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ABSTRACT 

In our research of performance measurement tools for 
parallel and distributed programs, we have developed tech- 
niques for automatically guiding the programmer to perfor- 
mance problems in their application programs. One example of 
such techniques finds the critical path through a graph of a 
program’s execution history. 

This paper presents the design, implementation and test- 
ing of the critical path analysis technique on the IPS perfor- 
mance measurement tool for parallel and distributed programs. 
We create a precedence graph of a program’s activities (Pro- 
gram Activity Graph) with the data collected during the execu- 
tion of a program. The critical path, the longest path in the 
program activity graph, represents the sequence of the program 
activities that take the longest time to execute. Various algo- 
rithms are developed to track the critical path from this graph. 
The events in this path are associated with the entities in the 
source program and the statistical results are displayed based 
on the hierarchical structure of the IPS. The test results from 
the measurement of sample programs show that the knowledge 
of the critical path in a program’s execution helps users identify 
performance problems and better understand the behavior of a 
program. 

1. Introduction 

The execution of a parallel or distributed program can be 
quite complex. Often individual performance metrics do not 
reveal the cause of poor performance, because a sequence of 
activities, spanning several machines or processes, may be 
responsible for slow execution. Consider an example from trad- 
itional procedure profiling. We might discover a procedure in 
our program that is responsible for 90% of the execution time. 
We could hide this problem by splitting the procedure into 10 
subpmcedures, each responsible for 9% of execution time. For 
this reason, it is necessary to detect a situation in which cost is 
dispersed among several procedures, and across process and 
machine boundaries. 

There are other problems that are difficult to detect using 
simple performance metrics. It may be important to determine 
the effect of contention for resources. For example, the 
scheduling or planning of activities on different machines can 
have a great effect on the performance of the entire pro- 
gram[l2]. 
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Our strategy in designing a measurement system is to 
integrate automatic guidance techniques into such a system. 
Therefore, information from these techniques, such as that 
which concerns critical resource utilization, interaction and 
scheduling effects, and program time-phase behavior should be 
available to help users analyze a program’s execution. In our 
research, we have developed one of the techniques - critical 
path analysis for the execution of distributed programs. This 
paper presents the design, implementation, and testing of this 
technique in IPS measurement tool[l6]. Section 2 addresses the 
basic concepts for critical path analysis of the execution of dis- 
tributed programs. Section 3 provides a definition of the criti- 
cal path in the program activity graph and describes the con- 
struction of these graphs based on data collected from measure- 
ment. Different algorithms for calculating the critical path and 
the testing of these algorithms are presented in Section 4. 
Finally, Section 5 shows the application of critical path infor- 
mation to the performance analysis of the execution of distri- 
buted programs, and Section 6 presents conclusions. 

2. Critical Path Analysis 

Turnaround or completion time is an important perfor- 
mance mesure  for parallel programs. When turnaround time 
is used as the measure, speed is the major concern. One way to 
determine the cause of a program’s turnaround time is to find 
the event path in the execution history of the program that has 
the longest duration. This critical path 1131 identifies where in 
the program we should focus our attention. As an example, 
Figure 1 gives the execution history of a distributed program 
with three processes. This figure displays the program history 
at  the process level, and the critical path (identified by the 
bold line) readily shows us the parts of the program with the 
greatest effect on performance. 

We can view a distributed program as having the follow- 
ing characteristics: 

It can be broken down into a number of separate activi- 
ties. 
The time required for each activity can be measured. 

Some activities must be executed serially, while others 
may be carried out in parallel. 
Each activity requires a combination of resources, e.g., 
CPU’s, memory spaces, and 1/0 devices. There may be 
more than one feasible combination of resources fdr dif- 
ferent activities, and each combination is likely to result in 
a different duration of execution. 

Based on these Droperties of a distributed program, we 
can use the critical ;at; method (CPM)[9,13] to analyze a 
program’s execution. The CPM method is commonly used in 



operational research for planning and scheduling, and has also 
been used to  evaluate concurrency in distributed simulations[2]. 
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Figure I: Example of Critical P a t h  

In contrast to  CPM, the technique used in our critical 
path analysis (CPA) is based on the execution history of a pro- 
gram. We can find the path in the program’s execution history 
that took the longest time to  execute. Along this path, we can 
identify the place(s) where the execution of the program took 
the longest time. The knowledge of this path and of the 
bottleneck(s) along it will help us focus on the performance 
problem. 

Turnaround time is not the only critical measure of the 
performance of parallel programs. Often the throughput is 
more important, e.g., in high-speed transaction systems[l4]. 
While, our discussion concentrates on the issue of critical pa;:. 
analysis for turnaround time, the techniques we use to  present 
CPA result (see Section 5.1) are directly applicable to  
throughput. 

3. Program Activity Graph 

To calculate critical paths for the execution of distributed 
programs, we first need to  build graphs that represent program 
activities during the program’s execution. We call these graphs 
program activity graphs (PAGs). The longest path in a pro- 
gram activity graph represents the critical path in the 
program’s execution. In this section, we define the program 
activity graph and related ideas. We then describe how various 
communication primitives of distributed programs are 
represented in program activity graphs and how these graphs 
are built on the basis of information obtained from program 
measurement. 

3.1. Definitions 

The definition of program activity graph is similar to  that 
of an activity network in project planning(61. The execution of 
distributed programs can be divided into many nonoverlapping 
individual jobs, called activities. Each activity requires some 
amount of time, called the duration. A precedence relationship 
exists among the activities, such that some activities must be 
finished before others can start. Therefore, a PAG is defined as 
a weighted, and directed multigraph, that represents program 
activities and their precedence relationship during a program’s 
execution. Each edge represents an activity, and its weight 
represents the duration of the activity. The vertices represent 
beginnings and endings of activities and are the eoents in the 
program (e.g., send/receive and process creation/termination 
events). A dummy activity in a PAG is an edge with zero 
weight that represents only a precedence relationship and not 
any real work in the program. More than one edge can exist 
between the same two vertices in a PAG. 

The critical path for the execution of a distributed pro- 
gram is defined as the longest weighted path in the program 
activity graph. The length of a critical path is the sum of the 
weights of edges on that path. 

3.2. Construction of Program Activity G r a p h  

A program activity graph is constructed from the data 
collected during a program’s execution. There are two require- 
ments for the construction of program activity graphs: first, 
the activities and events represented in a PAG should be 
measurable in the execution of programs; second, the activities 

in a PAG should obey the same precedence relationship as do 
program activities during the execution. 

Two classes of activity considered in our model of distri- 
buted computation are computation and communication. For 
computation activity, the two basic PAG events are starting 
and terminating events. The communication events are based 
on the semantics of our target system, the Charlotte distributed 
operating system[l]. We can build similar graphs for systems 
with different communication semantics. In Charlotte, the 
basic communication primitives are message Send, Rcv and 
Wait system calls. A Send or Rcv call issues a user communi- 
cation request to  the system and returns to  the user process 
without blocking. A Wait call blocks the user process and 
waits for the completion of previously issued Send or Rcv 
activity. Corresponding to these system calls are four commun- 
ication events defined in the PAG: send-call, rcv-call, 
wait-send, and wait-rcv. These primitive events allow us to  
model communication activities in a program. We show, in 
Figure 2, a simple PAG for message send and receive activities 
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in a program. Two extra events of transmit-start and 
transmit-end are included in Figure 2a to depict the underly- 
ing relationship among various communication events. They 
represent the actual data transmission inside the operating sys- 
tem. Since these extra events occur below the application pro- 
gram level, we do not consider them in our PAG. Therefore, 
we transform the graph in Figure 2a into that in Figure 2b and 
still preserve the precedence relationship among the basic com- 
munication events. 

The weights of message communication edges in Figure 2b 
( ted,  t,, t ,  md, and t, ,,), represent the message delivery 
time for differkt activities- Message delivery time is different 
for local and remote messages, and is also affected by message 
length. A general formula for calculating message delivery 
times is: t=T,+T,xL,  where L is the message length, and T, 
and T, are parameters of the operating system and the net- 
work. We have conducted a series of tests to measure values of 
these parameters for Charlotte. We calculated average T, and 
T, for different message activities (intra- and inter-machine 
sends and receives) by measuring the round trip times of intra- 
and inter-machine messages for loo00 messages, with message 
lengths from 0 to the Charlotte maximum packet size. These 
parameters are used to calculate the weight of edges when we 
construct PAGs for application programs. 

Rcv-call 

I 
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(a) Detailed Version (b) Simplified Version 

Figure 2: Constmetion of S i l e  Program Activity Graph 

4. Algorithm of Critical Path Analysis 

An important side issue is how to compute the critical 
path information efficiently. After a PAG is created, the criti- 
cal path is the longest path in the graph. Algorithms for find- 
ing such paths are well studied in graph theory. We have 
implemented a distributed algorithm for finding the one-to-all 
longest paths from a designated source vertex to all other ver- 
tices. A centralized algorithm was also tested as a standard for 
comparison with distributed algorithms. In this section, we 
describe some details of the implementation and testing of 
these algorithms, and provide comparisons between them. 

4.1. Assumptions and Our Testing Environment 

Since all edges in a PAG represent a forward progression 
of time, no cycles can exist in the graph. To  find the longest 
path in such graphs is a much simpler problem than in graphs 
with cycles. Most shortest path algorithms can be easily modi- 
fied to find longest paths of the acyclic graphs. Therefore, in 
the following discussion, we consider those shortest-path algo- 
rithms to be applicable to our longest-path problem. 

A program activity graph consists of several subgraphs 
that are stored in different host machines. The data to build 
these subgraphs are collected during the execution of applica- 
tion programs. We can copy subgraphs between node 
machines; the copying time is included in the execution time of 
algorithms. All subgraphs were sent to one machine to test the 
centralized algorithm. In testing the distributed algorithm, 
subgraphs were either locally processed or sent to some collec- 
tion of machines to be regrouped into bigger subgraphs. 

We used two application programs to generate PAGs for 
testing the longest path algorithms. Application 1 is a group of 
processes in a master-slave structure, and Application 2 is a 
pipeline structure. Both programs have adjustable parameters. 
By varying these parameters, we vary the size of the problem 
and the size of generated PAG's. In graphs generated from 
Application 1, more than 50% of the total vertices were in one 
subgraph, while the remaining ones were evenly distributed 
among the other subgraphs. The vertices in the graphs from 
Application 2 were evenly distributed among all subgraphs. 

All of our tests were run on VAX-11/750 machines. The 
centralized algorithms ran under 4.3BSD UNIX, and the distri- 
buted algorithms ran on the Charlotte distributed operating 
system[ 11. 

4.2. Test of Different Algorithms 

We chose the PDM shortest-path algorithm as the basis 
for our implementation of centralized algorithm[7]. The experi- 
ments of Denardo and Fox[5], Dial et al[8], Pape[l8], and 
Vliet[lS] show that, on the average, the PDM algorithm is fas- 
ter than other shortest-path algorithms if the input graph has a 
low edges-to-vertices ratio (in our graphs, the ratio is about 2). 
An outline of the PDM algorithm and a brief proof for the 
correctness of the algorithm are given in [20]. More detailed 
discussion of the algorithm can be found in [7].' 

Our implementation of the distributed longest path algo- 
rithm is based on Chandy and Misra's distributed shortest 
path algorithm[3]. Every process represents a vertex in the 
graph in their algorithm. However, we chose to represent a 
sub-graph instead of a single vertex in each process because the 
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number of total processes in the Charlotte system is limited 
and we were testing with graphs having thousands of vertices. 
The algorithm is implemented in such a way that there is a 
process for each sub-graph, and each process has a job queue 
for work at  vertices in the sub-graph (labeling the current long- 
est length to a vertex). Messages are sent between processes for 
passing information across sub-graphs (processes). Each pro- 
cess keeps individual message queues to its neighbor processes. 
An outline of the two versions of the distributed algorithm and 
a proof of the correctness of the algorithm appear in [ZO]. A 
detailed discussion of the algorithm is given by Chandy and 
Misra[3]. 

We tested our algorithms with graphs derived from the 
measurement of the execution of Applications 1 and 2. The 
total number of vertices in the graphs varies from a few 
thousand to more than 10,OOO. Speed-up (S) and efficiency 
( E )  are used to compare the performance of the distributed 
and centralized algorithms. Speed-up is defined as the ratio 
between the execution time of the centralized algorithm (T,) to 

the execution time of the distributed algorithm ( T d ) :  S = T, / 
T d .  Efficiency is defined as the ratio of the speed-up to the 

number of machines used in the algorithm: E = S / N. 
We used input graphs with different sizes and ran the 

centralized and distributed algorithms on up to  9 machines. 
Speed-up and efficiency were plotted against the number of 
machines. The results are shown in Figures 3, 4, 5, and 6. We 
can see from these measurements that the distributed algo- 
rithm with larger input graphs and more machines resulted in 
greater speed-up but less efficiency. 

We have observed a speed-up of almost 4 with 9 machines 
for the distributed algorithm. Speed-up increases with the size 
of the input graph and the number of machines participating 
in the algorithm. On the other hand, the efficiency of the algo- 
rithm decreases as more machines are involved in the algo- 
rithm. The sequential nature of synchronous execution of 
diffusing computations determines that the computations in an 
individual machine have to wait for synchronization at  each 
step of the algorithm. As a result, the overall concurrency in 
the algorithm is restricted, and the communication overhead 
with more machines offsets the gain of the speed-up. 

5. Measurement Tests with the Technique of Critical Path 
Analysis 

We have conducted a set of tests in using the technique of 
critical path analysis for the performance measurement of dis- 
tributed application programs. The goal of these tests is to 
show how automatic guidance techniques can be integrated in 
a performance measurement tool, and how these guidance 
information can help us to better understand the performance 
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behavior of a program. In this section, we first give a brief 
description of the system and the program with which we have 
conducted our tests. Then, we present some of the measure- 
ment results in relating to the information from the critical 
path analysis. The final discussion addresses the problem of 
the minimum length of the critical path in a program's execu- 
tion. 

5.1. Test System and Test Program 
All of our tests with the technique of critical path analysis 

were run on the IPS performance measurement system for 
parallel and distributed programs[l6,ZO]. IPS uses a hierarchi- 
cal model as the framework for performance measurement. The 
hierarchical model maps program's behavior to different levels 
of abstraction, and unifies performance data from the whole 
program level down to procedure and statement level. IPS pro- 
vides a wide range of performance information about a 
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program’s execution. This information includes performance 
metrics at  different levels of detail, histograms of the basic 
metrics, and guidance information from the critical path 
analysis. An interactive user interface with simple command 
menu is supported in the IPS. Programmers can interactively 
evaluate the performance history of a distributed program after 
the program terminates normally. 

The presentation of results of critical path analysis offers 
some interesting problems. A PAG may contain more than 
100,ooO nodes; the critical path may contain a nontrivial per- 
centage of these nodes. We use statistical presentation tech- 
niques to display the (time weighted) most commonly occurring 
nodes, and the most commonly occurring sequences in the 
path. We then use high-level language debugging techniques 
to relate these events directly to the source program. Observ- 
ing the most commonly occurring sequences allows us to detect 
performance bottlenecks that span procedure, process, or 
machine boundaries. Performance problem that are divided 
among several procedures, or even among processes or 
machines, are readily apparent. 

The program we have chosen for measurement tests on 
the IPS system is an implementation of the Simple2 method for 
linear progra”ing[4, 111. The so-called columnwise distribu- 
tion algorithm works in a master-slave model. With the given 
problem defined as a matrix, a controller (master) process coor- 
dinates the computation in multiple calculator (slave) processes 
to obtain an optimal solution. All slave processes use the same 
program code but work on different columnwise data of the 
matrix. The configuration for our test is set as follows: the 
input matrix size is 36x36, the program has a controller process 
and 8 calculator processes, and these processes run on 3 node 
machines. 

5.2. Some Test Results 
We start our measurement session by examining the infor- 

mation from various metrics and histograms in IPS. We can 
learn about many aspects of the program’s behavior from this 
information, and have a general picture of the program’s execu- 
tion. For instance, the parallelism of the program is not high 
(around 1.15); there is considerable communication between 
the controller and calculator processes (about 700 messages); 
and each calculator process has light work load and spends 
most of the time in waiting for messages (11% of the time in 
computing, 85% of the time in waiting for messages, and 4% of 
the time in waiting for CPU). However, all this information is 
mainly applicable to individual items in the program. It tells 
us little about the interactions among different parts of a 
program, and about how these interactions affect the overall 
behavior of a program’s execution. Therefore, it is still difficult 
to discover why the parallelism is low, how much communica- 

tion costs affect the program’s execution, and which process 
(controller or calculator) has a bigger impact on the program’s 
behavior. 

The critical path analysis technique in IPS provides gui- 
dance for finding possible bottlenecks in a program’s execution. 
The critical path information is represented by the percentages 
of communication and CPU time of the various parts of the 
program along the total length of the path. Figure 7 gives the 
critical path information at  the program level. We can see that 
the communication cost (including inter-machine and intra- 
machine messages) is more than one third of the total length of 
the critical path. This reflects the fact that the communication 
overhead in Charlotte is relatively high compared to other sys- 
tems[l]. 

Inter-machine Msg 
Intra-machine Msg 1360 
Total 16667 100 

Figure 7: Critical Path Information at Program Level 

Entry Name Time(m) % 
P(1,3) CPU 9140 58 
P(1,3)->P(3,5) Msg 840 5 
P( 3,5)->P( 1,3) Msg 840 5 
P(1,3)->P(2,5) Msg 480 3 
P(2,5)->P(1,3) Msg 480 3 
P(3,4)->P(1,3) Msg 480 3 
P(  1,3)->P( 3,4) Mag 480 3 
P(  1,3)->P(2,4) Msg 440 3 
P(2,4)->P( 1,3) Msg 440 3 
P(1,3)->P(1,5) Msg 408 2 
P(1,5)->P(1,3) Msg 408 2 
P(  1,3)->P( 1,4) Msg 272 2 
P (1,4) ->P (1.3) Msg 212 2 

P(3,5) CPU 

P(3,4) CPU 79 * 

P (1,3) ->P (3,3) Msg 240 1 
P(3,3)->P( 1,3) Msg 240 1 

159 1 
108 1 P(1,5) CPU 

P(2,5) CPU 88 1 

P(2,4) CPU 67 * 
P(1,4) CPU 64 * 
P(3,3) CPU 42 * 
Total 16667 100 

(P( i j )  denotes process j in machine i, denotes lesa than 1%) 

Figure 8: Critical Path Information at Process Level 

The critical path information at  the process level (see Fig- 
ure 8) gives us more details about the program’s execution. 
The execution of the controller process takes 58% of the whole 
length of the critical path, while the execution of all calculator 
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processes take less that 5% of the whole length. The domina- 
tion of the controller process in the critical path restricts the 
overall concurrency of the program. This explains why the 
parallelism for the current configuration is so low. From the 
length of the critical path, we can calculate the maximum 
parallelism of the program[lO, 151, which equals the ratio 
between the total CPU time and the length of the critical path. 
This maximum parallelism depends upon the structure and the 
interactions among the different parts of the program. The 
maximum parallelism for the program under our tests (with 8 
calculators running on 3 machines) is only 1.91. The communi- 
cation costs and the CPU load effects in different machines 
lowered the real parallelism to 1.15. 

Procedure Name 
MainLoop 
Sendchild 
h i t  
read1 
Checkwaiting 
MainLoop 
recv 
MainLoop 
MainLoop 
MainLoop 
MainLoop 

Mach. Process ID Time(%) 

(Mach 1, Proc 3) 17 

(Machl, Proc 3) 4 
(hlach 1, Proc 3) 4 
(Mach 3, Proc 4) 1 
(Mach 1, Proc 3) 1 
(Mach 3, Proc 5) 1 
(Mach 1, Proc 5) 1 
(Mach 2, Proc 4) 1 
(Mach 1, Proc 4) * 

(Mach 1, Proc 3) 21 

(Mach 1, Proc 3) 11 

MainLoop (Mach 2, Proc 5) * 
Total CPU 62 

(* denotes less than 1%) 

Figure 9: Critical Path Information at Procedure Level 

Finally, we display critical path information at  the pro- 
cedure level in Figure 9. This information is useful in locating 
performance problems across machine and process boundaries. 
The top three procedures, that take 49% of the entire length of 
the critical path, are in the controller process. Procedure 
MainLoop in the calculator processes, which is in charge of 
communications between calculators and the controller, takes 
33% of the entire execution time of each calculator process. 
However, they are much less noticeable in the critical path 
because of the dominance of the controller process. 

5.3. Discussion 

We have seen that the execution of the controller process 
dominates the performance behavior. This is because, in our 
test configuration, the controller process serves too many (8) 
calculator processes, but each calculator process is lightly 
loaded. One way to cope with the problem is to reduce the 
number of calculator processes in the program. We have con- 
ducted a set of measurement tests with our test program hav- 
ing 2 to 8 calculator processes for the same 36x36 input matrix, 
running on 3 machines. The test results are shown in Figure 
10. 

& Calculator Processes 

Figure 1 0  Program Elapsed Time in Ditrerent Configurations 

We can observe that, to a certain extent, for this fixed ini- 
tial problem, having fewer calculator processes gives a better 
result. The execution time (also the length of the critical path) 
has its minimum when the program runs with 3 calculators. 
However, if the number of calculator processes gets too small (2 
in this case), each calculator has to do  too much work and 
creates a bottleneck. Note that the test using 2 calculator 
processes is best with respect to the assignment of processes to 
machines (only one process per machine). While in the 3 cal- 
culator case the controller process is running on the same 
machine as a calculator process. Therefore, the contention for 
CPU time among processes is not the major factor that affects 
the overall execution time of the program. 

Fracuon 01 Critical Pal11 1.coglh 

(a) Process Coniponents (b) Message Componenls 

Figure 11: Components of the Critical Path 

The critical path information for these tests (shown in 
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Figure 11) supports our observation. For the configuration of 3 
calculator processes, the controller and calculator processes 
have the best balanced processing loads, and the lowest mes- 
sage overhead. This coincides with the shortest execution time 
in Figure 10. The Simplex program has a master-slave struc- 
ture. The ratio between computation times for the controller 
and calculator processes on the critical path reflects the balanc- 
ing of the processing loads between the master and slaves in 
the program. We have observed that when the master and 
slave processes have evenly distributed processing loads 
(dynamically, not statically), the program shows the best tur- 
naround time. Otherwise, if the master process dominates the 
processing, the performance suffers due to the serial execution 
of the master process. On the other hand, if the slave processes 
dominated, it would be passible to add more slaves. The 
Appendix contains a proof that supports our claim that for pro- 
grams with the master-slave structure, the length of the critical 
path in the program’s execution is at its minimum when the 
path length is evenly distributed between master and slave 
processes. 

The last observation from our tests is that the critical 
path information in our discussion ignores the delays caused by 
competition for the external resources as CPU’s, so that it  
depends entirely on the structure of the program. Actually, we 
can calculate the critical path, using the real elapsed time with 
delays caused by processes waiting for the CPU on a machine. 
Therefore, the results of CPA will also reflect the interactions 
and scheduling of the concurrent events in a program. 

6. Conclusion 
The technique of critical path analysis (CPA) is one 

method that we developed to provide guidance for locating per- 
formance problem in the program. A PAG is created from the 
data collected during program’s execution. The longest path in 
this graph represents the critical path in the execution of the 
program. We have implemented different algorithms to calcu- 
late the critical path in a PAG. Due to the acyclic nature of 
PAG’s, these algorithm are simple and efficient. 

The experimental measurements conducted on the IPS 
system with sample application programs show that the 
knowledge about the critical path in a program’s execution 
helps programmers identify the possible bottlenecks in the pro- 
gram. In addition, this information also allows users to predict 
the program behavior under different configurations. It is pos- 
sible to accommodate various guidance techniques in a perfor- 
mance measurement tool. Developing these guiding techniques 
for performance measurement of parallel and distributed pro- 
grams exposes a new research area which requires a combined 
knowledge of disciplines such as performance measurement, 
program semantics, and algorithm design. 
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7. Appendix 
In the following discussion, we give a simple proof to sup- 

port our claim that for programs with the master-slave struc- 
ture, the length of the critical path in the program’s execution 
reaches the minimum when the whole path length is evenly 
distributed between master and slave processes. Our proof 
applies the related study in Mohan’s thesis[l7] to the aspect of 
critical path length. n 

( hlaSIer ] 

Figure 12: Master-Slave Structure 

Assume that a general master-slave structure is 
represented as N slave processes working synchronously under 
the control of a master process (see Figure 12). Let a computa- 
tion have a total computing time of C ,  consisting of the time 
for master, C,, and the time for slaves, C, (for simplicity, all 
times are deterministic). The computation time in the master 
process includes one part for a fixed processing time (e.g., ini- 
tialization, result reporting time), F,, and another part of per 
slave service time (e.g., job allocating, partial results collecting, 
and communication times with slaves in the program of the 
Simplex method), c,. Therefore, 

C, = N e ,  + F,. 
Assume F, is negligible compared to Nc,, i.e., F,  >> Nc,; we 
have: 

C, = Ne,. 
The nature of the synchronization pattern in the master- 

slave structure determines that the execution of the master pro- 
cess is serialized with the concurrent execution of N slave 
processes. Hence, the length of the critical path in the 
program’s execution, L , ( N ) ,  is: 

C, c, 
L,(N)  = C, + - = Ne,  + -: 

N N 
To find the minimum of L , ( N ) ,  we have: - 

c. -- - e , - - = o ,  d (Le (NI) 

dN NZ 
and - 

N =-\I”. 
C, 



dN 
minimum value a t  the point. Therefore, the minimum length 
of the critical path is: 

C. 

In this equation, both master and slaves have the same amount 
of share (m) in the length of the critical path. This result 
indicates that the length of the critical path reaches to the 
minimum when the entire length is evenly distributed in mas- 
ter and slave processes. 
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