
Detecting Code Reuse Attacks with a Model

of Conformant Program Execution

Emily R. Jacobson, Andrew R. Bernat,
William R. Williams, and Barton P. Miller

Computer Sciences Department, University of Wisconsin
{jacobson,bernat,bill,bart}@cs.wisc.edu

Introduction. Code reuse attacks are an increasingly popular technique for
circumventing program protection mechanisms. Traditionally, security analysts
were concerned with code injection attacks; W ⊕X , which marks pages as ex-
clusively writable (W ) or executable (X), disallows these attacks. Code reuse
attacks bypass W ⊕X by constructing exploits from code already present within
a process; thus, new security approaches are required.

We present a novel technique for efficient, robust detection of code reuse
attacks. Unlike related approaches that rely on an understanding of expected
exploit characteristics, our work is grounded in a model of conformant program
execution (CPE), in which we define what program states are possible during
normal execution. We demonstrate that code reuse attacks violate this model
and thus can be detected. We generate our model automatically from the pro-
gram binary; thus, no learning phase or expert knowledge is required, and new
exploit variations will not circumvent CPE. CPE has high overhead, so we define
observed conformant program execution (OCPE), which validates program state
at system calls. OCPE imposes low overhead as compared to other techniques;
we demonstrate that this relaxed model is sufficient to detect code reuse attacks.

We have implemented our model of OCPE in a tool, ROPStop. At the core of
ROPStop is a strong binary analysis of the code. Unlike previous work, ROPStop
does not rely on known attack characteristics and runs on unmodified binaries.
In our testing, ROPStop accurately detected real exploits while imposing an
average 5.42% overhead on conventional binaries from SPEC CPU2006.

Background. Code reuse attacks search the address space for useful sequences
of instructions, gadgets, and chain these gadgets together to perform the attack.
Return-oriented programming (ROP) uses return instructions to chain together
gadgets; jump-oriented programming (JOP) uses indirect jump instructions [2].

There are a variety of existing techniques designed to mitigate or detect code
reuse attacks. Mitigation approaches make gadget discovery more difficult via
ASLR or software diversification; however, these techniques do not preclude code
reuse attacks, but simply challenge attackers to identify gadgets in more sophis-
ticated ways. Existing detection techniques identify expected characteristics of
these attacks: e.g., expected gadget composition or size, or frequent returns. In
contrast, our work focuses on detecting any violations of CPE and does not rely
on known attack behaviors.

S. Salvatore, S. Angelos, and W. Charles (Eds.): RAID 2013, LNCS 8145, pp. 452–453, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Detecting Code Reuse Attacks 453

Control flow enforcement (e.g., CFI) and anomalous system call detection
(e.g., host-based IDS) may also be effective against code reuse attacks. Unlike
CFI, our work can be applied to an unmodified, running process; unlike learning-
based IDS, our work is based on a model of CPE. Further, OCPE enforces valid
program state at each system call, rather than a valid pattern of system calls.

Conformant Program Execution. CPE is based on observable properties of
the program counter and runtime callstack. A program P is conformant if, for
a given program state, the program counter and callstack are individually valid
and consistent with each other. P has CPE if the program is conformant for all
program states during the execution of P .

A program counter is valid if it points to an instruction in the set of valid
instructions for the program. This requirement eliminates the use of unaligned
instructions that could provide a rich selection of unintended instruction se-
quences to be used in an attack. A callstack C is valid if a height requirement
holds for each frame in C and if a call requirement holds for each pair of ad-
jacent frames. Validating calls between procedures associated with consecutive
stack frames ensures that C represents a valid control flow path through P .

Implementation. ROPStop uses several components from the Dyninst binary
modification and analysis toolkit to perform runtime monitoring and verifica-
tion [1]. ProcControlAPI creates a new process or attaches to a running process
and allows the user (ROPStop) to register callbacks at interesting events; we aug-
mented ProcControlAPI to allow callbacks at system call entry. ParseAPI uses
recursive traversal parsing to construct a whole-program control flow graph;
this analysis uses sophisticated heuristics to recognize functions that are only
reached by indirect control flow and works in the absence of symbol table in-
formation. StackwalkerAPI gathers full callstacks; we extended StackwalkerAPI
to use static dataflow analysis to calculate stack heights. This robust analysis
enables an accurate stackwalk in the absence of debugging information.

Evaluation. We evaluated ROPStop using 4 real ROP and JOP exploits and
a stack smashing attack; ROPStop identifies these exploits with 100% accuracy.
We tested ROPStop with SPEC CPU2006 as a control group of conventional
binaries to evaluate overhead and measure the occurrence of false positives;
ROPStop has an average overhead of 5.42% and no false positives.

References

1. Paradyn Project: Dyninst (2012), http://www.dyninst.org
2. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-Oriented Programming:

Systems, Languages, and Applications. ACM Trans. Info. & System Security 15(1),
2:1–2:34 (Mar 2012)

http://www.dyninst.org

	Detecting Code Reuse Attacks with a Model of Conformant Program Execution
	Introduction.
	Background.
	Conformant Program Execution.
	Implementation.
	Evaluation.




