
Benchmarking the MRNet Distributed Tool Infrastructure: Lessons Learned

Philip C. Roth, Dorian C. Arnold, and Barton P. Miller
Computer Sciences Department

University of Wisconsin
1210 W. Dayton St.

Madison, WI 53706-1685 USA
{ pcroth,darnold,bart} @cs.wisc.edu

Abstract

MRNet is an infrastructure that provides scalable
multicast and data aggregation functionality for distributed
tools. While evaluating MRNet’s performance and
scalability, we learned several important lessons about
benchmarking large-scale, distributed tools and
middleware. First, automation is essential for a successful
benchmarking effort, and should be leveraged whenever
possible during the benchmarking process. Second, micro-
benchmarking is invaluable not only for establishing the
performance of low-level functionality, but also for design
verification and debugging. Third, resource management
systems need substantial improvements in their support for
running tools and applications together. Finally, the most
demanding experiments should be attempted early and
often during a benchmarking effort to increase the chances
of detecting problems with the tool and experimental
methodology.

1. Introduction

The desire to solve large-scale problems has driven the
development of increasingly large parallel and distributed
computing resources. Performance, debugging, and sys-
tem administration tools that work well in small-scale
environments usually fail to scale as systems and applica-
tions get larger or more heterogeneous.

MRNet [10] is a parallel tool infrastructure designed to
reduce the cost of many important tool activities. MRNet
provides scalable multicast and data aggregation support

designed especially for distributed tools. In contrast to the
typical parallel tool organization shown in Figure 1a,
MRNet-based tools incorporate a tree of processes
between the tool’s front-end and its back-ends (commonly
called tool daemons) as shown in Figure 1b. Communica-
tion within MRNet-based tools occurs over logical data
streams; data sent along a stream may be manipulated by
filters.

We evaluated the performance and scalability of
MRNet by measuring its performance within a simple test
harness tool and within a real-world tool. The simple test
tool provided a controlled environment for verification,
benchmarking of fundamental multicast and data aggrega-
tion operations, and debugging. Integrating MRNet into
the Paradyn [7] parallel performance tool provided oppor-
tunities not only for benchmarking MRNet when perform-
ing complicated (and often surprising) collective
communication operations like performance data aggrega-
tion and clock skew detection, but also for identifying
changes to the tool and our experimental methodology to
ease the task of benchmarking large-scale parallel tools.

While evaluating the performance and scalability of
MRNet, we learned several important lessons about
benchmarking tools in large-scale environments. First, we
found that automation is essential for a successful bench-
marking effort and may be used throughout the bench-
marking process. In our benchmarking effort, we
leveraged automation by using a batch resource manage-
ment system for scheduling our experiments, by using
shell scripts to generate batch jobs for an entire scalability
study at once, and by using scripting functionality to con-
trol our tool during an experiment run. We also found that
leveraging automation in the benchmarking process may
require substantial modifications to the tool, e.g., to
remove the tool’s graphical user interface so it can be used
within a batch system. Second, we learned the value of
micro-benchmark experiments. Although our most impor-
tant goal was to show MRNet’s scalability in a real-world

This work is supported in part by Department of Energy Grant DE-FG02-
93ER25176, Lawrence Livermore National Lab grant B504964, and NSF
grants CDA-9623632 and EIA-9870684. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes not-
withstanding any copyright notation thereon.

setting, examining MRNet within a simple test tool was
invaluable not only for gauging the performance of low-
level MRNet operations, but also for verifying its design
and for debugging our initial implementation and experi-
mental methodology. Third, we identified the critical need
for improved tool support in resource management soft-
ware. In our target environment, we found the resource
management system lacked support for running applica-
tions under tool control, forcing us to rely on clumsy, ad
hoc workaround schemes to perform our benchmarking
experiments. Finally, we noted the debugging value of try-
ing large-scale experiments early and often during the
benchmarking process. Too often, we increased the scale
of our experiments only to expose bugs in our software or
experimental methodology that were hidden at the smaller
scales.

This paper is organized as follows. In Section 2 we pro-
vide an overview of the MRNet infrastructure. We present
the lessons we learned while benchmarking MRNet in
Section 3, and we summarize lessons we learned during
our benchmarking effort in Section 4.

2. MRNet

MRNet is software infrastructure that provides scalable
group communication and customizable data aggregation
for distributed tools. Tools use MRNet by linking with the
MRNet library that provides the MRNet API. The MRNet
API encapsulates interactions with a system of MRNet
internal processes that form a tree which connects the tools
front-end to its back-ends. This tree of processes enables
scalable group multicast and reduction communication.

The internal process’ ability to apply filters that manipu-
late in-flight data also allow tools and applications to dis-
tribute their data processing functionality.

In this section, we present an overview of MRNet; a
previous paper [10] describes MRNet’s features, interface,
implementation, and quantitative performance in detail.

2.1. MRNet interface

The MRNet library exports an API that allows a tool to
use a network of internal processes as a communication
substrate between the tool’s front-end and back-end com-
ponents. The MRNet API consists of network, end-point,
communicator, and stream C++ objects.

The network object is used to instantiate the MRNet
network of processes and access end-point objects that
represent tool back-ends. The geometry of MRNet’s net-
work can be customized via a configuration file that speci-
fies the connection topology and host assignment of the
MRNet internal processes. Although MRNet can automat-
ically generate a variety of standard topologies, users can
specify custom MRNet topologies based on the physical
topology of the underlying hardware for performance,
load-balancing, or other reasons. The MRNet communica-
tor object is a container for groups of end-points; commu-
nicators provide a handle that identifies a set of end-points
for point-to-point, multicast or broadcast communication.
A MRNet stream is a logical channel that connects the
front-end to the end-points of a communicator. MRNet
streams transport tool-level data packets downstream,
from the front-end toward the back-ends, and upstream,
from the back-ends toward the front-end.

(a) (b)

Figure 1: The components of a typical parallel tool (a) and an MRNet-based parallel tool (b).
Shaded boxes show potential machine boundaries.

User Interface

Analysis and Control

Back-End0

Process0

Back-End1

Process1

Back-Endn-1

Processn-1

...

...

User Interface

Analysis and Control

Back-End0

Process0

Back-End1

Process1

Back-Endn-1

Processn-1

...

...

......... ...

... ...

M
R

N
et In

tern
al

P
ro

cesses

...

After the MRNet network is instantiated, a tool can
group end-points into a communicator, use that communi-
cator to create a new stream, and use the newly created
stream to send and receive data among the components
connected by the stream. A simplified example of this is
shown in Figure 2. In the front-end code, after the variable
definitions in lines 1-4, an instance of the MRNet network
is created in line 5 using the topology specification from
conf i g_f i l e. At line 6, the newly created network
object is queried for an auto-generated broadcast commu-
nicator that contains all available end-points. In line 7, this
communicator is used to build a stream that will use a
“ floating point maximum” filter to find the maximum
value of floating point data sent upstream. Filters are dis-
cussed in Section 2.3.. MRNet data packets carry typed
data with types specified using I/O primitives and format
strings similar to those used with the pr i nt f /scanf
functions. In the example, “ %d” and “ %f ” are used to
specify an integer and a floating point scalar, respectively,
in the send and receive calls. MRNet also adds specifiers
for arrays of simple data types. In lines 8 and 9, we broad-
cast an integer initializer and await the single floating
point value result. The back-end code reflects the actions
of the front-end. A tool’s back-end connects to the MRNet
network by creating a network object (with no configura-
tion file) as in line 4. In contrast to the front-end’s stream-
specific r ecv call, back-ends call a version of r ecv that
returns both the integer message tag sent by the front-end
and a stream object representing the stream that the front-
end used to send the data. Finally, each back-end sends a
scalar floating point value upstream toward the front-end.

2.2. MRNet internal processes
MRNet internal processes implement streams, the logi-

cal channels over which data flows through the system. In
addition to data packet routing and forwarding, the inter-
nal processes must appropriately apply filters to the data
flow. When streams are established at the front-end, con-
trol messages are sent through the MRNet network to

identify the components that are a part of the stream and
the filter(s) to be used on data packets sent on the stream.
A packet’s header contains an identifier which determines
the stream to which the packet belongs and hence the fil-
ters which must be applied to the packet and internal pro-
cesses or end-points to which the packet should be
forwarded.

MRNet employs various techniques to provide high-
throughput communication. Packet batching groups a
series of packets destined for the same process into fewer
larger messages to reduce communication overhead.
MRNet also uses zero-copy data paths; as a packet passes
through the functional layers of an internal process, it is
manipulated by reference whenever possible to avoid
unnecessary copying.

2.3. MRNet filters
Data aggregation is the process of transforming multi-

ple input data packets into one or more output packets.
MRNet uses filters to aggregate data packets. Filters are
bound to a stream when it is created. MRNet distinguishes
synchronization filters, which receive packets one at a time
and do not output any packets until specified synchroniza-
tion criteria are satisfied, and transformation filters, which
input a group of packets, perform some type of data trans-
formation on the data contained in the packets and output
one or more packets. Synchronization filters are indepen-
dent of the packet data type; transformation filters operate
on packets of a specific type.

In MRNet, synchronization filters are the mechanism to
deal with the asynchronous arrival of packets from chil-
dren nodes. MRNet currently supports three synchroniza-
tion modes:
• Wait For All: wait for a packet from every child node;
• Time Out: wait a specified time or until a packet has

arrived from every child; and
• Do Not Wait: output packets immediately.

Transformation filters combine data from multiple
packets by performing an aggregation that yields one or

f r ont _end_mai n() {
1. Net wor k * net ;
2. Communi cat or * comm;
3. St r eam * st r eam;
4. f l oat r esul t ;

5. net = new Net wor k(conf i g_f i l e) ;
6. comm = net - >get Br oadcast Comm() ;
7. st r eam = new St r eam(comm, FMAX_FI L) ;
8. st r eam- >send(“ %d” , FLOAT_MAX_I NI T) ;
9. st r eam- >r ecv(“ %f ” , r esul t) ;

}

back_end_mai n() {

1. St r eam * st r eam;
2. Net wor k * net ;
3. i nt val ;

4. net = new Net wor k() ;
5. net - >r ecv(“ %d” , &val , &st r eam) ;
6. i f (val == FLOAT_MAX_I NI T) {
7. st r eam- >send(“ %f ” , r and_f l oat) ;

}
}

(a) (b)

Figure 2: Example MRNet front-end (a) and back-end code (b).

more new data packets. Transformations are synchronous,
and may carry state from one transformation operation to
the next. MRNet provides several built-in transformation
filters:
• Basic scalar operations: min, max, sum and average on

integers or floats; and
• Concatenation: input n scalars and output them as an n-

element vector.
MRNet allows tool developers to add new filters to the

provided set using l oad_Fi l t er Func , a function that
takes the name of a filter function and the name of a shared
object that contains the filter function and returns an iden-
tifier that can be used to bind the filter to streams. This
function leverages the operating system’s API for manag-
ing shared objects (e.g., dl open and dl sym on UNIX
systems).

2.4. MRNet instantiation

We currently support two modes of instantiating
MRNet-based tools. In environments where a resource
manager is available, MRNet cooperates with the system’s
resource manager to launch the tool. In simple environ-

ments, MRNet is instantiated using primitive remote shell
facilities like r sh or ssh.

In the first mode of instantiation (shown in Figure3),
MRNet relies on the resident resource management system
to create some or all of the MRNet processes to accommo-
date the cases where MRNet cannot properly instantiate a
tool’s back-end processes. For example, MRNet may not
be able to provide the environment needed to create the
processes successfully. In cases like these, MRNet creates
its internal processes recursively as in the first instantiation
mode, but does not instantiate any back-end processes.
The tool starts the tool back-ends using the resource sys-
tem. MRNet uses a shared filesystem or some other avail-
able information transfer method to provide the back-ends
with the information they need to connect to the MRNet
internal process tree, such as the parent processes’ host
names and connection port numbers.

In the second mode of instantiation (shown in
Figure 4), MRNet creates the internal and back-end pro-
cesses, using the specified MRNet topology configuration
to determine the hosts on which the components should be
located. Starting with the front-end, as each parent node is
created, it consults the configuration and uses the remote
shell facility to create its children nodes (internal pro-

(a) MRNet spawns first level of
internal processes

(b) Internal processes spawn further
tree levels in parallel

(c) Resource management system (RMS) creates
tool back-end processes

(d) Tool back-end processes connect to leaves of
MRNet internal process tree

Figure 3: MRNet instantiation using a resource management system. When the tool front-end
instantiates MRNet, MRNet spawns its internal process tree recursively and in parallel using a
remote shell utility like rsh (a, b). Once all MRNet internal processes are instantiated, the tool
issues a request to the resource management system to start the tool back-ends (c). The back-
ends connect to the leaves of the MRNet process tree to complete MRNet instantiation (d).

FE FE

BE BE BE BE BE BE BE

FE

RMS

BE BE BE BE BE BE BE BE

FE

BE BEBE

cesses or application end-points) on the appropriate hosts.
Each newly created process establishes a connection to the
parent process that created it. The parent process uses this
connection to send its child process the portion of the con-
figuration relevant to each child so it may continue the
instantiation of the sub-tree rooted at that child.

3. Benchmarking MRNet: lessons learned

To evaluate MRNet, we measured its performance and
scalability in both a simple test tool for micro-benchmark-
ing and when integrated into Paradyn, a real-world parallel
performance tool. We evaluated MRNet on the ASCI Blue
Pacific system [1] at Lawrence Livermore National Labo-
ratory. While evaluating MRNet, we recognized several
important lessons about benchmarking tools in large-scale
and distributed environments.

3.1. Automation is essential

For all but the simplest experiment plans, automation is
essential for completing an experiment plan successfully
and on time. We exploited automation throughout our
benchmarking effort including the use of LCRM [2], the

batch system at LLNL, for scheduling and running our
experiments, the use of shell scripts to generate the jobs
comprising an entire scalability study at one time, and the
use of tool scripting support and hardwired control within
the tool to control individual experiment runs.

Early in our benchmarking effort, we chose to use the
LCRM batch system for scheduling and launching our
experiments on Blue Pacific. There were several reasons
for our decision to use LCRM. First, Blue Pacific policy
severely limits the number of nodes available to interactive
jobs; the node limits are much more reasonable for batch
jobs. Second, batch jobs can request dedicated resources,
whereas interactive jobs may share their nodes with other
interactive jobs. Third, the batch system greatly reduces
the need for us as experimenters to schedule our experi-
ments, find enough free resources, and launch and monitor
our experiments. In fact, using the batch system often
allowed us to run several smaller-scale experiments simul-
taneously, greatly reducing the time required to perform a
scalability study. Although we could have performed this
scheduling manually, we doubt we would have run many
experiments concurrently because of the difficulty of
scheduling and monitoring the jobs. When submitting
experiment jobs to the batch system, we developed a set of

(a) MRNet spawns first level of
internal processes

(b) Internal processes spawn further
tree levels in parallel

(c) Leaves of internal process tree
spawn tool back-ends

Figure 4: MRNet instantiation in environments without a resource management system. When
the tool front-end instantiates MRNet, MRNet spawns its internal process tree recursively and in
parallel using a remote shell utility like rsh (a, b). When all MRNet internal processes have been
created, MRNet spawns the tool back-ends using the remote shell utility to complete MRNet
instantiation (c).

FE FE

BE BE BE BE BE BE BE BE

FE

BE

parameterized shell scripts that generated and submitted
jobs for an entire scalability study at once, exhibiting yet
another use of automation to ease our benchmarking pro-
cess.

In benchmarking MRNet, we used a crude, manual
approach for managing our experiments and collecting
performance data. We used sed and awk scripts to
extract the data from each experiment’s standard output
file. We pasted that data into a spreadsheet, and used the
spreadsheet charting functionality to generate our initial
graphs. The next step beyond these simplistic techniques is
to use an experiment management system like Electronic
Notebooks [3], Zoo [5], Karavanic’s experiment manage-
ment system [6], and ZENTURIO [9] that automate many
of the data management and experiment generation activi-
ties that we performed manually.

Using the LCRM batch system proved to be a substan-
tial benefit for managing our experimental plan and for
reducing the time required for experimentation. However,
automating our experimental process with LCRM and the
job submission scripts led to several significant and costly
changes to our real-world tool and our approach for run-
ning experiments.

Unlike our simple test tool, Paradyn was designed to be
an on-line interactive tool with a graphical user interface.
Interactive experimentation using Paradyn’s graphical user
interface is not feasible for use in the scalability studies we
used to evaluate MRNet. It is possible to run programs
with an X Window System-based GUI from batch jobs on
Blue Pacific with judicious use of the xaut h command.
In this case, the program’s GUI is displayed once the job
runs. We rejected this approach for our experimentation
for two reasons. First, the delay between submitting the
job and when it is actually run can vary greatly depending
on the other jobs in the batch queue and the number of
nodes requested for the job. Second, using interactive jobs
for experimentation requires an operator be present to
start, control, and monitor the experiments; this is a
tedious and error-prone task. Third, the delay imposed by
displaying the tool’s GUI remotely was non-negligible and
perturbed our benchmarking results. Therefore, we
adapted Paradyn and our experimental methodology so
that our experiments could be submitted and run without a
user interface.

When run interactively, the user controls Paradyn by
interacting with its graphical user interface. Since we
removed its user interface for our experiments, we used
scripting and hardwired control logic to control the tool
during each experiment run. Paradyn supports minimal
tool scripting functionality using Metric Definition
Language [4] files, but such support is limited to setting
parameter values and creating application processes at tool
start-up. To control the tool once the application processes

had been created, we added hardwired control logic to the
tool to start the application and configure the tool to col-
lect the performance data we needed for our benchmark
tests.

Although we finally found an approach that allowed us
to automate our benchmarking process, adapting our tool
and experimental methodology was costly. We strongly
recommend that all tool builders design their tools with
automation in mind by supporting a non-interactive mode
where the tool can be run without a graphical user inter-
face, and by providing tool scripting support that exposes
all of the tool’s functionality to the scripting language.
These recommendations are especially important for those
developing on-line tools like Paradyn that interact with the
application as it runs.

3.2. Micro-benchmarks are invaluable for design
validation and debugging

Although our most important goal in benchmarking
MRNet was to show its scalability and performance in the
context of a real-world tool, we initially examined the
behavior of important low-level MRNet functionality in a
simple, controlled environment. We implemented a test
harness tool that performed several micro-benchmarks.
Using this tool, we measured the latency of instantiating
the MRNet process network, the latency of a single broad-
cast/reduction pair, and the throughput while performing
repeated MRNet reductions. The micro-benchmarks were
invaluable not only for establishing the performance and
scalability of MRNet (quantitative results were given in
previous work [10]), but also for validating the MRNet
design and for exposing subtle bugs in the implementation
that would have been difficult to detect from the real-
world tool benchmark results.

Our micro-benchmark experiments were critical for
verifying the MRNet design and for finding bugs in its
prototype implementation. For example, when looking at
the results of the round-trip latency scalability study, we
expected to find a clear exponential increase in the round-
trip latency when not using MRNet, and at most a small,
steady increase in the latency when using MRNet. Ini-
tially, the results roughly exhibited these trends, but did
not exhibit the smooth curves that we expected as we
increased the number of tool back-ends. After much inves-
tigation, we found that the MRNet micro-benchmark
results were falling victim to the Nagling algorithm [11],
the TCP/IP socket performance enhancement option
whereby sends of small messages are delayed with the
hope that another send will occur soon that can be concat-
enated with the original send. Once we turned off the
Nagling algorithm for MRNet sockets, our micro-bench-
marks confirmed the scalability of MRNet’s multicast and

data aggregation operations. Because of the higher level of
communication complexity within Paradyn, this bug
would have been much more difficult to uncover based
solely on the results taken from our real-world tool experi-
ments. Our experience with micro-benchmarks also pro-
vided strong evidence for the critical need for resiliency
and reliability in distributed infrastructure; we will address
MRNet resiliency and reliability in future work.

3.3. Resource management systems need
improved tool support

Early in our MRNet benchmarking effort, we realized
that the resource management system in our target envi-
ronment had a critical need for improved tool support.
Starting Paradyn, MRNet processes, and an application
together within a batch job is not supported by the batch
system on Blue Pacific, requiring a clumsy, ad hoc
workaround to support our experimentation.

On the LLNL’s IBM systems (including Blue Pacific),
the batch system requests IBM’s LoadLeveler to allocate a
node partition for the job, and to set up the environment
within that partition for the job’s processes. In the typical
case, the job’s batch script invokes the poe parallel pro-
cess launcher command to start an MPI application. The
LoadLeveler-provided environment causes poe to create
application processes on each node of the partition (though
not necessarily one process per processor within the
nodes). Unfortunately, the typical LLNL batch sys-
tem/LoadLeveler/poe usage model is insufficient for our
needs. For our experiments, the application processes, tool
processes, and MRNet processes must be running at the
same time. Because the LLNL batch system does not sup-
port co-scheduled jobs, we must run application processes,
tool processes, and MRNet processes within the same
node partition. However, we also wish to keep the applica-
tion processes distinct from the tool processes to avoid
having the tool perturb the application’s behavior. In
effect, we wish to divide the LoadLeveler node partition
into a sub-partition for the application, a sub-partition for
the tool processes, and a sub-partition for the MRNet
internal processes.

Starting the application and tool in the same partition
under the LLNL batch system requires several more modi-
fications to Paradyn and a carefully-crafted job batch
script. As with the micro-benchmark experiment jobs, the
job’s batch script must determine the names of the nodes
available in the allocated partition. The node running the
job script is allocated to run the tool’s front-end. Next, the
script allocates a subset of the available nodes for running
the application and the tool daemons. (Paradyn’s daemons
run on the same nodes as the application processes
because they communicate performance data between

application process and daemon using shared memory.)
The nodes that will run application processes and tool dae-
mons is written to a poe “host file” for later use. The list
of remaining nodes is passed to MRNet’s configuration
generator utility, which produces an MRNet configuration
file. Finally, the job script starts the Paradyn front-end,
providing it with the location of the application node file
and the MRNet configuration file. The front-end launches
the Paradyn daemons using poe and the host file written
earlier. The Paradyn daemons initialize and waits to estab-
lish its connection to MRNet. The front-end then instanti-
ates the MRNet network using the instantiation mode
where MRNet creates internal processes but does not cre-
ate the tool back-ends. The front-end finishes its tool start-
up by issuing the request to MRNet to connect its leaves to
the tool daemons. Once the daemons are connected to
MRNet, Paradyn performs its MRNet-based start-up
activities [10] like clock skew detection and determination
of the name and location of all functions.

Lack of support for running tools with applications is
not restricted to the resource management system on Blue
Pacific; it is endemic within resource management sys-
tems for MPPs, clusters, and the Grid. The Tool Daemon
Protocol (TDP) [8] promises to alleviate this problem.
TDP defines an interface between tools and resource man-
agement systems that exposes information and control
functionality from the resource manager to the tool, while
allowing the resource manager to directly control the
application process. For our experimentation, the ability to
either (a) co-schedule jobs with LCRM or (b) sub-partition
the LoadLeveler partition would have greatly simplified
our experimental approach; we recommend that resource
management systems provide these capabilities whenever
possible to support tool experimentation and use.

3.4. Run at scale, early and often

As we neared the end of our MRNet benchmarking
effort, we found that we followed a poor approach for run-
ning our large-scale experiments. When we started bench-
marking, it seemed natural to experiment at the smaller
scales first to expose and fix bugs in the MRNet imple-
mentation and experimental methodology. However, we
found that each time we tried to increase the scale of our
experiments (e.g., increasing the tool back-ends to the next
power of two), we found new problems that were not evi-
dent at the smaller scale. These problems included hard-
coded limits within Paradyn and the tool infrastructure and
race conditions that did not manifest themselves until
enough concurrency was present in the tool system. After
debugging and fixing the problems at a given scale, we
would inevitably have to re-run the experiments at the

smaller scales because we had changed the code. In all,
our approach turned out to be highly inefficient.

In retrospect, we would have been better served by
adopting an approach where we ran large-scale experi-
ments early in the benchmarking effort and frequently
throughout our experimental plan. This approach maxi-
mizes the likelihood of finding the bugs that manifest
themselves only at scale, leaving the most time to identify
and fix them. Also, in situations where the resources
required for extremely large-scale experimentation are
available infrequently (e.g., jobs using more than 512 pro-
cessors are not allowed to run during the daytime on Blue
Pacific), this approach improves the chances of obtaining
the needed resources at all.

4. Summary

MRNet is a parallel tool infrastructure that provides
scalable multicast and data aggregation functionality. To
evaluate MRNet, we measured its performance and scal-
ability within a simple test tool and within Paradyn, a real-
world performance tool. Using the test tool, we measured
the latency and throughput of simple collective communi-
cation operations as we increased the number of tool back-
ends. These experiments gave us confidence in MRNet’s
design and initial implementation. Using the MRNet-
based Paradyn implementation, we measured the tool’s
start-up latency as we increased the number of tool dae-
mons. We also measured the tool’s ability to process the
performance data generated by its daemons as we varied
the load and increased the number of daemons.

In the process of evaluating MRNet, we learned several
important lessons (or reinforced lessons we already knew)
about benchmarking tools in large-scale environments:
• Automation is essential for a successful benchmarking

effort, and should be leveraged throughout the bench-
marking process.

• Micro-benchmarks are invaluable for verifying the
design and for debugging low-level tool functionality.

• Resource management systems need significant
improvement in their support for running tools and
applications together. All resource management devel-
opers must recognize the importance of supporting
tools and embrace approaches like the Tool Daemon
Protocol. Until that happens, clumsy workarounds will
continue to be necessary for using tools with resource
management systems.

• Try the most demanding experiments early and often
during the benchmarking effort. In benchmarking
MRNet, the most demanding experiments were the
large-scale experiments (i.e., those with the most tool
back-ends). This approach increases the chances of
detecting bugs in the tool and experimental methodol-

ogy that occur only at scale, and the chances of having
sufficient time to deal with such bugs.

Acknowledgments

This paper benefited from the hard work of past and
present members of the Paradyn research group. We also
thank Chris Chambreau, Jeff Vetter, Barbara Herron,
Charlie Hargraeves, and especially John Gyllenhaal for
help with the environment on ASCI Blue Pacific.

References

[1] Lawrence Livermore National Laboratory, “Using ASCI
Blue Pacific” , http://www.llnl.gov/asci/platforms/bluepac/,
February 13, 2003.

[2] Lawrence Livermore National Laboratory, “Livermore
Computing Resource Management System (LCRM)”,
http://www.llnl.gov/computing/tutorials/lcrm/,
November 25, 2003.

[3] A. Geist, J. Schwidder, D. Jung, and N. Nachtigal, “ORNL
Electronic Notebook Project” ,
http://www.csm.ornl.gov/~geist/java/applets/enote/,
November 26, 2003.

[4] J.K. Hollingsworth, B.P. Miller, M.J.R. Goncalves, O. Naim,
Z. Xu, and L. Zheng, “MDL: A Language and Compiler for
Dynamic Program Instrumentation” , International
Conference on Parallel Architectures and Compilation
Techniques (PACT ‘97), San Francisco, California,
November 1997, pp. 201–213.

[5] Y. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti, “Zoo:
A Desktop Experiment Management Environment” , 22nd
International VLDB Conference, Bombay, India, September
1996, pp. 274–285.

[6] K.L. Karavanic and B.P. Miller, “Experiment Management
Support for Performance Tuning” , SC97, San Jose,
California, November 1997.

[7] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K.
Hollingsworth, R.B. Irvin, K.L. Karavanic,
K.Kunchithapadam, and T. Newhall, “The Paradyn Parallel
Performance Measurement Tool” , IEEE Computer 28, 11,
November 1995, pp. 37–46.

[8] B.P. Miller, A. Cortes, M. A. Senar, and M. Livny, “The Tool
Daemon Protocol (TDP)” , SC 2003, Phoenix, Arizona,
November 2003.

[9] R. Prodan and T. Fahringer, “A Web Service-Based
Experiment Management System for the Grid” , 17th
International Parallel and Distributed Processing
Symposium (IPDPS 2003), Nice, France, April 2003, pp. 85–
94.

[10] P.C. Roth, D.C. Arnold, and B.P. Miller, “MRNet: A
Software-Based Multicast/Reduction Network for Scalable
Tools” , SC 2003, Phoenix, Arizona, November 2003.

[11] W.R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols,
Addison-Wesley, Reading, Massachusetts, January 1994.

	Benchmarking the MRNet Distributed Tool Infrastructure: Lessons Learned
	Philip C. Roth, Dorian C. Arnold, and Barton P. Miller
	Computer Sciences Department University of Wisconsin 1210 W. Dayton St. Madison, WI 53706-1685 US...
	Abstract
	1. Introduction
	Figure�1: The components of a typical parallel tool (a) and an MRNet-based parallel tool (b). Sha...

	2. MRNet
	Figure�2: Example MRNet front-end (a) and back-end code (b).
	Figure�3: MRNet instantiation using a resource management system. When the tool front-end instant...
	Figure�4: MRNet instantiation in environments without a resource management system. When the tool...

	3. Benchmarking MRNet: lessons learned
	4. Summary
	Acknowledgments

	References
	[1] Lawrence Livermore National Laboratory, “Using ASCI Blue Pacific”, http://www.llnl.gov/asci/p...
	[2] Lawrence Livermore National Laboratory, “Livermore Computing Resource Management System (LCRM...
	[3] A. Geist, J. Schwidder, D. Jung, and N. Nachtigal, “ORNL Electronic Notebook Project”, http:/...
	[4] J.K. Hollingsworth, B.P. Miller, M.J.R. Goncalves, O. Naim, Z. Xu, and L. Zheng, “MDL: A Lang...
	[5] Y. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti, “Zoo: A Desktop Experiment Management En...
	[6] K.L. Karavanic and B.P. Miller, “Experiment Management Support for Performance Tuning”, SC97,...
	[7] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic, K...
	[8] B.P. Miller, A. Cortes, M. A. Senar, and M. Livny, “The Tool Daemon Protocol (TDP)”, SC 2003,...
	[9] R. Prodan and T. Fahringer, “A Web Service-Based Experiment Management System for the Grid”, ...
	[10] P.C. Roth, D.C. Arnold, and B.P. Miller, “MRNet: A Software-Based Multicast/Reduction Networ...
	[11] W.R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, Reading, Massachu...

