
A Mechanism for Efficient Debugging of Parallel Programs

Barton P. Miller
Jong-Deok Choi

Computer Sciences Department
University of Wisconsin - Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

ABSTRACT

This paper addresses the design and implementation of an
integrated debugging system for parallel programs running on
shared memory multi-processors (SMMP). We describe the use of
flowback analysis to provide information on causal relationships
between events in a program’s execution without re-executing the
program for debugging. We introduce a mechanism called incre-
mental tracing that, by using semantic analyses of the debugged
program, makes the flowback analysis practical with only a small
amount of trace generated during execution. We extend flowback
analysis to apply to parallel programs and describe a method to
detect race conditions in the interactions of the co-operating
processes.

1. Introduction

Debugging is a major step in developing a program since it is
rare that a program initially behaves the way the programmer
intends. While most programmers have experience debugging
sequential programs and have developed satisfactory debugging
strategies, debugging parallel programs has proven more difficult.
This paper addresses the design and implementation of an integrated
debugging system for parallel programs running on shared memory
multi-processors (SW). The major approach described in this
paper is to use Balzer’s flowback analysis[l] in providing informa-
tion on the causal relationships between events in a program’s exe-
cution without re-executing the program during debugging. By
using semantic analyses of the program, such as inter-procedural
analysis[2] and data flow analysis[3], we are able to keep the system
overhead in applying flowback analysis low. Our approach also
allows for easy detection of race conditions in the interactions of the
co-operating processes. This paper describes a method called incre-
mental tracing that makes flowback analysis practical by generating
only a small number of traces during execution, and without requir-
ing R-execution of the program during debugging. We extend
Rowback analysis to parallel programs. These strategies are being

Research supported in part by the National Science Foundation grant CCR-
8703373, an Office of Naval Research Contract. and an AT&T Graduate Fellow-
ship.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o I988 ACM O-8979 I -269-l/88/0006/0 135 $1.50

Language Design and Implementation

evaluated in a test implementation called the Parallel Program
Debugger (PPD).

We borrow terminology from fault tolerant computing com-
munity to describe the process of debugging [4]. The first indica-
tion that a program is incorrect is usually an externally visible
symptom, such the wrong value being printed or the system detect-
ing a fatal problem (such as dividing by zero). This externally visi-
ble symptom is called afailure. A failure is caused by an erroneous
internal state (called an error) of the program. This error could be
an incorrect value for a variable or the program executing in the
wrong place (incorrect program counter). An error state is usually
preceded by another error state. We can follow this (often long)
chain of errors back to the cause. The cause of the initial error is an
algorithmic fault in the program. In debugging, these faults are
called bugs.

Debugging is a difficult job because the programmer has little
guidance in locating the bugs. To locate a bug that caused an error,
the programmer must think about the causal relationships between
events in a program’s execution. There is usually an interval
between the time when a bug first affects the program behavior and
when the programmer notices an error caused by the bug. This
interval makes it difficult for the programmer to locate the bug. The
usual method for locating a bug is to execute the program repeat-
edly, each time placing breakpoints (to detect an error) closer to the
location of the bug. An easier way is to track the events backward
from the moment of detecting an error to the moment at which the
bug caused the error, as is done by the @powback analysis[l]
approach proposed by Balzer. In flowback analysis, the program-
mer can see, either forward or backward, how information flowed
through the program to produce the events of interest. In this way,
the programmer can easily locate bugs that led to the detected
errors.

This paper is organized as follows. We discuss research
related to our work in Section 2, contrasting debugging with
repeated execution, trace-based debugging, and flowback analysis.
Section 3 provides an overview of our strategies for debugging
parallel programs. In particular, Section 3 describes how we divide
the process of debugging into several steps and how each of these
steps works toward the goal of efficient debugging of parallel pro-
grams.

We describe in Section 4 the tools that help the user to locate
bugs easily. Section 5 describes how to provide these tools in an
efficient way and how to make them applicable to parallel pro-
grams. We describe a method to detect timing errors in the interac-
tions of the co-operating processes in Section 6, and summarize our

work in Section 7.

Atlanta, Georgia, June 22-24, 1988
135

2. Related Work

There are two major approaches in debugging a parallel pro-
gram: cyclic debugging (debugging with repeated execution of the
program) , and debugging with traces of program execution. The
main advantage of cyclic debugging [5-71 is that the user need not
anticipate the types of bugs that exist in the program until an error is
detected. The program can be re-executed to produce the same exe-
cution behavior. Applying cyclic debugging to parallel programs
have a couple of disadvantages. First, executing the entire computa-
tion several times while repeatedly setting breakpoints is costly.
Second, cyclic debugging requires reproducible program behavior
from the program to be debugged and cannot be applied, without
special provision by the debugger, to non-deterministic programs.
Such non-deterministic program behavior can come from schedul-
ing delays, language constructs such as guarded commanak[8], or
from the changes in external environments. A Process accessing a
database is a good example of the third case since its execution
behavior may depend on the (potentially changing) contents of the
databases.

The main advantage of debugging with traces [9-121 is that the
reproducible behavior is not required of the program. This approach
can therefore be applied to both deterministic and non-deterministic
programs. Its main disadvantage is that generating traces can be
costly in time and space. Idealy, we would like hardware support to
eliminate the execution cost of tracing. Since this is rarely avail-
able, we have to work to reduce the size and cost of the traces.
Even with hardware support, it is important to reduce the amount of
tracing so as to not go beyond the hardware limitations.

Debugging is a difficult job because the programmer has little
guidance in locating the bugs. To locate a bug that caused an error,
the programmer must think about the causal relationships between
the events in a program’s execution. Balzer’s flowback analysis[I]
is unique among the trace-based approaches in that it is an attempt
to directly help the programmer in locating bugs by showing the
past flow of program execution and, in doing so, by showing the
causal relationship among events. However, Balzer’s suggestion is
based on traces of events and shares the advantages and disadvan-
tages of other trace-based approaches. Our debugging system pro-
vides such direct help with low system overhead.

3. Structural and Functional Overview of the Debugging Sys-
tem

Our approach to debugging parallel programs is to provide
direct help in locating bugs without re-executing the program. In
providing direct help to locate bugs, we have adopted fiowback
analysis[l] to show the actual run time dependences.

3.1. Flowback Analysis and Incremental Tracing

Flowback analysis would be straightforward if we were to
trace every event during the execution of a program. However,
doing so is expensive in time and space. The user needs traces for
only those events that may have led to the detected error. The prob-
lem is that there is no way to know what errors will be detected
before the execution of the program; either the user has to generate
a trace of every event so that the traces wiU not lack anything
important when an error is detected, or the user has to re-execute a
modified program that generates the necessary traces after an error
is detected. The first option is expensive, and most often not practi-
cal for parallel programs because of unacceptable changes the
debugger would introduce in the timing of the interactions between
processes. The second option is not practicd for programs that lack
reproducibility, as is often the case with parallel programs.

The strategy adopted by us to overcome the above difficulties
is to use incremental tracing based on the idea of need-to-generate.
For the user, the effect will be the same as that of generating a trace
of every event and state of program during execution, but with far
less run time overhead since not every event will actually be traced,
The cornerstone of the need-to-generate concept is to generate a
small amount of information, called a log, during execution and fill
incrementally, during the interactive portion of the debugging ses-
sion, the gap between the information gathered in the log and the
information needed to do the fiowback analysis using the log. By
doing so, we can transfer the cost in generating traces from the exe-
cution time to the debugging time, and partly to the compilation
time since we generate static information during compilation time.
We can reduce the run time overhead in producing the log by apply-
ing inter-procedural analysis[2] and data flow analysis[3] commonly
used in optimizing compilers. Incremental tracing will be described
in more detail in Section 5.

3.2. Three Phases in Debugging

We divide debugging into three phases: a preparatory phase,
an execution phase, and a debugging phase. There are two major
components in our debugging system: the CompilerlLinker and the
PPD Controller. During the preparatory phase, the
Compiler/Linker produces the object code, and the files to be used
in the debugging phase. While the object code is running in the
execution phase, it generates the log to be used in the following
debugging phase. When the program halts, due to either an error or
user intervention, the debugging phase begins.

3.2.1. Preparatory Phase

Figure 3.1 shows the preparatory phase, during which the
Compiler/Linker produces, along with the object code, the follow-
ing:

1) the emulation package that will generate traces during the
debugging phase to fill the gap between the information con-
tained in the log generated during execution phase and the
information needed to do flowback analysis;

2) the static program dependence graph that shows the static
(possible) data and control dependences among components of
the program;

-------- I-------_ !
; ; -0GcfcoDE 1 I
, ’ r------
I ’

0

1
1

I E.MuLATlON PACXAOB , I
:----------; ' I r------
: .scJnRa COMPILW ' 1 "

PROORAM DATABASE 1 ;
I FILES : ------I L.UiKER 1.-----..--A 1 I '

'] 1 I
I
I STATIC 7;

/ '-;_I
PROGRAM

DEPENDBN(I I '
1 I

------- : provided by user L--GE!--J ’ ---. _ generated by compiler ‘- _ _ _ _ _ _ _ _ - - - I

Figure 3.1. The Preparatory Phase

136

3) the program database that contains information on the pm-
gram text such as the places where an identifier is defined or
used.

3.2.2. Execution Phase

The object code produced during the preparatory phase plays a
major role in the execution phase. Figure 3.2 shows the execution
phase, during which the object code generates program output, and
a log that records dynamic information about program execution.
The log is used by the emulation package during the debugging
phase in generating traces for the flowback analysis. Among the log
entries are postlogs, which record the changes in the program state
since the last logging point and prelogs, which record the values of
the variables that might be read-accessed before the next logging
point. The postlogs also allow for the restoration of the program
state to previous points of program execution. The user could
change the values of variables and re-start the program from the
same point to see the effect of these changes on program behavior.

3.2.3. Debugging Phase

Figure 3.3 shows the debugging phase, during which the PPD
Controller plays the major role. In Figure 3.3, the edges toward the
PPD Controller represent the flow direction of the information
needed to build the dynamic program dependence graph. The
dynamic program dependence graph (also called dynamic graph)
shows the run time dependences among program components and is
incrementally built during debugging. In building the dynamic
graph, the PPD Controller controls the emulation package to obtain
the necessary traces.

When the debugging phase starts, the PPD Controller presents
the user with a portion of the dynamic graph that has the last state-
ment executed being the root of an inverted tree. Since the portion
of the dynamic graph presented to the user at any time is small in
size (first, there is a practical limit to the size of the graph deter-
mined by the screen size; second, it is useless to provide a graph
whose size is beyond the user’s grasp), the traces needed at one time
in building a portion of the dynamic graph is also small in size.

When the user wants to see the dependences of events not seen
on the portion of the dynamic graph presented to the user, the PPD
Controller draws a new portion of the dynamic graph that shows the
requested dependences. There are two possible cases here. In the
first case, there are sufficient traces already generated to show the
dependences requested by the user. In the second case, there are not
sufficient traces. In the first case, the PPD Controller merely

: provided by user ---. . generated by compiler
__ : generated by user program

Figure 3.2. The Execution Phase Figure 3.3. The Debugging Phase

updates the portion of the dynamic graph presented to the user to
show the requested depcndences. In the second case, the PPD Con-
troller directs the emulation package to generate the traces needed to
show the requested dependences. In directing the emulation pack-
age, the PPD Controller consults with the static information such as
static program dependence graph and program database produced
during the preparatory phase. Since not all the events of a program
execution are interesting to the user in locating bugs, not all the
events will generate traces during the debugging. More details are
provided in the next sections.

4. Program Dependence Graphs

Two types of information will be produced by our debugging
system as a means of giving direct help in locating bugs: static
information based on the program text, and dynamic information
based on program execution. The static information consists of the
static program dependence graph (also called static graph), the
simplified static program dependence graph (also called simplified
sfutic graph), and the program database. The simplified static graph
is a subset of the static graph, used to show the possible depen-
dences between concurrent events (events belonging to different
processes). More details on the simplified static graph are presented
in Section 5.5.

The dynamic information consists of the dynamic graph and
the parallel dynamic program dependence graph (also called paral-
lel dynamic graph). The dynamic graph shows the run time depen-
dences between program components during program execution so
that the user can easily locate the bug that caused an error, while the
parallel dynamic graph, which is a subset of the dynamic graph,
emphasizes the interactions between processes of a program to help
detect timing errors.

I

I 0 : system provided
---b : control flow

----+ : information Bow
USER CL) : compiler generated

0 : generated during debugging phase

~~-~~~~-~ : generated during previous phases

137

4.1. Static Information

The static graph shows the potential dependences between
program components. The static program dependence graph is a
variation of the Program Dependence Graph introduced by
Kuck[131. Other variations of the Program Dependence Graph have
been used for representing programs in vectorizing compilers[lC
171, for integrating program variants(l81, and for debugging pro-
grams[l9,20]. Since the Program Dependence Graph shows the
possible dependences, we use the name static program dependence
graph to distinguish it from the dynamic program dependence
graph, which shows the actual dependences.

The program database contains information that cannot be
easily represented by the static graph; for example, where in the
program an identifier is defined. The program database also keeps
the information obtained by semantic analyses of the program, such
as the set of variables that may be used or modified when invoking a
subroutine[2].

4.2. Dynamic Program Dependence Graph

The dynamic graph shows the causal relations between pro-
gram events and states during execution. If there are no loops and
no conditionals in a program, the dynamic graph of the program will
be structurally identical to its static graph. The definition used in
this paper is a variation largely borrowed from [181, and adapted to
the particular need of showing the run time dependences between
program components.

sl d=SubD{a,b,a+b+c); ___ : data dependence edge
s2 if (d>O) - - :controldependence
s3 sq=sqrt(d); edge

s4 else ---. :flowedge
s5 sq=sqrt(-d);

+ s6 0 :singulafnode
a=a+sq;

El : sub-graph node

Figure 4.1. An Example
Dynamic Program Dependence Graph

The dynamic program dependence graph of a program P,
denoted as G,, is a directed graph consisting of four types of nodes
and four types of edges. The four node types are the ENTRY node,
the EXIT node, the singular node, and the sub-graph node. Each
node represents a program event (execution of a program com-
ponent). The four edge types are the flow edge, the data depen-
dence edge, the control dependence edge, and the synchronization
edge.

The ENTRY node in a Gp is the point at which control is first
transferred into the scope of Gp, and the EXIT node is the point at
which control is transferred out of the scope of G,. The singular
node corresponds to the execution of either an assignment statement
or a control predicate such as an if or case statement in the program.
When a singular node corresponds to an assignment statement, it is
associated with the assigned value. When a singular node
corresponds to a control predicate, it is associated with the value of
the control predicate. The sub-graph node, which is itself a graph
(sub-graph), is a way of encapsulating the execution details of
several statements. These statements usually correspond to func-
tions or subroutines supplied by the user or the system. The value
returned by a function execution is associated with the sub-graph
node representing the execution of that function.

A flow edge from n; to nj is defined when the event
represented by nj immediately follows the event represented by ni
during execution; it shows the control flow of the program. A con-
trol dependence edge shows a control dependence between two
nodes while a data dependence edge shows a data dependence
between two nodes[181.

The synchronization edge shows the initiation and termination
of synchronization events between processes, such as sending and
receiving messages. The definition of a synchronization edge is
described in more detail in Section 6, in the discussion on detecting
timing errors between processes.

When a dynamic program dependence graph either represents
the detailed execution of a subroutine or contains a sub-graph node
representing the execution of a subroutine, we need to show the
mapping between the formal parameters and the actual parameters.
We use the symbol “%” to distinguish the passed parameters from
the regular identifiers. For example, “%l” represents the first
parameter, and “%n” represents the n’th parameter. “%O” is used
to represent the returned value if the sub-graph node represents a
function execution.

Figure 4.1 shows a C program fragment and its dynamic graph
at the moment at which statement “~6” is to be executed (indicated
by the arrow). Each node contains either an identifier or a predicate
expression and a statement number. If the parameter passed to a
subroutine is an expression rather than a single variable, we intro-
duce a fictional singular node to accommodate this. In this figure,
the third parameter passed to the function subroutine SubD is an
expression, and a fictional node labeled “%3” is introduced. A
sub-graph node, which represents a procedure or a function, is itself
a graph consisting of nodes and edges. When the user wants to
know more execution detail about the sub-graph node, the debugger
presents the user a detailed graph corresponding to the sub-graph
node.

4.3. Parallel Dynamic Program Dependence Graph

The parallel dynamic graph is a subset of the dynamic graph
that hides the detailed dependences between local events to better
show the dependences between concurrent events. The parallel
dynamic graph also allows for identifying race conditions in a

138

program’s execution. The parallel dynamic graph can be thought of the values of the variables belonging to DEFINED(i) at the end of
as the superstructure of the dynamic graph, since we can build the 1,. TO reproduce the same program behavior for interval ri during
parallel dynamic graph during program execution and fill in the the debugging phase, we use the program code corresponding to Ii
detailed dependences between local events during debugging. A (e-block(i)), the log entries generated during li (LOG(i)), and the
more detailed description of parallel dynamic graph is given in Sec- same input as originally fed to the program during that log interval.
tion 6, where we present a description of how to order concurrent We obtain the sets USED(i) and DEFINED(i) by applying data flow
events and identify race conditions. analysis[2,21-231 to Ei.

5. Incremental Tracing

In this section, we describe incremental tracing in more detail.
We first assume the reproducibility of the program to be debugged.
Later in this section, we describe how to make these operations pos-
sible for parallel programs that lack reproducibility.

5.1. Emulation Blocks and Logs

As described in Section 3, two types of log entries generated
during the execution phase are the prelogs and postlogs. We call
the activities to produce such log entries prelogging and postlogging.

The object code generated by the Compiler/Linker during the
preparation phase contains code to generate prelogs and postlogs.
By using semantic analysis, we divide the program into numerous
segments of code called emulation blocks (e-blocks). Each e-block
starts with code to generate prelog and ends with code to generate
postlog. The prelog consists of the values of the variables that may
be read-accessed during the execution of the e-block. The postlog
consists of the values of the variables that may be write-accessed
during the execution of the e-block. An e-block is also the unit of
incremental tracing during debugging. As will be described in more
detail later in this section, a subroutine is a good example of an
emulation block.

The i’th prelog and the corresponding postlog generated dur-
ing program execution are called prelog(i) and postlog(respec-
tively. The emulation block that starts with the code to generate
prelog(i) and ends with the code to generate postlog is denoted as
e-block(i), and the set of events in e-block(i) is denoted as Ei. The
time interval between the prelog and postlog of an e-block is called
the log interval and is denoted as I, for the log interval starting with
prelog(i). The log entries in log interval ri are denoted as LOG(i).
Programs usually contain loops, so a given e-block of a program
may have several corresponding log intervals during execution.
Figure 5.1 shows the logging points and log intervals.

USED (i) is the set of variables that may be read-accessed by
Ei. DEFINED(i) is the set of variables that may be write-accessed
by Ei. The prelog (i) consists of the values of the variables belong-
ing to USED(i) at the beginning of Ii, and the postlog consists of

time: *0 fl 12 t3 14 ts

Figure 5.1. Logging Points and Log Intervals

5.2. Nesting of Log Intervals

Log intervals can be nested when one subroutine calls another.
For example, in Figure 5.2 we assume e-block(j) corresponding to
log interval Ii is made up of a subroutine named SubJ. SubJ started
at time ti-1 and ended at time ti+z. We also assume e-block(j+l)
corresponding to Z,+l is made up of a subroutine named S&X. SubK
is called at ti (from within Subs) and returns at ti+l. Prelog(j) and
postlog are made at ti-1 and li+z, respectively; prelog(j+l) and
postlog(j+l) are made at 1; and ti+l, respectively. In this case, we
say log interval I,+r is nested inside log interval Ii.

When the user is interested in the events between li+, and fi+2,
the system retrieves prelog(j) and executes e-block(j) of the emula-
tion package. When the execution of e-block(j) of the emulation
package arrives at the point of the subroutine call corresponding to
e-block(j+l) (SubK), it updates the program state with posttog(j+l)
generated by e-block(jcl) of the object code during the execution
phase instead of executing e-block(j+l) of emulation package, and
proceeds with the execution until it arrives at the end of e-block(j).
The unexecuted portion corresponding to e-block(j+l) will be
represented as a sub-graph node in the dynamic graph. If the user
wants to know more about the execution detai1 of the sub-graph
node, the PPD Controller executes e-block(i+l) of the emulation
package by preparing the initial state with prelog(j+l) from the log
file.

5.3. Object Code and Emulation Package

The Compiler/Linker generates the object code and the emula-
tion package during the preparatory phase. The object code con-
tains the conventional executable code along with code to generate
the log entries. The emulation package is similar to the object code,
except that instead of code to generate the log entries, it contains
code to generate a trace of every useful event. This section
describes how the object code and emulation package are used to

subroutine
Cdl

nested
log interval

subroutine
return

Figure 5.2. A Nested Log Interval

139

perform the flowback analysis.

Once a program is stopped (due to either an error or user inter-
vention), the PPD Controller locates the last prelog whose
corresponding postlog has not yet been generated by the object
code. The Controller sets up the initial state for the emulation pack-
age using this prelog. Then, the Controller locates the e-block of
the emulation package corresponding to this prelog and executes it
to generate the necessary traces to do the flowback analysis for the
events within the e-block. When the flowback analysis is done, the
Controller builds a fragment of dynamic graph such as shown in
Figure 4.1, and presents to the user a simplified and abstract form of
the dynamic graph.

In doing the flowback analysis, the Controller uses the traces
generated by the emulation package, the static graph, and the pro-
gram database (as shown in Figure 3.3). The traces generated in
this example correspond only to the log interval of last prelog gen-
erated, so the portion of dynamic graph presented to the user is
incomplete. After examining the dynamic graph, the user tells the
Controller which dependences are of interest, and therefore which
part of the dynamic graph to extend.

There are two possible cases here: first, there may already be
sufficient traces generated to show the requested dependences;
second, there may not be sufficient traces generated. In the first
case, the Controller merely updates the dynamic graph or builds a
new fragment of the dynamic graph using traces already generated.
In the second case, the Controller locates, with the help of the static
graph and the program database, the log interval whose traces are
needed to complete the requested part of the dynamic graph. The
Controller retrieves the prelog for that interval from the log file and
sets up the initial condition for the emulation package e-block.
After that, the Controller locates the e-block corresponding to that
log interval from the emulation package. The Controller then exe-
cutes the emulation package e-block to generate traces. Finally, the
Controller either updates the dynamic graph or builds a new one.
The entire process is repeated as necessary until the user has enough
of the dynamic graph to locate their bug. Since only the portions of
the dynamic graph in which the user is interested are generated, this
is called incremental tracing.

5.4. Constructing E-blocks

In this section, we describe how to divide the program into
numerous segments of code called e-blocks. The only condition for
several consecutive lines of code to form an e-block is that the entry
point for an e-block must be well defined. Whenever control is
transferred from one e-block to another, the control must be
transferred to the entry point of the second e-block. The entry point
is where the prelog is made. The postlog is made at the exit point
where the control is transferred out of an e-block. One natural can-
didate for constructing an e-block is the subroutine since the entry
and exit points are well defined.

The size of the e-blocks is crucial to the performance of the
system during the execution and debugging phases. In general, if
we make the size of the e-blocks large in favor of the execution
phase, the debugging phase performance will suffer. On the other
hand, if we make the size of the e-blocks small in favor of the
debugging phase, execution phase performance will suffer. While
the number of logging points should be small enough so as not to
introduce an unacceptable performance degradation during the exe-
cution phase, it should also be large enough so as not to introduce
unacceptable time delay in reproducing traces during the debugging
phase. Consider, for example, the case in which the size of a

subroutine is very large. Though the size of a subroutine has no
direct relationship to the time needed to execute it, we can act con-
servatively to construct several e-blocks out of such a large subrou-
tine.

There are other cases of e-blocks that are not subroutines, such
as the for and while loop constructs. Even though the size may be
small, the execution time for these components may be long and
may introduce unacceptable time delay in reproducing the traces.
E-blocks can be defined for such loops so that the debugging phase
can proceed without excessive time spent in re-executing the loops.
Still, if the user is interested in the execution details inside such
loops, the PPD Controller can re-execute the e-blocks corresponding
to the loops.

Small and frequently called subroutines can also be a problem.
If we make an e-block out of each small subroutine, the amount of
logging done during the execution phase may be large enough to
introduce unacceptable performance degradation. To avoid this
problem, it may be better not to make e-blocks out of the small sub-
routines that correspond to leaf nodes in the call graph. In this case,
the direct ancestor subroutines of these leaf subroutines inherit the
USED sets and the DEFINED sets of the leaf subroutines, and per-
form the logging for the descendent subroutines.

5.5. E-Blocks, Parallel Programs, and Reproducible Behavior

So far we have assumed the reproducibility of the debugged
program in describing the operations to perform increment&l trac-
ing. In this section, we describe the possible problems in applying
these operations to parallel programs that lack reproducibility and
also describe our solutions to the problems.

Figure 5.3 contains a subroutine which accesses a global vari-
able named SV. The subroutine also constitutes an e-block. The
statement indicated by arrow is the first statement in the subroutine
that accesses the variable SV after control transfers to this

int
foot)

int a, br ct PI q;
if (p==...)

if (q==...) (
. . .

1 else I /* q */
. . .

1 /" q */
else I /* p */

--, SV= a+b+SV; . . .
1 /* p */

) /* foo3 "/

0 : branching node

0 : non-branching node

ENTRY

EXIT

Figure 5.3. A Subroutine Accessing a Shared Variable
And Its Simplified Static Program Dependence Graph

140

subroutine. In sequential programming, we can make a prelog that
saves the value of SV at the beginning of the e-block. The value of
the SV will not be changed until it is first accessed in the statement
indicated by the arrow. Therefore, we need at most one prelog and
one postlog for each e-block for sequential programming. In paral-
lel programming, them may be more than one process that can
access the same variable.

If SV is a shared variable, we cannot guarantee that the value
of SV saved at the beginning of the e-block will be the same when it
is first read-accessed in the e-block, other processes may have
changed the value of SV between these two moments. Reproducible
program behavior is not guaranteed and traces generated during the
debugging phase may not be the same as they might have been gen-
erated during the execution phase. We need to save more run time
information to ensure the reproducibility of parallel programs. Such
additional information usually includes the values of the shared
variables. The simplified static graph allows us to identify what
additional information we have to generate and where in the pro-
gram we have to generate that information for paratlel programs.

Figure 5.3 shows the simplified static graph for subroutine
foo3. The simplified static graph is a subset of the static graph with
only one edge type (flow edge). ENTRY, EXIT, and sub-graph
nodes (corresponding to subroutine calls) are the same as in the
dynamic graph. However, singular nodes include only control
predicates (shown as branching nodes) and synchronization opera-
tions such as P and V semaphore operations. In our example, we
use only the semaphore operations (P and V operations) as syn-
chronization operations. However, this approach can easily be gen-
eralized to other synchronization primitives.

In constructing the simplified static graph, we are not
interested in the other singular nodes and they are not included in
the simplified static graph. Thus, the non-branching nodes in the
simplified static graph correspond only to ENTRY nodes, EXIT
nodes, synchronization operations, or subroutine calls. Branching
nodes in the simplified static graph represent the possible control
transfers from if or case statements.

By partitioning the program into numerous rynch~onization
units, the simplified static graph allows us to identify what addi-
tional information we need to generate and where in the program we
have to generate that information. We define the synchronization
unit as follows:

Definition 5.1
A synchronization unit consists of all the edges that are reach-
able from a given non-branching node in the simplified static
graph without passing through another non-branching node.

Thus the sets (ei, e2, e3, es. e6, e8? egl, (e4, e91, and (e7, e8r es) in

Figure 5.3 each constitute a synchronization unit. The values of the
shared variables that might be read-accessed inside each synchroni-
zation unit correspond to the additional information, and the begin-
ning point of each synchronization unit corresponds to the place the
additional information is to be generated.

The object code generates an additional prelog (at the begin-
ning of the synchronization unit) for the shared variables that could
be read-accessed inside the unit. There is no corresponding postlog
generated for the write-accessed shared variables at the end of the
synchronization unit, since the reguhu logs generated at the begin-
ning and end of the e-block contain the values of both shared and
non-shared variables. If a synchronization unit does not contain any
accesses to a shared variable, we do not generate a log entry for that
shared variable.

The shared variables accessed by a process in a synchroniza-
tion unit should not be write-accessed by other processes while the
first process is running inside the synchronization unit. Likewise,
the shared variables write-accessed by a process in a synchroniza-
tion unit should not be mad-accessed by other processes while the
first process is running inside the synchronization unit. Otherwise,
there exists a race condition in accessing the shared variables. If
such race conditions do not exist in the user code, no inconsistencies
will occur while using the prelog during debugging. If there exists a
race condition in an execution instance of a program, even though
the log entries am not valid, we can detect and show the causes of
the race condition. Further discussion on the method for detecting
race conditions in an execution instance of a program appears in
Section 6.

The prelog generated at the beginning of a synchronization is
unique in that it does not have the matching postlog. The general
solution might be to construct an e-block out of each synchroniza-
tion unit. However, doing so would increase the number of log
entries to be generated during execution since each e-block gen-
erates logs for the non-shared as well as the shared variables.

5.6. Logging and Parallel Programs

There is one log file for each process of a parallel program.
Sometimes the incomplete part of the dynamic program dependence
graph presented to the user may cross the process boundaries when
an event of a process is dependent upon an event of a different pro-
cess. In this case, the PPD Controller locates the second process
and its log interval to generate traces necessary to show the
requested dependences. In Section 6, We describe how to locate the
second process and how to determine the log interval of the second
process to generate traces.

5.7. Postlogs and Restoration of Program States

Restoration of the program state to a point of program execu-
tion can allow the user to experiment by changing the values of
variables to see the effect of such changes on program behavior.
The postlogs generated during execution will allow for such restora-
tion during the debugging phase. The accumulation of the informa-
tion carried by all the postlogs from the first postlog, postlog(up
to postlog is the same as the information carried by the program
state at the time at which postlog is made. Therefore, we can
restore the program state by using the postlogs from postlog up
to postlog(The program state at any time after that can be
restored by using the restored program state and the object code.
Such restoration of the program state also solves the problem of
halting co-operating processes in a timely fashion[24] since we can
easily restore the program state to the interesting point of program
execution for each halted process.

6. Parallel Dynamic Graph and Ordering Concurrent Events

Ordering concurrent events has two implications. First, it
allows the user to see the possible causal reIatior&ips among the
concurrent events. Second, it allows for the detection of timing
errors in interactions between co-operating processes. In this sec-
tion, we describe the parallel dynamic graph and describe how it is
used to order concurrent events and detect race conditions. The
parallel dynamic graph can also help the user analyze the causes of
deadlocks.

141

6.1. Parallel Dynamic Graph

The parallel dynamic graph is a subset of the dynamic graph
that abstracts out the interactions between processes while hiding
the detailed dependences of local events. Among the edge types of
the dynamic graph, the pa&e1 dynamic graph shows only a
modified form of flow edges (called an internal edge), which
represent the ordering of local events, and the synchronization
edges, which show the initiation and termination of synchronization
events. Figure 6.1 contains an example of a parallel dynamic graph
with three processes.

The parallel dynamic graph of a concurrent program consists
of two edge types: the synchronization edges and the internal edges,
and a single node type called the synchronization nodes. 4 syn-
chronization edge from a node to another node represents a causal
relationship between the events represented by the two nodes (syn-
chronization nodes) such as sending a message and receiving the
message. All the other nodes of the dynamic graph that do not con-
stitute synchronization nodes in the parallel dynamic graph are
called non-synchronization nodes.

An internal edge represents a chain of zero or more non-
synchronization nodes. The synchronization node from which
either an internal edge or synchronization edge starts is called the
start node of the edge, and the synchronization node at which an
edge terminates is calIed the end node of the edge. The internal
edge corresponds to the actual execution of a synchronization unit
described in Section 5.

We define the partial ordering of nodes and the edges of the
parallel dynamic graph using the “+” operator as foIlows[25]:

1) For any two nodes n 1 and Q of the parallel dynamic graph, ni
+ n2 is true if nz is reachable from n1 by following any
sequence of internal and synchronization edges.

2) For two edges el and e2, el -+ ez is true if nl + n2 is true
where n i is the end node of the edge el, and n2 is the start
node of the edge ez.

P2 P3

Figure 6.1 An Example
Parallel Dynamic Program Dependence Graph

Since an internal edge of a process consists of local events of the
process, we can order concurrent events by ordering the internal
edges to which the concurrent events belong. If there is no ordering
between two internal edges, there exists a potential race condition,
More details on detecting race conditions are given later in this sec-
tion.

6.2. Constructing Synchronization Edges

A synchronization edge constructed between two nodes
represents a causal relationship between tbe events represented by
the two nodes and allows for the partial ordering of the concurrent
events. In this section, we describe how to construct syncbroniza-
tion edges for various synchronization operations such as sema-
phore operations. In general, we construct a synchronization edge
between two concurrent synchronization events if we can identify a
causal relationship between the two events.

62.1. Semaphores and Synchronization edges

We construct a synchronization edge when a V operation of a
process unblocks another process. In this case, we create a start
node for the V operation and an end node for the event of being
unblocked. We also construct a synchronization edge for a V and P
semaphore operation pair when the V operation changes the value
of a semaphore variable from zero to one and the P operation is the
next semaphore operation on the same semaphore variable. In this
case, we construct a start node for the V operation and an end node
for the P operation. By convention, we do not construct a synchron-
ization edge in the second case if the V and P operation are done by
the same process. Other synchronization operations which can be
treated similarly are the monitor and the locking operation[26].

6.2.2. Messages and Synchronization Edges

When a system uses messages for inter-process communica-
tion, we defme a synchronization edge by a start node for the event
of sending a message, an end node for the event of receiving the
message, and a synchronization edge from the sending node to the
receiving node.

If the sender is blocked until the message is received by the
receiver, we also deline an end node at the sender for the event of
unblocking, and a synchronization edge from the receiving node to
the end node of the sender. The node at the receiver becomes the
end node of the synchronization edge representing the event of
sending and receiving a message, and the start node of the syn-
chronization edge representing the unblocking of the sender process.
In Figure 6.1, node n3 corresponds to a blocking send, while node n 4
represents the receiving of the message. Node n5 represents the
unblocking event. Edge e4 contains zero events.

6.23. Rendezvous and Synchronization Edges

For the Ada rendezvous, we detiue a start node (on the caller
process) for the event of calling the rendezvous, an end node (on the
callee process) for the event of accepting the call, and a synchroni-
zation edge between the two nodes. We also define a start node (on
the callee) for the event of exiting from the rendezvous block, an
end node (on the caller) for the event of returning from the rendez-
vous call, and a synchronization edge between the two nodes. The
internal edge (on the caller) between the event of calling the rendez-
vous and the event of returning from the call contains zero number
of events since the caller is suspended during the call.

We can treat the remote procedure call (RPC) in a similar way
as we do the rendezvous using two synchronization edges, one for
calling to, and another for returning from the RPC. Message

142

semantics that require the receiver to send a special reply mes-
sage[27] to the sender are similar to the rendezvous.

6.3. Ordering Concurrent Events

The parallel dynamic graph allows for ordering concurrent
events so that we can identify causal relationship between con-
current events and detect race conditions. In Figure 6.1, assume
there exists a shared variable named SV that is write-accessed in
edge ei and read-accessed in edge e3. Them are no other accesses to
SV. In this case, we can see that there exists a data-dependence of
the second event in e3 on the first event in el and can extend the
data dependence edge of the dynamic graph across process and pro-
cessor boundaries by using the parallel dynamic graph. Likewise,
we can extend control dependence edges across the process and pro-
cessor boundaries.

Now, assume that them also exists another write-access to SV
in edge e2. Here, we cannot tell which of the two events (one in e2
and one in e3) happened first; there exists a race condition. This
example shows how we can detect race conditions by using the
parallel dynamic graph.

6.4. Detecting Race Conditions

As described above, we can detect race conditions using paral-
lel dynamic graph. We will define the race conditions more for-
mally here. As a reminder, note that we have stated that, for two
edgese,andea,el+eaistrueifn,+nzistmewherenlistheend
node of e 1 and n 2 is the start node of e 2.
Definition 6. I

Two edges e, and e2 are simultaneous edges if
7 (el + e2) A 7 (e2 -+ el).

Dejinition 4.2
The REAL-SET(e,) is the set of the shared variables read-
accessed in the edge ei. The WRITE-SET(ei) is defined simi-
larly.

Definition 6.3
We say two simultaneous edges e, and e2 are race-free if all
the following conditions are true:
a) WRITESET(e,) n WFXI’l-SET(e2) = 0.
b) WRITE-SET(e J n READ-SET(ed = 0.
b) READ-SET(e J n WRITE_SET(e2) = 0.
In other words, two simultaneous edges e, and e2 are race-
free if there exists no read/write conflict or write/write
conflict between them.

Dejnition 6.4
An execution instance of a program is said to be race-free if
all pairs of the simultaneous edges of the execution instance
are race-free.

The reason why one can say only that an execution “instance” of a
parallel program is race-free is that one cannot tell if a parallel pro-
gram is race-free unless one considers every possible event (internal
or external to the program) that may affect the timing of the process
interactions.

7. Conciusion

Our approach to efficient debugging of parallel programs has
three parts. First, we use flowback analysis to provide direct help to
the programmer to debug parallel programs. We have extended
flowback analysis to programs consisting of cooperating processes.
Flowback analysis has the advantages that it does not require
repeated execution and that it uses semantic knowledge of the pro-
gram to help guide the programmer to the location of bugs.

Second, we have made flowback analysis practical by reduc-
ing the amount of traces generated during program execution by
transferring this cost from execution time to debugging and compi-
lation time. This transfer of cost is accomplished by using semantic
analysis of the debugged program with a technique called incremen-
tal tracing.

Last, we have addressed issues specific to parallel programs -
those relating to synchronization errors. We can help locate the
cause of deadlocks and help detect potential race conditions in pro-
cess interactions.

The paper provides only an overview of our method for
efficiently debugging parallel programs. Many areas require more
detailed description; some of these areas are currently being investi-
gated and some will be addressed in the near future.

We are currently taking a more detailed look at the efficiency
and speed of the debugging phase algorithms. One issue is that the
representation of the various graph data structures can have a large
effect on the speed of the debugging phase algorithms. For exarn-
ple, using bit-mask representations for sets of variables (as opposed
to a list structure) can have a large payoff. A second (and major)
issue is how to detect all potential race conditions in the dynamic
graph from a program’s execution. Given a specific edge in a
program’s dynamic program dependency graph, it is not difficult to
determine if there is another edge that contains a potential
read/write or write/write conflict. The problem of finding all pairs
of possible conflicting edges is more expensive. We are currently
investigating algorithms to reduce the cost of detecting these
conflicts.

Our long range goal is to build a production quality debugger.
To do this, we must consider pointers, separate compilation, and a
user interface. Pointers or aliases make the problem of identifying
the used and defined sets of a variable more difficult. One approach
is to analyze the program to identify the potential aliases for a given
variable [21-23,28,29]. If this analysis produces a small enough
set, then these aliases can be included in the used and defined sets.
A second approach is to simply record all uses of pointer in the logs.
More experience is needed before we can evaluate these alternatives

Separate compilation of the program introduces the problem
of updating inter-procedural information kept in the program data-
base. We must account for the side effects caused by referencing
global variables in a procedure.

A debugger that can provide a rich body of information needs
an easy-to-use interface. The graphical information produced by the
debugging must be presented in a fotm that is easily understood.
This information must be related to information about the program
execution state (such as call stacks) and to the program text. The
interface must also allow the programmer to easily specify what
they want to do.

The premise for the ideas described in this paper is to debug
parallel programs while minimizing the overhead introduced by the
presence of the debugging tools. We have made informal experi-
mental tests of the performance of our techniques. These have been
done by hand-annotating programs using the semantic analyses.
Our measurements show that the tracing added less than 15% to the
program execution time. Though the measurements were done by
using a program with hand-written code to generate log records, we
believe that our prototype Compiler/Liier under construction will
generate object code with similar overhead.

143

8. REFERENCES

UI

PI

[31

[41

bl

[f3

t71

@I

PI

[lOI

[ill

WI

r131

1141

[I61

R. M. Balzer, “EXDAMS - EXtendable Debugging and Monitoring
System,” Proc. of AFIPS Spring Joint Computer Conf. 34 pp. 567-
580 (1969).

K. Cooper, K. Kennedy, and L. Torczon, “The Impact of Interpro-
cess Analysis and Optimization in the R” programming Environ-
ment,” ACM Trans. on Prog. Lang. and Syst. S(4) pp. 491-523
(October 1986).

K. Kennedy, “A Survey of Data-flow Analysis Techniques,” Pro-
gram Flow Analysis: Theory and Applications, S. S. Muchnick and
N. D. Jones, Eds., pp. 5-54 Prentice-Hall, Englewood Cliffs, N.J.,
(1981).

B. Randell, P. A. Lee, and P. C. Treleaven, “Reliability Issues in
Computing System Design,” Computing Surveys lO(2) pp. 123-165
(June 1978).

R. Curtis and L. Wittie, “BUGNET: A Debugging System for Paral-
lel Programming Environment,” Proc. of the 3rd International Conf.
on Distributed Computing Systems, pp. 394-399 Denver, (August
1982).

R. D. Schiffenbaur, “Interactive Debugging in a Distributed Pro-
grams,” MS. Thesis, EECS Tech Report MITILCSITR-264, M.I.T.,
(August 1981).

T. J. LeBlanc and J. M. Mellor-Cmmmey, “Debugging Parallel Pro-
grams with Instant Replay,” IEEE Trans. on Computers C-36(4) pp.
471-482 (April 1987).

E. Dijkstra, “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs,” Comm. of ACM 18(8) pp. 453-457 (1975).

P. C. Bates and J. C. Wileden, “High Level Debugging of Distri-
buted Systems: the Behavioral Abstraction Approach,” J. Systems
and Softwares 4(3) pp. 255-264 (December 1983).

B. Bruegge and P. Hibbard, “Generalized Path Expressions: A High
Level Debugging Mechanism,” Proc. of the SIGSOFTISIGPLAN
Symp. on High-Level Debugging, pp. 34-44 Pacific Grove, Calif.,
(August 1983).

F. Baiardi, N. De Francesco, and G. Vaglini, “Development of a
Debugger for a Concurrent Language,” IEEE Trans. on Sofhvare
Engineering SE-12(4) pp. 547-553 (April 1986).

R. Snodgrass, “Monitoring Distributed Systems: A Relational
Approach,” Ph. D. Thesis, Carnegie-Mellon University, (December
1982).

D. J. Kuck, Y. Muraoka, and S. C. Chen, “On the Number of Opera-
tions Simultaneously Executable in FORTRAN-like Programs and
Their Speed-up,’ ’ IEEE Trans. on Computers, pp. 1293-1310
(December 1972).

J. R. Allen and K. Kennedy, ‘ ‘PFC: A Program to Convert FOR-
TRAN to Parallel Form,” TR 82-6, Dept. of Math. Sciences, Rice
University, Houston, Texas, (March 1982).

J. R. Allen and K. Kennedy, “Automatic Loop Interchange,” Proc.
of the SIGPLAN 84 Symposium on Compiler Construction, pp. 233-
246 Montreal, Canada, (June 1984).

K. J. Ottenstein and L. M. Ottenstein, “The Program Dependency
Graph In A Software Development Environment,” SIGPLAN
Notices 19(5) pp. 177-184 ACM, (May 1984).

[17] J. Ferrante, K. Ottenstein, and J. Warren, “The Program Depen-
dence Graph and Its Use in Optimization,” ACM Trans. on Prog.
Lang. and Syst. 9(3) pp. 319-349 (July 1987).

[18] S. Horwitz, J. Prins, and T. Reps, “Integrating non-interfering ver-
sions of programs,” Proc. of the SIGPLAN 88 Symposium on Princi-
ples of Programming Languages, pp. 133-145 San Diego, CA,
(January 1988).

[19] M. Weiser, “Programmers Use Slices When Debugging,” Commun-
ications of the ACM 25(7)(July 1982).

[20] M. Weiser, “Program Slicing,” IEEE Trans. on Software Engineer-
ing SE-10(4)(July 1984).

[21] J.M. Barth, “A practical interprocedural data flow analysis algo-
rithm,” Communications of the ACM 21(9) pp. 724-736 (September
1978).

[22] J.P. Banning, “An efficient way to find the side effects of procedure
calls and the aliases of variables,” Proc. of the SIGPLAN 79 Sympo-
sium on Principles of Programming Languages, pp. 29-41 San
Antonio, TX, (January 1979).

[23] E. Myers, “A precise inter-procedural data flow algorithm,” Proc.
of the SIGPLAN 81 Symposium on Principles of Programming
Languages, pp. 219-230 Williamsburg, VA, (January 1981).

[24] B. P. Miller and J. D. Choi. “Breakpoints and Halting in Distributed
Programs,” Proc. of the 8th International Conf. on Distributed Com-
puting Systems, San Jose, CA, (June 1988).

[25] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distri-
buted System,” Communications of the ACM 21(7) pp. 558-565
(July 1978).

[26] J. Gray, “Notes on Database Operating Systems,” Lecture Notes in
Computer Science 60: Operating Systems, R. Bayer, R. M. Graham,
and G. Seegmuller. Eds., pp. 393481 Springer-Verlag. Berlin,
(1978).

[27] D. R. Cheriton and W. Zwaenepcel, “The Distributed V kernel and
its Performance for Diskless Workstations,” Proc. of the 9th SOSP,
Operating Systems Review 17(5) pp. 129-140 (November 1983).

[28] C. Ruggieri and T. P. Mtntagh, “Lifetime Analysis of Dynamically
Allocated Objects,” Proc. of the SIGPLAN 88 Symposium on Princi-
ples of Programming Languages, pp. 285-293 San Diego, CA,
(January 1988).

[29] S. Horwitz, P. Pfeiffer, and T. Reps, “Dependence Analysis for
Pointer Variables,” Computer Sciences Tech Report (in prepara-
tion}, Univ. of Wisconsin - Madison, (1988).

144

