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Abstract

Binary code authorship identification determines authors
of a binary program. Existing techniques have used su-
pervised machine learning for this task. In this paper,
we look this problem from an attacker’s perspective. We
aim to modify a test binary, such that it not only causes
misprediction but also maintains the functionality of the
original input binary. Attacks against binary code are
intrinsically more difficult than attacks against domains
such as computer vision, where attackers can change
each pixel of the input image independently and still
maintain a valid image. For binary code, even flipping
one bit of a binary may cause the binary to be invalid, to
crash at the run-time, or to lose the original functionality.

We investigate two types of attacks: untargeted at-
tacks, causing misprediction to any of the incorrect au-
thors, and targeted attacks, causing misprediction to a
specific one among the incorrect authors. We develop
two key attack capabilities: feature vector modification,
generating an adversarial feature vector that both corre-
sponds to a real binary and causes the required mispre-
diction, and input binary modification, modifying the in-
put binary to match the adversarial feature vector while
maintaining the functionality of the input binary.

We evaluated our attack against classifiers trained with
a state-of-the-art method for authorship attribution. The
classifiers for authorship identification have 91% accu-
racy on average. Our untargeted attack has a 96% suc-
cess rate on average, showing that we can effectively sup-
press authorship signal. Our targeted attack has a 46%
success rate on average, showing that it is possible, but
significantly more difficult to impersonate a specific pro-
grammer’s style. Our attack reveals that existing binary
code authorship identification techniques rely on code
features that are easy to modify, and thus are vulnerable
to attacks.

1 Introduction

The task of binary code authorship attribution is to de-
termine the authors of a binary program, and has signif-
icant application to malware forensics, software supply
chain risk management, and software plagiarism detec-
tion. Recent studies [1, 6, 17, 18, 26] have made sig-
nificant progress in developing machine learning based
techniques to identify authors of binary programs. In this
paper, we look at the problem of authorship identification
from an attacker’s perspective and attempt to perform au-
thorship evasion, whose goal is to trick machine learn-
ing classifiers for authorship identification into making
wrong predictions. We show that adversarial machine
learning can pose a threat to binary code authorship iden-
tification when confronted with a carefully crafted binary
code artifact, causing these classifiers to produce mis-
leading results.

Authorship evasion is the application of adversarial
machine learning to authorship identification. The field
of adversarial machine learning has focused on attack-
ing and defending machine learning systems used in real
world applications [4]. A specific threat is called a test
time attack, where attackers change a test example to
cause misprediction. Researchers have performed suc-
cessful test time attacks for a wide range of domains,
including computer vision [2, 7, 28], audio processing
[37], and program analysis tasks [8, 27]. Such test time
attacks can have serious security implications. For ex-
ample, Grosse et al. [8] showed that they can change the
manifest file of an Android program to circumvent mal-
ware detection; and Simko et al. [27] showed that when
given source code from other people, a programmer can
change the source code to avoid authorship attribution.

However, currently there are no such attacks against
binary code authorship identification. The key challenge
for developing such attacks is to modify the binary to
not only cause misprediction, but also maintain the struc-
tural validity and functionality of the binary. Even flip-
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ping one bit of a binary may cause the binary to either
be invalid, such as not loadable by the loader, or lose
functionality that the attackers care about. Therefore, at-
tacks against binary code are intrinsically more difficult
than attacks targeted at domains such as computer vision,
where attackers can change each pixel of the input image
independently and still maintain a valid image.

In this paper, we present a framework for automat-
ically attacking techniques for binary code authorship
identification. The implications of our attack framework
are three-fold. First, we show that it is realistic to au-
tomatically attack binary in an end-to-end fashion: we
take a binary program as input and generate a new, valid
binary that has the same functionality as the input bi-
nary and causes misprediction. Second, our techniques
can be used for adversarial re-training to train more se-
cure classifiers, incorporating the generated adversarial
examples into the training set to re-train a classifier with
a modified loss function [13, 19]. Third, based on our
experiences, we summarize the lessons we learned for
designing more secure machine learning systems for bi-
nary analysis tasks.

Operationally, there are three different types of at-
tacks: (1) the confidence-loss attack, which is to remove
any fingerprints and anonymize the program, such that
the target classifier rejects to make a prediction; (2) the
untargeted attack, which is to cause misprediction to
any of the incorrect authors; and (3) the targeted attack,
which is to cause misprediction to a specific incorrect au-
thor. To perform a confidence-loss attack, the target clas-
sifier must have the capability to reject an input binary
based on the lack of confidence in the prediction. How-
ever, most existing techniques for binary code authorship
identification do not consider the confidence of their pre-
diction [1, 26]. Therefore, we focus on untargeted and
targeted attacks.

Stealthiness is an important design goal of our attack.
Our attack should not leave obvious footprints that can
be easily detected. We aim to improve stealthiness in
two dimensions. First, the generated adversarial binary
should be similar to the original binary in structure. We
prefer small and local modifications over large and global
modifications. Second, our attack should be diversified,
meaning when running multiple times with the same in-
put, our attack should generate different adversarial bi-
naries. Diversified attacks make hash-based detection
strategies ineffective.

We make two main assumptions about the threat
model. First, the attackers have perfect knowledge of
target authorship identification tool. This assumption
allows performing a worst-case evaluation of the secu-
rity of the target authorship identification tool, common
when performing test time attacks [2, 7, 27, 28]. Sec-
ond, the attackers plan to perform a test time attack, so

they can affect the prediction results only by providing a
crafted input binary. Other possible attacks against learn-
ing systems such as training set poisoning [3, 15] are not
in the scope of this paper.

Authorship identification techniques have a training
stage and a testing stage. While we do not directly attack
the training stage, three choices made in this stage im-
pact our attacks. First, the design of the binary code fea-
tures determines the program properties of the binary to
modify during attacks. Features are typically defined to
describe program properties including machine instruc-
tions, program control flow, constant strings, and pro-
gram meta-data such as function symbols. Second, iden-
tification techniques use binary code analysis tools such
as Dyninst [23], NDISASM [29] or Radare2 [20] for
feature extraction. A key part of our attack is to mod-
ify the binary and trick the binary code analysis tools
into extracting modified features to cause misprediction.
Third, based on the machine learning algorithm used by
the identification technique, the attacker may need to use
different attack algorithms to determine which features
should be modified to cause misprediction. There are
existing attack algorithms for a variety of learning mod-
els, including Deep Neural Networks (DNNs) [7], Ran-
dom Forests (RFs) [11], and Support Vector Machines
(SVMs)[2, 8].

Our attack ties closely to the testing stage. Figure 1
illustrates the testing stage and the key steps of our at-
tack. The testing stage has two key steps: extracting
code features from the input binary to construct a fea-
ture vector and applying the pre-trained model on the
feature vector to generate the prediction results. Our
new attack focuses on developing two interacting attack-
ing abilities: feature vector modification, generating an
adversarial feature vector that corresponds to a real bi-
nary and causes the required misprediction, and input bi-
nary modification, modifying the input binary to match
the adversarial feature vector while maintaining the func-
tionality of the input binary. Feature vector modifica-
tion guides what input binary modification should be per-
formed to cause misprediction, while input binary modi-
fication gives feedback to feature vector modification as
to which features are difficult to modify, guiding feature
vector modification to avoid modifying difficult features.

Our attack framework introduces a large space for gen-
erating diversified attacks. Given an input binary and
the misprediction target, feature vector modification can
generate different adversarial feature vectors to cause the
required misprediction. Give an adversarial feature vec-
tor, input binary modification can generate different ad-
versarial binaries to match the feature vector.

Our approach to feature vector modification starts
with existing attacks for computer vision tasks [7, 22,
37]. As these existing attacks introduced several hyper-
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Figure 1: Overview of our attack. Our attack includes two key steps. Feature vector modification generates an
adversarial feature vector that both corresponds to a real binary and causes the required misprediction. Input binary
modification generates a new binary that matches the generated adversarial feature vector. The dashed blue box
illustrates the testing stage of binary code authorship identification. A blue arrow represents a step from the testing
stage. An orange arrow represents a step of our attack.

parameters, we can generate diversified adversarial fea-
ture vectors by using different attacks and running
the same attack multiple times with different hyper-
parameters. We then extend these attacks in two ways
to address the structural validity requirement of binary
programs:

First, existing attacks modified each feature indepen-
dently; changing one pixel of an image does not impact
other pixels. However, features in our domain can be
correlated. Without considering feature correlation, we
may generate feature vectors for which there do not exist
corresponding valid binaries.

We perform a feature correlation analysis to derive
feature correlation from a substitute data set. Note that
this data set can be, but does not have to be the train-
ing set used for training the target classifier. We can de-
rive useful feature correlation information, as long as this
data set is drawn from the same application domain as the
training set. We then use the correlation information to
ensure that correlated features are modified in a consis-
tent way.

Second, existing attacks did not consider the difficulty
of modifying a feature; changing any pixel of an image
is equally easy for maintaining the validity of the image.
However, for binary analysis, some features are easier to
modify than others. For example, local features that de-
scribe machine instructions are typically easier to modify
than global features that describe program control flow,

because modifying global features can require changing
more code, making it more difficult to maintain structural
validity.

We categorize binary code features into a small num-
ber of feature groups such that features in a group can be
modified with the same strategy. We attempt to modify
one feature group at a time until causing misprediction.
Grouping features also allows generating diversified ad-
versarial feature vectors by modifying different combi-
nations of feature groups.

Our input binary modification removes or injects fea-
tures according to the results of feature vector modifi-
cation, with the additional goals of maintaining struc-
tural validity and preserving functionality. To remove
features, we need to ensure that the program properties
that correspond to the removed feature are replaced with
semantically equivalent ones. In many cases, we cannot
simply remove them because such modification would
break the functionality of the binary. On the other hand,
the main challenge of injecting features is to ensure that
the binary code analysis tools used for feature extraction
indeed recognize the injected code, data or meta-data.

We observe that the space of binary modification is
large and there could be many different binaries match-
ing the given adversarial feature vector. Therefore, we
show the feasibility of our attack by construction. We
design injection and removal strategies for each feature
group. These modification strategies consist of a se-
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quence of binary modification primitives, including in-
serting, deleting, and replacing code, data, and meta-
data. Our modification primitives use randomization,
thus add another dimension to the diversity of our at-
tack. Binary instrumentation and rewriting tools such as
Dyninst support the implementation of these modifica-
tion primitives.

We evaluate our evasion attacks using five classifiers
trained with the techniques presented by Caliskan-Islam
et al. [6]. We achieved 96% success rate for untar-
geted attacks and 46% success rate for targeted attacks.
Our results show that we can effectively suppress author-
ship signal for authorship evasion, but it is significantly
more difficult to impersonate the style of another author.
Our results also reveal the weakness in current author-
ship identification techniques. Many features used in
current authorship identification techniques are based on
program properties that are easy to manipulate. We can
automatically modify these features, making such classi-
fiers vulnerable to test time attacks.

2 An Attack Example

We present an example showing how to perform untar-
geted attacks to a classifier for binary code authorship at-
tribution. The goal of this section is to give an overview
of our attack process. In the subsequence sections, we
describe the steps in more details.

We first describe the procedures for setting up the tar-
get classifier, which is trained with the techniques pre-
sented by Caliskan-Islam et al. [6]. We then describe
how to generate feature vectors that correspond to real
binaries and cause misprediction. Finally, we give exam-
ples on how to modify the binary to match the generated
feature vectors.

2.1 Binary Code Authorship Attribution
Caliskan-Islam et al. [6] assume that a binary is writ-
ten by a single author, so, they predict one author for a
binary. Their workflow can be summarized in four steps.

1. Define candidate features: They used binary code
features that describe machine instructions and pro-
gram control flow. They also included source code
features derived from decompiled source code. The
source code features include character n-grams and
tree n-grams. The tree n-grams are extracted from
abstract syntax trees (ASTs) built by parsing the
source code. These source code features have been
shown to be effective for source code authorship at-
tribution [5].

2. Extract features: They used two disassemblers,
NDISASM [29] and radare2 [20], to extract bi-
nary code features. To derive source code features,

they first used the Hex-Ray decompiler [9], and
then used Joern [36] to parse the source code into
ASTs. They represent each feature as a string. To
derive feature strings, they first split the results of
disassembly, decompiling, and source code pars-
ing into tokens and then normalize hex tokens to
the generic symbol “hexdecimal” and decimal digit
tokens to the generic symbol “number”. They use
string matching to count the frequency of a feature
string and use the frequencies of feature strings to
construct feature vectors.

3. Select Features: Typically, hundreds of thousands
of features are extracted from a data set. So, feature
selection is necessary to avoid overfitting. They se-
lected features that have information gain with re-
spect to the author labels.

4. Train a classifier: They compared Random Forests
(RFs) with Support Vector Machines (SVMs) and
reported that RFs outperformed SVMs.

They used a data set derived from Google Code Jam
(GCJ) and evaluated their techniques with binaries com-
piled by GCC on a 32-bit platform. For binaries com-
piled with GCC and -O0, they achieved 96% accuracy
for classifying 100 authors. For binaries compiled with
higher optimization levels, they reported slightly lower
accuracy.

We obtained the GCJ source files used by Caliskan-
Islam et al. [6] and their source code for extracting fea-
tures. Due to the predominance of 64-bit platforms, we
perform attacks on 64-bit platforms. Note that while
Caliskan-Islam et al. only evaluated their techniques on
32-bit platforms, their techniques can be directly applied
to 64-bit platforms. We compiled the GCJ sources with
GCC 5.4.0, using -O0 optimization on a 64-bit platform,
and achieved 90% accuracy for classifying 30 authors.

2.2 Feature Vector Modification

Given the target classifier to attack, the goal of our attack
is to modify an input binary to cause the required mispre-
diction. The two key steps for attacking this authorship
attribution classifier are generating feature vectors that
can correspond to a real binary and cause the required
misprediction, and modifying the input binary to match
the feature vector. We use examples to illustrate the im-
portance of our feature correlation analysis and feature
grouping on generating an adversarial feature vector.

2.2.1 Feature Correlation Analysis

We derive correlations between features to guide fea-
ture vector modification to generate feature vectors cor-
responding to real binaries.
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We identify two types of feature correlation for this
classifier. First, a feature can contain other features.
For example, if feature “push rax; push rbx” is present
in a binary, features “push rax” and “push rbx” are
also present. So, the frequencies of “push rax” and
“push rbx” should be no fewer than the frequency of
“push rax; push rbx”. Second, the same properties ex-
tracted by different binary analysis tools are treated as
different features. For example, the instruction “call
fprintf” corresponds to three different features: “call
fprintf” extracted by NDISASM, “call fprintf” ex-
tracted by radare2, and “fprintf” extracted from decom-
piled source code. These features should all have the
same frequency.

We derive linear correlation between features based on
the training set. For each pair of features, we perform lin-
ear regression and calculate the correlation coefficient.
If the coefficient is larger than a threshold value, such
as 0.9, we merge the pair into one feature. While this
simple strategy will miss non-linear feature correlation,
our experiments showed that capturing linear correlation
is sufficient for launching successful attacks against au-
thorship attribution.

2.2.2 Generating Adversarial Feature Vectors

We extend the attacks presented by Carlini and Wag-
ner [7] to generate adversarial feature vectors. Their
attacks are designed for DNNs trained for images, and
can be readily applied to other gradient based learning
algorithms. However, Caliskan-Islam et al. used RFs,
which is a non-gradient based learning algorithm. Fortu-
nately, researchers have shown that adversarial examples
created for classifiers trained with one type of learning
algorithms (such as DNN) are likely to cause mispredic-
tion for classifier trained with a different type of learn-
ing algorithms (such as RF) [21, 31]. Therefore, we first
trained a substitute DNN using the same training data
and then applied the adversarial vectors to the RF classi-
fier. The substitute DNN is a simple feed-forward neural
network, containing 7 hidden layers with each layer hav-
ing 50 hidden units. The substitute DNN has 80% accu-
racy. While the substitute DNN has modestly lower ac-
curacy than the target classifier, as we will show in Sec-
tion 4, this accuracy gap does not impact the success rate
of our attack.

To ensure that the generated adversarial feature vec-
tor confuses not only the substitute classifier but also the
target classifier, we keep generating new feature vectors
until the resulting vectors can mislead the target classi-
fier. Our new attack strategy can generate effective ad-
versarial feature vectors, reducing the accuracy of both
the substitute DNN and the RF classifier to 0%.

However, it is difficult to modify the input binary to

completely match the feature vectors generated in this
way, as they contain hundreds of modified features.

2.2.3 Categorizing Features

We have observed that while the attacks presented by
Carlini and Wagner can make effective changes to the
feature vector to cause misprediction, not all changes are
necessary for causing misprediction. Therefore, we at-
tempt to modify fewer features to cause misprediction,
making it easier to perform binary modification to match
the generated feature vector. We categorize features into
feature groups, so that features in the same feature group
can be modified with the same strategy. And then we
modify one feature group at a time until misprediction
occurs.

Two important factors for categorizing the features are
the program properties that the features describe and the
strength of the binary analysis tools. For the first fac-
tor, features describing low level code properties such
as machine instructions are easier to modify compared
to features describing higher level structural properties
such as program control flow and data flow. Therefore,
we started by attacking instruction features.

For the second factor, recall that Caliskan-Islam et al.
used two disassemblers: NDISASM, which disassem-
bles the binary linearly from the first byte of the binary
file, and radare2, which understands the layout of the bi-
nary, performs binary analysis to identify code bytes, and
attempts to disassemble only code bytes. It is easier to
modify features extracted by NDISASM, because NDIS-
ASM also disassembles non-loadable sections and edit-
ing or adding non-loadable sections has no impact on the
functionality of the program. On the other hand, instruc-
tion features extracted by radare2 typically represent real
code. So, we need to ensure that we do not change the
functionality when removing a radare2 feature, and en-
sure that radare2 disassembles the inserted code when
injecting a radare2 feature.

After grouping features, we first modify instruction
features extracted by NDISASM, reducing the accuracy
from 90% to 45%. We then modify instruction features
extracted by radare2, further reducing the accuracy from
45% to 7%. Note that only features in the these two fea-
ture groups are modified and we can generate new bina-
ries to complete the attack.

2.3 Binary Modification Strategies

Finally, we describe our binary modification strategies
for injecting and removing NDISASM and radare2 fea-
tures, using four typical examples. These examples are
extracted from our successful attacks. In each example,
we describe the modification primitives that constitute
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the modification strategy and explain why our modifica-
tions do not change the functionality of the input binary.

2.3.1 Modifying NDISASM Features

We show two examples of modifying NDISASM fea-
tures. The first example shows the case where we can
inject a feature by inserting bytes into the binary. As
shown in Figure 2, we need to inject instruction feature
“or [rax],ebp” into the target binary. Since NDISASM
disassembles every bytes in the binary, we can add a new
non-loadable section to store the bytes of the correspond-
ing instruction. This simple injecting strategy causes
NDISASM to extract this feature and does not change
the functionality of the program.

The second example shows the case where we can
simply remove a feature, without replacing the removed
program property with a semantically equivalent one. As
shown in Figure 3, this feature seems to represent an
imul instruction. However, offset 0x3e09 of the binary
is in the .strtab section, which stores symbol names
for the compile-time symbol table. Therefore, instead of
representing an instruction, the feature represents string
“in8.cpp”. To remove this feature, We can change the
string “in8.cpp” to any another string. .strtab is used
at debug-time, and not used at the link-time or run-time
(it disappears if the binary is stripped), so changing its
content does not impact the functionality of the original
program.

In addition, we tried to understand why the
string “in8.cpp” is a useful feature. We found
that the string is extracted from source file name
“1835486 1481492 paladin8.cpp” and “paladin8” is the
author’s name. So, this feature turns out to contain three
characters of the author’s name. While a string contain-
ing three characters of the author’s name is useful for
identifying the author, such author name feature is not
available in any realistic context. This example teaches
us a lesson that machine learning practitioners need to
ensure that the feature definition and the extracted fea-
tures actually match. In this case, instruction features
should only be extracted from real code bytes. So, the
use of NDISASM is not robust for real world identifica-
tion because it disassembles all bytes in the binary.

2.3.2 Modifying radare2 Features

We now show two examples of modifying radare2 fea-
tures. The first example shows the case where we need
to insert new code and data. As shown in Figure 4, fea-
ture “number.in” represents a string. Note that this fea-
ture is not present in the target binary, and we need to
inject it into the target binary to cause misprediction.
We found feature “number.in” in another binary, based

on the instruction “mov $0x400c57,%edi”. Here, address
0x400c57 points to a string “number.in”; radare2 recog-
nizes the string and prints it in the disassembly results.

To inject this feature, we need to (1) insert string
“number.in” into the target binary, and (2) insert a mov

instruction that loads the address of the inserted string.
However, to trick radare2 to disassemble the inserted in-
struction, there are two additional steps. First, we create
a function symbol pointing to the inserted code. Second,
we append a return instruction after the inserted code.
Since most binary analysis tools treat function symbols
as ground truth for specifying the locations of code bytes,
our injection strategies can be also applied to other binary
analysis tools.

The second example shows the case where we need
to replace existing code with semantically equivalent
code to remove a feature. As shown in Figure 5, we
need to remove a feature describing an object sym-
bol. The feature is extracted from instruction “mov
0x20157d(%rip),%rax”. Here radare2 recognizes that
the result of the PC-relative calculation points to an ob-
ject symbol, so it annotates the instruction with the name
of the object symbol in the disassembly results.

To remove this feature, we need to transform the cal-
culation of the symbol address to a semantically equiv-
alent calculation done by one or more instructions, so
that radare2 cannot recognize the loading of the sym-
bol address. To do this, we can split the address loading
into two instructions: loading the address minus one into
the target register and incrementing the target register by
one. We cannot just overwrite the symbol name with a
different string because this symbol is in the .dynsym sec-
tion and it is used for dynamic linking (Overwriting the
name of a dynamic symbol will cause the program to not
be loadable).

3 Attack Framework

We describe our attack framework in this section, based
on the attack algorithm in Figure 6. The inputs to our al-
gorithm includes an input binary b, a target classifier m,
feature groups f g, and a misprediction target label tar.
The output of the algorithm is an adversarial binary b′

that causes the required misprediction. The main com-
ponent of our algorithm is an attack-verify loop, where
we iterate over feature groups until we generate a new
binary that causes misprediction.

Our algorithm relies on two routines from the
machine learning application we are attacking:
FeatureExtraction to extract features and Prediction

to generate a prediction label from a set of known
labels. The meaning of these labels depend on the target
application. For example, a label can describe an author
for authorship attribution or a compiler for compiler

6



Feature string or [rax],ebp

Raw bytes 09 28

Modification Insert bytes 09 28 into a new non-loadable section

Figure 2: An example of injecting a NDISASM feature. We can insert the bytes into a non-loadable section.

Binary name 1835486 1481492 paladin8
Feature string imul ebp,[fs:rsi+hexadecimal],dword hexadecimal

Offset in the binary 0x3e09
Raw bytes 64 69 6E 38 2E 63 70 70

Modification Overwrite bytes to other values

Figure 3: An example of removing a NDISASM feature. This feature seems to represent an instruction, but actually represents
a string in the .strtab section.

identification. We now describe the other routines in our
algorithm.

3.1 Feature Correlation Analysis

Given a set of features F = { f1, f2, . . . , fk} used in the
target classifier m, our feature correlation analysis gener-
ates a partitioning of the features, P = {p1, p2, . . . , pk},
where each partition consists of all correlated features.
So, ∀ fx ∈ pi and fy ∈ pi, fx and fy are correlated; and
∀i 6= j, fx ∈ pi, and fy ∈ p j, fx and fy are not correlated.
In addition, feature partitions are disjoint. So, ∀i 6= j,
pi∩ p j = /0.

We build a undirected graph to generate the feature
partitioning. Let G = (V,E), where each node in the
graph represents a feature (so V = F), and each edge
in the graph represents the correlation between two fea-
tures. We only capture linear correlation between fea-
tures, creating an edge between two nodes if the lin-
ear correlation coefficient between two features is larger
than a pre-specified threshold. In another words, E =
{( fi, f j) : coei j ≥ T}, where coei j is the linear corre-
lation coefficient between fi and f j and T is the pre-
specified threshold. Finally, each connected component
in the graph represents a partition of the correlated fea-
tures.

An important observation is that we do not have to
capture the exact correlation between features to launch
successful attacks. For example, suppose we have three
features: “ f1: push rax; push rbx”, “ f2: push rax”, and
“ f3: push rbx”. The precise correlation is

( f req( f1)≤ f req( f2))∧ ( f req( f1)≤ f req( f3)) (1)

where f req( f ) represents the frequency of feature f . Our
algorithm will put all three features in the same partition

and derive the following correlation:

f req( f2)=A1 f req( f1)+B1, f req( f3)=A2 f req( f1)+B2
(2)

As we will discuss in the next section, it is straightfor-
ward to incorporate correlation (2) into our feature vector
modification. In addition, as the linear correlation is de-
rived from a data set drawn from the same domain as the
training set for the target classifier, feature vectors satis-
fying correlation (2) typically also satisfy correlation (1).

3.2 Feature Vector Modification
Given an input feature vector xxx = [x1,x2, . . . ,xk], where
xi represents the feature value of feature fi, our feature
vector modification outputs a modified feature vector xxx′′′,
such that the prediction results for xxx′′′ are different from
the prediction results of xxx (for untargeted attacks) or are
the specified results (for targeted attacks).

We use the approach of training a substitute DNN and
transferring the adversarial example to the target classi-
fier [21]. We extend the attack presented by Carlini and
Wagner [7], denoted as the CW attack, to generate ad-
versarial feature vectors. We first summarize the CW at-
tack and then explain how we extend it to our domain.
The CW attack is regarded as a powerful targeted attack.
The CW attack can also be used for untargeted attacks,
but the projected gradient descent (PGD) is regarded as a
stronger untargeted attack. As we will show in Section 4,
the untargeted version of the CW attack works well for
us. Note that our attack framework is not specific to the
CW attack, we can also use other existing attacks such as
PGD to perform diversified attacks.

3.2.1 CW Attack

The CW attack was designed for a DNN. We describe
only the prediction process of the DNN as we are at-
tacking a pre-trained model. Given a feature vec-
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Feature string number.in

Machine instruction mov $0x400c57,%edi

Insert string “number.in” into a new data sectionModifications
Insert new instructions to load the inserted string

Figure 4: An example of injecting a radare2 feature. This feature represents a string. We need to insert the string and insert an
instruction to load the address of the string.

Feature string obj.stdin

Machine instruction mov 0x20157d(%rip),%rax

Load 0x20157d(%rip)-1 into %raxModifications
Increment %rax

Figure 5: An example of removing a radare2 feature. This
feature represents an object symbol. We can split the address
loading instruction into two instructions to remove the feature.

tor xxx, a pre-trained DNN model can seen as a func-
tion pred(x), which generates a prediction label y =
pred(x) = argmax(so f tmax(Z(xxx))), where:
• zzz = Z(xxx), where zzz = [z1,z2, . . . ,zl ] is a vector of raw

(non-normalized) predictions that the DNN gener-
ates; l is the total number of labels. zzz is also known
as the logits. The calculation of Z(xxx) is specified by
various hyper-parameters, including the depth and
the width of the neural network, the choice of the
activation function, and the training parameters for
each hidden unit. For a pre-trained model, all these
parameters are constant.
• ppprrr = so f tmax(zzz), where ppprrr = [pr1, pr2, . . . , prl ] is

a probability vector and pri is the probability that
the input belongs to label i. so f tmax normalizes the
raw prediction zzz to probability distribution.
• y = argmax(ppprrr), meaning that the predicted label is

the one that has the highest probability.
The CW attack has two variations: one for untargeted

attacks, and one for targeted attacks. We first describe the
untargeted version. Denote y as the original prediction
label for xxx. The output of the untargeted CW attack is
a new vector xxx′′′ such that pred(xxx′′′) 6= y. xxx′′′ is defined as
xxx+δδδ , so once we have calculated δδδ , we know xxx′′′.

Carlini and Wagner formulated an optimization prob-
lem to calculate δδδ , balancing two factors for minimiza-
tion. First, to cause misprediction, the new logits vector
zzz′′′ = Z(xxx+ δδδ ) should satisfy the condition that z′y is no
longer the maximum element in zzz′′′, which in turn means
that y is not the predicted label for xxx′′′. Carlini and Wagner
defined function g(xxx′′′) to measure the difference between
z′y and maxi6=y(z′i):

g(xxx′′′) = max(z′y−maxi6=y(z′i)+ s,0) (3)

Intuitively, the smaller the g(xxx′′′), the more likely there
will be a misprediction. Here, s is a hyper-parameter to

input : an input binary b; a pre-trained model m;
feature groups f g; and a misprediction
target tar (tar =−1 represents untargeted
attacks)

output: an adversarial binary b′ that causes
misprediction

1 P← FeatureCorrelationAnalysis(m);
2 xxx← FeatureExtraction(b);
3 y← Prediction(m, xxx);
// Keep looping until causing

misprediction

4 for g in f g do
5 xxx′′′← FeatureVectorModification(xxx, g, P);
6 b′← InputBinaryModification(b, xxx′′′, g, P);
7 y← Prediction(m, FeatureExtraction(b′));

// Non-targeted attacks succeed

8 if tar ==−1 and y 6= y′ then break;
// Targeted attacks succeed

9 if tar 6=−1 and tar == y′ then break;

Figure 6: The attack algorithm. The main structure of the
algorithm is to iterate over feature groups until we generate a
new binary that causes misprediction.

control the separation between z′y and maxi6=y(z′i). s is a
positive value, typically ranging from 1 to 1000.

Second, the modification to the original feature vector
should be minimized to avoid detection. So, the number
of non-zero elements in δδδ and the magnitude of individ-
ual δδδ iii should also be part the optimization function. For
this purpose, Carlini and Wagner used the Lq norm, de-
fined as

Lq(δδδ ) = ||δδδ ||q = (
n

∑
i=1

δ
q
i )

1/q (4)

The attacker chooses a value for q based on the tar-
get domain. Common choices for q are 0, 2, and ∞. L0
measures only the number of modified features and ig-
nores the magnitude of changes. On the other hand, L∞

measures only the maximal magnitude of changes and
ignores all other changes. L2 balances the number of
changed features and the magnitude of changes.

In general, minimizing (3) and (4) are conflicting; the
more changes are made to xxx (larger value for Lq), the
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more likely the attack can cause misprediction (smaller
value for g(xxx′′′)). Carlini and Wagner introduced a hyper-
parameter c to balance these two conflicting optimization
targets and defined the final optimization function as

Lq(δδδ )+ c×g(xxx+δδδ ) (5)

When q = 2, the optimization function (5) is differen-
tiable. A general purpose optimizer such as Adam [12]
can be used to minimize (5) and calculate δδδ . For q = 0,
(5) is not differentiable. Carlini and Wagner designed an
iterative algorithm to calculate δδδ . In each iteration, the
algorithm uses their L2 attack to identify some features
that do not have much effect on causing misprediction
and then fixes those features. The values of the fixed fea-
tures will not change in later iterations. By iteratively
eliminating unimportant features, the algorithm identi-
fies a small (but possibly not minimal) subset of features
that can be modified to generate an adversarial example.
They designed another iterative algorithm for q = ∞.

Finally, after calculating δδδ , we derive xxx′′′ = xxx+δδδ .
For targeted attacks, denote tar as our misprediction

target. The only difference between the targeted CW at-
tack and the untargeted version is the definition of g. For
targeted attacks, we want to make z′tar the maximal ele-
ment in the new zzz′′′, so that tar will be the new prediction
label. So, Carlini and Wagner defined g(xxx′′′) as

g(xxx′′′) = max(maxi 6=tar(z′i)− z′tar + s,0) (6)

3.2.2 Extension to CW Attack

To apply the CW attack to our domain, we need to make
two modifications. First, the CW attack may generate
feature vectors with non-integer values. However, as dis-
cussed in Section 2.1, Caliskan-Islam et al. [6] used fea-
ture counts to construct feature vectors. So, xxx′′′ should
only have integer values. A simple strategy that works
well for us is to round values generated by the CW at-
tack to the nearest integer.

Second, we must incorporate the feature correlation
information derived in Section 3.1 into the attack. To do
this, we normalize each individual feature to a Gaussian
with zero mean and unit variance, merge all correlated
features into one feature, and let the CW attacks work
with only the merged features. Recall that we track linear
correlation between features; for two correlated features
f1 and f2, f req( f1) = A f req( f2)+B. After the normal-
ization step, A is normalized to 1 and B is normalized to
0. Therefore, we can merge them into a single feature.

We then need to determine the values of the hyper-
parameters used in CW attacks. For c and s, we perform
a grid search to find a successful value-pair. For Lq, we
use the L0 norm because we would like to minimize the

number of modified features rather than the magnitude
of the modifications.

We found that CW’s L0 attack often did not generate
an adversarial feature vectors with the minimal number
of modified features. So, we design a two-step post-
processing to further reduce the number of modified fea-
tures and the magnitude of changes. First, for each mod-
ified feature, we undo the modification and set its value
to its unmodified value. If we can still cause mispredic-
tion, we finalize the undo of the modification. Second,
for each modified feature, we enumerate every integer
between the unmodified value and the new value. We set
the value of this feature to the one that is closest to the
unmodified value and causes misprediction. As we will
show in Section 4, this simple post-processing strategy
can effectively reduce the number of modified features.

3.3 Binary modification strategies

Given a new feature vector xxx′′′ that causes misprediction,
we describe how to modify the input binary to match xxx′′′,
grouping features based on the program properties that
the features describe and the binary analysis tool used to
extract the feature. We also describe feature injection and
removal strategies for feature groups. Our modification
strategies consist of binary modification primitives sup-
ported by tools such as Dyninst [23]. Finally, we discuss
how to determine which modification strategy to use for
a specified feature and how to generate diverse adversar-
ial binaries.

3.3.1 Feature injection strategies

Table 1 summarizes our feature injection strategies. The
first column lists the program properties we are going
to inject, including machine instructions and loading the
address of a symbol or data. The second and third
columns list the modification primitives needed to inject
features that can be extracted by NDISASM and radare2.
A cell with “NA” means that the binary analysis tool can-
not extract the program property. We discuss the non-NA
cells in more details:
• Instructions extracted by NDISASM: The modi-

fication primitive InsertNonCodeBytes(I) creates
a new non-loadable section in the binary to store
the bytes representing new instructions. As NDIS-
ASM disassembles all bytes in the target binary,
InsertNonCodeBytes(I) ensures that the features
are injected and the functionality is unchanged.
• Machine instructions extracted by radare2: The

modification primitive InsertFunction(I) creates
a new function in which we store the inserted in-
structions. To ensure that radare2 disassembles the
inserted code, InsertFunction(I) creates a new
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Table 1: Summary of feature injection strategies. The first column lists the program properties to inject. The second and third
columns list the binary modification primitives used for the injection.

Program Property NDISASM radare2
Instructions I InsertNonCodeBytes(I) InsertFunction(I)

Loading symbol S NA addr = InsertSymbol(S)

InsertFunction(loading addr)

Loading data D NA addr = InsertData(D)

InsertFunction(loading addr)

Calling function F NA addr = InsertCall(F)

InsertFunction(calling addr)

code section to store the inserted instructions, ap-
pends a return instruction at the end, and create a
new function symbol to point to the inserted instruc-
tions.
• Loading symbol S: The modification primitive

InsertSymbol(S) inserts the symbol S into the tar-
get binary and returns the address pointing to the
symbol. It is important to properly fill in all fields
of the symbol in the symbol table, including sym-
bol type, symbol visibility, and symbol section in-
dex. Binary analysis tools may ignore incomplete
symbols, causing the injection to fail. We then use
InsertFunction(I) to insert code that loads the ad-
dress of the new symbol.
• Loading data D: The modification primitive

InsertData(D) inserts the specified data into the
target binary. We typically need to create a new
data section to hold the injected data. Then, we use
InsertFunction(I) to insert code that loads the
data.
• Calling function F: The modification primitive

InsertCall(F) inserts the specified function F into
the target binary, where F can be a function from
an external library. In such case, we also need to
add information for dynamic linking into the tar-
get binary, including a dynamic function symbol,
a relocation entry, and a procedural linkage stub
(PLT) for performing the external call. Then, we
use InsertFunction(I) to insert code that calls F .

3.3.2 Feature removal strategies

Table 2 summarizes our feature removal strategies. The
first column lists the program properties we are going to
remove or replace. The second and third columns list
the binary modification primitives needed for removing
a feature group:
• Instructions I from debug-time sections: The mod-

ification primitive Overwrite(I) overwrites the tar-
get instruction bytes to other bytes. This strat-
egy does not change the program’s functionality as
debug-time sections are not used at link-time or run-

time.
• Instructions I from code sections: We design two

strategies for this feature group. The modification
primitive Swap(I) checks the operand dependencies
and reorders the instructions if there is no depen-
dency. The modification primitive InsertNop(I)

inserts a nop instruction between the original in-
structions. Note that to insert a nop instruction, we
may need to relocate the original instructions to a
different location to create extra space for the nop.
Therefore, we prefer Swap over InsertNop if possi-
ble.
• Addressing loading of S: The modification prim-

itive SplitAddrLoad(S) splits the address loading
instruction into two instructions so that radare2 will
not recognize the address loading. We use the fol-
lowing two instructions: loading the address minus
one into the target register and incrementing the tar-
get register.
• Function call to S: The modification primitive

ConvToIndCall(S) converts a function call to S

to an indirect (pointer-based) function call, so
that radare2 will not recognize the call target.
ConvToIndCall(S) uses SplitAddrLoad(S) to load
the function call target and then generates an indi-
rect call. Note that we need to save and restore the
register used for performing the indirect call if it is
live at this point in the code.

3.3.3 Deciding which strategy to apply

We have several criteria to determine which strategy to
use for a modified feature. Based on the sign of δi, we
decide whether we need to inject (see Table 1) or remove
(see Table 2) features. Based on the address where the
feature was extracted, we determine from which section
the feature is extracted, including debug-time sections,
code sections, or data sections.

For features extracted from code sections, we deter-
mine whether the feature describes a function call, load-
ing a symbol, or loading data. If none of the three cases
applies, the feature describes just instructions, and no
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Table 2: Summary of feature removal strategies. The first column lists the program properties to remove or replace. The second
and third columns list the binary modification primitives for feature removal.

Program Property NDISASM radare2
Instructions I from debug-time sections Overwrite(I) NA
Instructions I from code sections Swap(I) or InsertNop(I)
Addressing loading of symbol S NA SplitAddrLoad(S)

Addressing loading of data D NA SplitAddrLoad(D)

Function call to function symbol S NA ConvToIndCall(S)

other program property needs to be modified.

3.3.4 Generating diverse adversarial binaries

Table 1 and Table 2 show one set of feasible modification
strategies to inject and remove features, out of a large
space for binary modification. Other modification strate-
gies can be designed to achieve the same goals of feature
injection and removal. We use two examples to show
other possibilities of binary modification. Attackers can
add more modification strategies to add diversity to the
attack.

Use randomization: Several of our modification
strategies can incorporate randomization to generate di-
verse adversarial binaries. Overwrite(I) overwrites the
target instruction bytes to other bytes. Here, we can
randomly generate the overwritten bytes. Similarly,
SplitAddrLoad(S) can split the address loading instruc-
tion into two instructions with randomization: loading
the address a randomly generate integer into the target
register and incrementing the target register with gener-
ated integer.

Generate semantically equivalent instructions: The
natural way to remove instruction features is to replace
existing instructions with semantically equivalent in-
structions. Superoptimizer fits our goal here [14], which
takes machine instructions as input, and outputs machine
instructions that compute the same functionality as the
input. It is expensive to perform superoptimization in
a general case. However, as we typically need to re-
place only short instruction sequences, the search space
would be relatively small. Therefore, superoptimization
is a promising method for generating semantically equiv-
alent instructions.

4 Evaluations

We evaluate several aspects of our attacks: (1) whether
we can effectively perform untargeted attacks to evade
authorship identification, (2) whether we can effectively
perform targeted attacks to impersonate someone else,
(3) which features are modified in our attacks and which
binary modification strategies are commonly used, (4)

whether our post-processing steps are effective for reduc-
ing the number of modified features, and (5) why some
of our attacks failed. Our evaluations show that
• Our untargeted attacks are effective. We achieved

96% success rate in our experiments, showing that
we can effectively suppress authorship signals.
• The success rate of our targeted attacks are 46% on

average, showing that it is significantly more diffi-
cult to impersonate someone else.
• The top modified features describe function calls.

This indicates that authorship identification classi-
fiers heavily rely on function calls to identify au-
thors. Therefore, inserting function calls that are
associated with other authors is an effectively way
to cause misprediction.
• Without our post-processing, there are 80 features

to modify on average. With our post-processing,
there are only 10 features to modify on average.
Therefore, our post-processing procedure can sig-
nificantly reduce the number of changed features for
launching a successful attack.
• For failed untargeted attacks, the lack of strategies

for modifying CFG features and decompiled source
features is the reason for failure. For failed targeted
attacks, about a third of the cases are caused by lack
of modification strategies for CFG and decompiled
source features; the other two thirds of the cases
failed because the targeted CW attack cannot gen-
erate a feature vector that both corresponds to a real
binary and causes the required misprediction.

4.1 Evaluation Methodology

We evaluated our techniques by attacking classifiers
trained with the techniques presented by Caliskan-Islam
et al. [6] (described in Section 2.1). Our experiments
consist of the following steps:

1. Randomly sample K authors from the Google Code
Jam data set of around 1000 authors used by
Caliskan-Islam et al. [6]. This data set consists
of the source code of single-author programs, each
with an author label.

2. Compile all the programs written by the sampled
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authors with GCC 5.4.0 and -O0 optimization. Each
author had an average of 8 binary programs.

3. Split the binaries into a training set and a testing set,
with a size ratio of about 7:1.

4. Train a random forest classifier with the training set.
5. Perform our attack on each binary in the testing set

for which the target classifier makes the correct pre-
diction. For each test binary, we perform one un-
targeted attack, and K − 1 targeted attacks. The
targeted attacks attempt to cause misprediction for
each of the incorrect authors.

We varied K from 5 to 100 to investigate how the num-
ber of training authors impact the effectiveness of our
attacks. For each value of K, we repeated the exper-
iments five times and report the averaged results. We
used Scikit-learn [25] for training random forest classi-
fiers, Tensorflow [30] for training substitute classifiers,
and Dyninst [23] for implementing our binary modifica-
tion strategies.

We use success rate to measure the effectiveness of our
attacks, defined as

# o f success f ul attacks
# o f total attacks

(7)

An attack is successful if the binary generated by our
attack caused the target classifier to make an incorrect
prediction. For untargeted attacks, incorrect prediction
means any of the incorrect authors. For targeted attacks,
incorrect prediction means the specific targeted author.

4.2 Evaluation Results

The first question to answer in our evaluation is how ef-
fective is our attack. The results are shown in Table 3. In
this table, the second and the third columns are the accu-
racy of the target classifiers and the substitute classifiers.
The fourth and the fifth columns list the the success rate
of untargeted and targeted attacks. Our untargeted at-
tack has a 96% success rate on average, showing that we
can effectively suppress authorship signal. However, our
targeted attacks did not enjoy the same success as the un-
targeted ones. Our targeted attack has a 46% success rate
on average, showing that it is significantly more difficult
to impersonate a specific programmer’s style.

Table 3 also shows how the number of training au-
thors K impacts the effectiveness of our attacks. For
untargeted attacks, our success rate increases as K in-
creases. Untargeted attacks only need to cause mispre-
diction against any of the K− 1 incorrect authors. The
larger the K, the more incorrect authors our attacks can
work with, and the higher the success rate. For targeted
attacks, our success rate decreases as K increases. Tar-
geted attacks must cause misprediction against a specific

target author. The larger the K, the more non-target au-
thors our target attack must avoid, and the more difficult
the targeted attack.

The accuracy gap between the target classifier and the
substitute classifier does not obviously impact the suc-
cess rate of our attack. As shown in Table 3, The ac-
curacy gap ranges from 0% to 20%. The success rates
of both untargeted and targeted attacks do not exhibit an
obvious correlation with the accuracy gap.

We then investigate what are the commonly used bi-
nary modification strategies and what are the commonly
modified features. In Table 4, we list the number of
times that a modification primitive is used in our un-
targeted attacks for K = 30. The most frequently used
primitive is InsertCall, indicating that the target clas-
sifiers heavily rely on function call features to identify
authors. So, inserting function calls that are associated
with other authors is an effectively way to cause mispre-
diction. SplitAddrLoad ranks second, showing that the
target classifiers also rely on features that describe the
loading of a symbol to identify authors. InsertFunction
ranks third, showing that inserting instructions that are
typically seen in programs written by other authors
is also effective for causing misprediction. Swap and
InsertNop serve the purpose of removing instruction fea-
tures. These two primitives have an effectiveness similar
to InsertFunction, indicating that removing distinct in-
struction sequences associated with an author is effec-
tive for causing misprediction. Other strategies includ-
ing editing debug sections, inserting data, and inserting
symbols, all play important roles in our attacks.

Next, we investigate how many features we need to
change to cause misprediction. In Table 5, the second
column shows the number of changed features generated
by the untargeted L0 CW attack, and the third column
shows the number of changed features after our post-
processing step. Before post-processing, there are 80
features to modify on average. After the post-processing,
there are only 10 features to modify on average. Our re-
sults show that our post-processing procedure can signif-
icantly reduce the number of changed features for per-
forming a successful attack.

4.3 Analysis of Failed Attacks

Our attack contains two key steps: feature vector mod-
ification to generate a vector that both corresponds to a
real binary and causes the required misprediction, and
input binary modification to generate a new binary that
matches the adversarial feature vector. A failure in either
of the two steps would lead to a failed attack. Feature
vector modification fails when it cannot find such an ad-
versarial feature vector that corresponds to a real binary
and causes the required misprediction. Input binary mod-
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Table 3: Evaluation results. The second and the third columns list the accuracy of the target classifiers and the substitute
classifiers. The fourth and the fifth columns show the success rate for untargeted and targeted attacks.

K
Target classifier
accuracy

Substitute classifier
accuracy

Untargeted attack
success rate

Targeted attack
success rate

5 100% 100% 88% 88%
15 100% 80% 93% 51%
30 89% 73% 98% 47%
50 86% 69% 100% 31%

100 82% 68% 100% 14%
Average 91% 78% 96% 46%

Table 4: Number of times that a binary modification prim-
itive is used in untargeted attacks. The numbers are from the
attacks for 30 training authors (K = 30). The rows are sorted in
a decreasing order.

Modification primitive Times used
InsertCall 586
SplitAddrLoad 292
InsertFunction 196
Swap & InsertNop 193
ConvToIndCall 115
InsertNonCodeByte 102
Overwrite 85
InsertData 68
InsertSymbol 45

Table 5: The number of feature changed by our untargeted
attacks. The second column lists the average number of fea-
tures changed by the L0 CW attack. The third column shows the
average number of features changed after our post-processing.

K L0 CW attack Our post-processing
5 57 9

15 107 11
30 87 11
50 59 9

100 92 11
Average 80 10

ification fails when it does not generate a new binary that
causes the required misprediction. We found that feature
vector modification accounts for all the failed attacks.

We break down the reasons of why our feature vector
modification step would fail to generate an adversarial
feature vector. Recall that our feature vector modifica-
tion is based on the CW attack, which generates a fea-
ture vector that causes the required misprediction, with-
out considering whether the generated vector would cor-
respond to a real binary. We adapted the CW attack in
three ways to generate vectors that correspond to a real
binary. First, as we implemented binary modification
strategies for only instruction features, the CFG features
and decompiled source code features are not modified
during feature vector modification. Second, as the value
of an instruction feature represents the number of times
that this feature appears in a binary, the feature value is
an integer. However, the CW attack does not guarantee
to generate integer values. So, we round the results of
the CW attacks to the nearest integer values. Third, we
capture feature correlation and merge correlated features.
We can then divide failed feature vector modification into
two categories:

Lack of modification strategies for CFG and decom-
piled source features: It may not be sufficient
to modify only instruction features to evade
authorship identification. Failed attacks in this
category need binary modification strategies
for CFG and decompiled source features.

Insufficient handling of finding vectors corresponding
to real binaries: Our techniques for generat-
ing feature vectors that correspond to real bi-
naries need further improvement. For exam-
ple, we currently capture only linear correla-
tion between features.

We found that all the failed untargeted attacks were
due to not being able to modify CFG or decompiled
source features. For failed targeted attacks, not being
able to modify CFG or decompiled source features ex-
plained about 34% of the failed cases; not being able to
find a feature vector that corresponds to a real binary ex-
plained the other failed cases. Our analysis shows that
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to improve untargeted attacks, we need to continue to
design new modification strategies for CFG and decom-
piled source features. To improve targeted attacks, we
also need to improve the targeted CW attack to find fea-
ture vectors that correspond to real binaries.

While our binary modification strategies were able
to match all modified features, We found that they
sometimes caused side effects and changed features that
should not have been changed. Fortunately, such side ef-
fects did not impact the prediction results. The number
of unintended changes ranged from 0 to 20. Most of the
unintended changes were made to NDISASM instruction
features. This is because our feature injection strategies
often insert new code and data sections, which in turn re-
quires changes to the program header of the binary. As
NIDSASM disassembles all the bytes in the binary, the
changes in the program header would cause unintended
changes to NDISASM instruction features. It is not sur-
prising that such unintended changes did not impact the
prediction results as the program header is unlikely to
carry authorship signals.

In summary, the our evaluations show that our attack
framework is effective for untargeted attacks and we can
practically suppress authorship signals. Performing tar-
geted attacks is significantly more difficult than untar-
geted attacks. Our results also reveal weaknesses in cur-
rent authorship identification techniques. Many features
used in current authorship identification techniques are
based on program properties that are easy to fabricate,
such as function calls and symbols. We have shown that
we can automatically modify these features, making such
classifiers vulnerable to test time attacks.

5 Discussion and Related Work

To the best of our knowledge, we are the first project to
perform binary code authorship evasion. In this section,
we place our work in a broader context and discuss sev-
eral related research areas.

Stealthy binary rewriting: Stealthiness is an impor-
tant goal of out attack. We observed that the gener-
ated binaries show distinct characteristics such as the
presence of additional code sections and springboard
jump instructions from original code sections to newly
added code sections. These distinct characteristics are
introduced by Dyninst and every binary modified by
Dyninst exhibits such characteristics. Since Dyninst is
also widely used in many benign applications, such as
binary hardening techniques [24, 32, 33]. The presence
of Dyninst footprints does not necessarily indicate the
presence of tamperers.

We are aware of other binary rewriting techniques,
such as reassembly [34, 35]. Reassembly disassembles
the binary and creates artificial symbols for data and

code references. Binary rewriting is performed by first
modifying the assembly code and then re-assembling the
code. Reassembly has the advantage that code can be in-
jected or removed in place, thus providing better stealth-
iness.

We chose to use Dyninst for binary rewriting as it is
a mature and widely used tool. We leave the exploration
of using reassembly for binary rewriting as future work.

Multi-author binary code identification: We evalu-
ated our attack against single author identification. Re-
cent studies on binary code authorship identification in-
vestigated identifying multiple authors in a binary [16,
17, 18]. These multi-author techniques performed pre-
dictions at the basic block level, meaning they reported
one author for each basic block.

It is significantly more difficult to evade multi-author
identification techniques, as it will require fine-grained
binary modification strategies to match adversarial fea-
ture vectors. Fine-grained modification strategies must
inject or remove features within basic blocks. Many of
the feature injection and removal strategies presented in
Section 3 are not applicable as they will introduce new
basic blocks. We believe multi-author identification is
intrinsically more complicated than single-author identi-
fication and it is the natural next step to perform evasion
on multi-author identification.

Adversarial learning on malware detection: While
our work is not directly targeted to malware detection,
we believe our techniques can contribute to this field in
two ways.

First, a common threat model of adversarial learning
on malware detection assumes that attackers can only
inject features and cannot remove features. Monotonic
classification [10] ensures that an adversary will not be
able to evade the classifier by adding more features. Our
results show that we can effectively remove features,
challenging the validity of their threat model.

Second, existing techniques for adversarial learning
on malware detection have focused on generating adver-
sarial feature vectors to cause misprediction, but have not
focused on generating new binaries that match their fea-
ture vectors. We show that it is possible to perform end-
to-end attack by generating new binaries.

Evading source code authorship: Simko et al. [27]
performed a study of evading source code single-author
identification. Their evasion target is a classifier that has
98% accuracy on classifying 250 authors, evaluated on a
data set derived from the Google Code Jam [5]. The clas-
sifier used lexical features such as variable names and
language keywords, layout features such as code inden-
tation, and syntactic features derived the abstract syntax
trees parsed from the source code.

28 programmers participated in their study, including
undergrad students, former or current software develop-
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ers. Each programmer was given code from author X
and Y and then was asked to modify source code writ-
ten by X to look like code written by Y. This manual
attack achieved 80% success rate for untargeted attacks
and 70% success rate for targeted attacks.

Simko et al. varied the number of training authors K
from 5 to 50, and commented that untargeted attacks be-
come easier when K increases, and the ease of targeted
attacks does not have an obvious connection to K. For
untargeted attacks, our results align with their observa-
tion. For targeted attacks, our results do not align with
their observation, where the success rate of our targeted
attacks decreases as K increases. In Simko et al.’s exper-
iments, they always performed targeted attacks against
only 5 of the K authors, regardless of the value of K.
In another words, their experiments did not evaluate all
possible scenarios of targeted attacks. On the other hand,
we attempted to perform targeted attacks against each of
the incorrect authors, covering all scenarios of targeted
attacks.

Simko et al. then inspected the modified source code
and summarized the most common modifications:

1. Copy entire lines of code written by Y into code
written by X;

2. Make typographical changes such as brackets, new-
lines, space between operators;

3. Modify variable names and the location of variable
declarations, typically either from or to a global
variable;

4. Add or swap library calls; and
5. Change the source code structure such as adding or

removing macros, changing loop types, or breaking
up an if-statement

These changes are mostly local, involving a few lines
of code. The study participants did not need to under-
stand the structure or the functionality of the code to
make such modifications. The modification strategies
presented in this study are unlikely to achieve equal suc-
cess for evading binary code authorship identification, as
many of the modifications are irrelevant at the binary
code level, such as typographic changes, variables re-
naming, and modifying macros.

6 Conclusion

We have presented our attack framework for perform-
ing authorship evasion. Our attack framework includes
components for analyzing feature correlation, generating
feature vectors to cause misprediction, and binary modi-
fication strategies to match the generated feature vectors.
Our evaluations have shown that our attack framework is
effective for untargeted attacks, which is to cause mis-
prediction to any of the incorrect authors. Targeted at-
tacks are significantly more difficult to achieve, which is

to cause misprediction to a specific one among the incor-
rect authors.

Our attack experiences show that it is not secure to
rely on features derived from program properties that are
easy to modify, such as function calls, symbols, data, and
instructions. Authorship identification techniques must
consider the trustworthiness of the features.
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