can provide useful information to the
programmer, but this information is not available in our Halt-
ing Algorithm.

debugger process

Figure 3.5. A Distributed System with a Debugger Process

The halting order information can be obtained by making
a small change to the halt markers while leaving the structure
of the Halting Algorithm unchanged. Each process will
append its name to the halt marker before sending the marker
to the next process(es). The halt marker that a process
receives then describes which processes have already been
halted.

4. Application to Current Research

Distributed debugging is an area of active research. For
our purposes, we can separate this research into two
approaches. The first approach avoids the problem of stop-
ping a program by providing tools only for monitoring a
program’s execution [3-61. For example, Bates and
Wileden[4] define an Event Description Language (EDL) that
allows a programmer to group low-level events into high-level
abstract events. EDL requires the ability to observe sequences
of events and recognize pattem in these sequences. Our algo-
rithm for recognizing distributed predicates (Section 2.6)
could be used to support an EDL abstract event recognizer.

A second approach to distributed debugging is one that
more closely approximates traditional, single-process
debuggers [7-91. For example, IDD [8] provides a stepping
mode of execution for a collection of processes because IDD
does not guarantee that a program can be halted in a timely
and consistent manner. The suggested IDD strategy is for a
programmer to individually halt processes early enough so
that the entire computation is halted before the interesting
points are reached. The programmer can then execute the pro-
gram in single instruction steps to find the error. The Halting
Algorithm using distributed breakpoints would simplify the
programmer’s debugging task.

A variation on the second approach re-routes all normal
communications through a centralized debugger process
[10,111. While this simplifies the detection of distributed
breakpoints by providing a single point of event ordering, it
also has several disadvantages. First, there can be substantial
communication overhead in re-routing the messages through a
central hub. Second, the change in message flow could sub-
stantially change the execution of the program. Last, the
facility to re-route the communications can be complex to
build.

The Linked Predicates are similar to Path Expressions
[121. Our distributed predicate detection algorithm provides a
vehicle to implement Path Expressions in a distributed system.

5. Conclusion

Interactive debugging is a familiar scenario to any pro-
grammer. The definition of distributed breakpoints presented

322

in Section 2 and the Halting Algorithm in Section 3 provide
the programmer with the necessary tools to apply these tech-
niques to a distributed program. The fundamental idea is that
the program’s view of event ordering and relative timing is
preserved.

Any software debugging tool will cause some change in
the absolute timing of a program. We have not med to avoid
this, but our algorithms should only impose a minimal change
on the execution of a program. This change is one that should
not affect any but the most timing sensitive programs - and
for these programs, a hardware monitor may be the only suit-
able forti1 of debugger.

6. REFERENCES

[I11

L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Communications of the ACM 21(7) pp.
558-565 (July 1978).

K. M. Chandy and L. Lamport, “Distributed Snapshots:
Determining Global States of Distributed Systems,’’ ACM
Trans. on Computing Systems 3(1) pp. 63-75 (February 1985).

H. Garcia-Molina, F. Germano, Jr., and W. H. Kohler.
“Debugging a Distributed System,” IEEE Trans. on Software
Engineering SE-lO(2) pp. 210-219 (March 1984).

P. C. Bates and J. C. Wileden, “High Level Debugging of
Distributed Systems: the Behavioral Abstraction Approach,”
J . Systems andSofnYare 4(3) pp. 255-264 (December 1983).

R. J. LeBlanc and A. D. Robbins, “Event-Driven Monitoring
of Distributed Programs,” Proc. of the 5th International Conf
on Distributed Computing Systems, pp. 5 15-522 Denver,
(May 1985).

B. P. Miller, C. Macrander, and S . Sechrest, “A Distributed
Programs Monitor for Berkeley UNIX,” Sofnvare - Practice
and Experience 16i2) pp. 183-200 (February 1986).

E. T. Smith, “Debugging Techniques for Communicating,
Loosely-Coupled Processes,” Ph. D. Thesis - Technical
Report TR100, Univ. of Rochester (December 1981).

P. K. Harter, Jr., D. M. Heimbigner, and R. King, “IDD: An
Interative Distributed Debugger.” Proc. of the 5th Inferna-
tional Conf, on Distributed Computing Systems, pp. 498-506
Denver, (May 1985).

F. Baiardi, N. De Francesco, and G. Vaglini, “Development
of a Debugger for a Concurrent Language,” IEEE Trans. on
Software Engineering SE-12(4) pp. 547-553 (April 1986).

399 Denver, (August 1982).

R. D. Schiffenbaur, “Interactive Debugging in a Distributed
Programs,’’ M.S. Thesis, EECS Tech Report MITILCSITR-264,
M.I.T., (August 1381).

B. Bruegge and P. Hibbard, “Generalized Path Expressions: A
High Level Debugging Mechanism,” Proc. of the
SIGSOFTISIGPLAN Symp. on High-Level Debugging, pp.
34-44 Pacific Grove, Calif., (August 1983).

[101 R. Curtis and L. Wittie, “BUGNET: A Debugging System for
Parallel Programming Environment,’’ Proc. of the 3rd Inter-
national Conf on Distributed Computing Systems, pp. 394-

323

