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Abstract

We describe a new approach for locating the causes
of anomalies in distributed systems. Our target en-
vironment is a distributed application that contains
multiple identical processes performing similar ac-
tivities. We use a new, lightweight form of dynamic
instrumentation to collect function-level traces from
each process. If the application fails, the traces
are automatically compared to each other. We find
anomalies by identifying processes that stopped ear-
lier than the rest (sign of a fail-stop problem) or
processes that behaved different from the rest (sign
of a non-fail-stop problem). Our algorithm does
not require reference data to distinguish anomalies
from normal behaviors. However, it can make use
of such data when available to reduce the number
of false positives. Ultimately, we identify a function
that is likely to explain the anomalous behavior.
We demonstrated the efficacy of our approach by
finding two problems in a large distributed cluster
environment called SCore.

1 Introduction

Finding the root causes of bugs and performance
problems in high-performance computing and e-
commerce environments is a difficult task. One
of the main reasons for this difficulty is the dis-
tributed and concurrent nature of such systems.
Analyzing execution of multiple interacting threads
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or processes can be significantly harder than se-
quential execution. In a concurrent system, events
can happen in different order in different runs. Fur-
thermore, concurrent systems suffer from bugs not
present in sequential software. Bugs such as dead-
locks and race conditions are notorious for being
hard to track down. Finally, the non-interactive
nature of many system components complicates er-
ror detection. A silent failure of a process on one of
the hosts may remain unnoticed until a later time.

To simplify the tasks of problem detection and
root cause analysis in large distributed environ-
ments, we need to automate them to the extent
possible. We envision that the programmer or the
analyst would use an autonomous agent tool to help
locate the cause of a problem as follows. First, the
analyst injects the agent code into a running sys-
tem. The agent starts monitoring processes of in-
terest. It collects run-time execution data, identifies
anomalies in the data that potentially correspond to
abnormal behavior, and makes the results available
to the analyst for further investigation.

In our previous work [20], we presented self-
propelled instrumentation, which enables creation
of such agents. It allows us to obtain execution
traces from a running program with low overhead
and without modifying the program’s source code.
This paper builds on that foundation to provide so-
lutions for locating problems in distributed high-
performance computing environments. To achieve
this goal, we extended our techniques to collect
traces from multiple processes on multiple hosts.
The key challenge in this approach, however, proved
to be in analyzing large sets of data collected from
different hosts. The primary contribution of this
paper lies in a collection of techniques for finding
anomalies and their causes via automated analysis
of collected data.

Our analyses currently apply to identification of
failures in a distributed collection of identical pro-
cesses that perform similar and comparable activ-
ities. Environments that often have this prop-
erty are cluster management tools [17, 27], Web
server farms, and parallel numeric codes. The as-



sumed similarity of behaviors allows us to find one
or more processes that are substantially different
from the others; we regard these processes as po-
tential anomalies that require investigation. This
approach can be further generalized to support col-
lections of different processes by grouping identical
processes together and performing analyses within
each group.

To locate the root causes of bugs in a distributed
application, we use a three-step process. First, we
collect control-flow traces from a chosen applica-
tion until it fails. Section 2 describes faults that
are manifested by unusual control flows. To collect
such traces, our current prototype injects a tracing
agent into every process of the application. The
agents record function calls and returns made by
the application processes on all hosts, as described
in Section 3.

Second, we perform data categorization, that is,
identify a process or a small group of processes that
failed, as described in Section 4. Finding such pro-
cesses is a non-trivial task in presence of silent and
non-fail-stop failures. In this step, we use two dif-
ferent techniques. The simplest case is when we
identify anomalous processes with fail-stop behavior
by looking at the process that stopped generating
trace records first. The more complex case is when
we identify anomalous processes with non-fail-stop
behavior by using a distance-based outlier detection
approach [4, 24]. Namely, we compare per-process
traces automatically and identify ones that appear
substantially different from the others. Our algo-
rithm can work without prior knowledge of correct
and incorrect behaviors, simply looking for unusual
activities. However, if examples of previously inves-
tigated behaviors are available, it can incorporate
this knowledge into analysis for improved accuracy.

Finally, we perform root cause identification, as
described in Section 5. That is, we determine why
the anomalous processes behaved differently from
the others. In this step, we automatically locate
a symptom of the problem. The symptom corre-
sponds to the key difference in behavior between
an anomalous process and the most similar normal
process. Then, we describe techniques to help the
analyst transition from knowing a symptom to find-
ing the root cause of the problem.

There are several projects that propose tech-
niques for automated anomaly detection. Mag-
pie [2], Pinpoint [6], the work of Dickinson et
al. [11], and Yuan et al. [32] are the most similar to
our work. These approaches perform similar steps:
collect run-time data in the trace or profile form, an-
alyze it to identify anomalies, and possibly explain

the cause of the anomaly. As discussed in Section 7,
the key strength of our approach is that it meets
all three of the following properties: easy deploy-
ment in production environments via self-propelled
instrumentation, ability to integrate prior knowl-
edge into analysis when available, and fine-grained
localization of a problem to the level of an individ-
ual function.

We applied our prototype solution to identifica-
tion of faults in a large production environment run-
ning a distributed job scheduler called SCore [27].
In three months of deployment of our framework
on a public computational cluster at the Tokyo
Institute of Technology, we witnessed several fail-
ures of the scheduler and successfully located their
causes via trace examination. These results suggest
that the combination of autonomous instrumenta-
tion and statistical trace analysis is a promising ap-
proach to localizing faults in complex distributed
systems.

2 Fault Model

By looking at differences in the control flow across
processes, we can find several important classes of
problems. Some of those problems are bugs, oth-
ers are performance problems. For each described
problem, we can identify the failed process and the
function where the failure happened.

Non-deterministic fail-stop failures. If one
process in a distributed system crashes or freezes,
its control-flow trace will stop prematurely and thus
appear different from those processes that continue
running. Our approach will identify that process as
an anomaly. It will also identify the last function
entered before the crash as a likely location of the
failure.

Infinite loops. If a process does not crash, but
enters an infinite loop, it will start spending an un-
usual amount of time in a particular function or
region of the code. Our approach will identify such
process and find the function where it spends its
time.

Deadlock, livelock, and starvation prob-

lems. If a small number of processes deadlock, they
stop generating trace records, making their traces
different from processes that still function normally.
Similarly, if a process waits for a shared resource in-
definitely while other processes have their requests
granted, they are likely to spend time in different
parts of the code and we can identify the starving
process. A function where the process is blocking
or spinning will point to the location of the failure.



Load imbalance. Uneven load is one of the
main performance problems in parallel applications.
By comparing the time spent in each function across
application nodes, our approach may be able to
identify a node that receives unusually little work.
Functions where the node spends unusually little
time may help the analyst find the cause of the
problem.

Note that there are several types of problems that
may not be detected with our approach. First, we
may not be able to find massive failures. If a prob-
lem happens on all nodes in the system, our ap-
proach would consider this normal behavior. For-
tunately, such problems are typically easier to de-
bug than anomalies. Second, we may not detect
problems with no change in control flow. If an ap-
plication fails on a particular input, but executes
the same instructions as in a normal run, we would
not be able to locate the root cause of the prob-
lem. In our experience however, such problems are
relatively uncommon. Third, we may not be able
to locate problem causes that occur long before the
failure as we only retain a fixed number of recent
trace entries. In the future, this limitation can be
addressed by performing analysis online or saving
older traces to disk instead of discarding them.

3 Data Collection

To collect control-flow traces from an application,
we use self-propelled instrumentation [20]. When
an application starts, we inject a small autonomous
fragment of code, called the agent, into its address
space. To inject the agent, we compile it as a shared
library and use the Hijack mechanism [33] to cause
the application to load the library. The agent mod-
ifies the application’s binary code to insert trace
statements at all function call sites. This activ-
ity is performed incrementally—functions are in-
strumented right before the flow of control reaches
them for the first time. When executed, each trace
statement generates a timestamped in-memory log
record for the corresponding function entry or exit.

If an application contains more than one process
running on one or more hosts, we inject a copy of
the agent into each process. The copies do not com-
municate to each other and collect per-host traces
independently. The copies are controlled by a sin-
gle coordinator process that watches for a deacti-
vation event—an application node crash or another
user-specified exceptional condition. When such a
deactivation event happens, the coordinator saves
the per-host traces to disk to make them available

for analysis.
To retain the in-memory trace data after a sud-

den application crash, we put the trace buffer in a
shared-memory segment. The segment is mapped
both into the application process and a helper tool,
so that when the application process dies, the seg-
ment is left around and the helper tool can save its
contents to disk. This technique does not protect
the data from the crash of the operating system or
a hardware failure, but it is useful for surviving ap-
plication crashes, which are typically more frequent
than whole-node crashes. Note that other tools use
a shared-memory segment for fast accesses to per-
formance data from an external process [18, 31].
However, to our knowledge, spTracer is the first tool
that uses this technique for achieving trace durabil-
ity.

The size of the trace depends on activities in a
traced application. At the extreme end, a single
process can make several hundred million calls to
an empty function in a second on modern hardware.
While such high rates are infrequent in practice,
function call traces can still grow large, consume
substantial amounts of memory, and adversely af-
fect execution of all processes in the system. To
limit this perturbation, we restrict the size of the
trace buffer and organize it in a circular way—
after reaching the end of the buffer, the agent starts
adding new trace records from the beginning. This
technique retains the most recent events that oc-
curred before the crash.

In our experiments, we traced job management
daemons, scored, of the SCore distributed environ-
ment [27]. A ten-megabyte trace buffer was suffi-
cient for capturing several minutes of normal exe-
cution of each daemon. Furthermore, the run-time
impact of tracing such daemons on execution of user
jobs proved negligible. The end-to-end slowdown of
applications in the NPB suite [29] was less than 1%
while the daemons were traced.

4 Data Analysis: Finding a Mis-

behaving Host

Once the traces are obtained, saved to local disks,
and gathered at a central location, we start ana-
lyzing them. The first step in our analysis is to
find the misbehaving host. For this purpose, we
use two techniques: identification of a node that
stopped generating traces first and identification of
traces that are the least similar to the rest. The
first technique locates hosts with fail-stop problems;
the second focuses on non-fail-stop problems. Note



that none of these techniques use an external fault-
detection mechanism. Instead, they locate the mis-
behaving host from the traces themselves. External
fault detectors typically look for known symptoms,
such as network timeouts or node crashes [6]. In
contrast, our approach is able to find silent failures
and failures with symptoms never seen before.

4.1 The Earliest Last Timestamp

A simple technique for finding the failed host is
to identify the host that stopped generating trace
records first. The trace whose last record has the
earliest timestamp is reported to the analyst as an
anomaly. In general, the technique may be effective
for detecting fail-stop problems, such as application
crashes or indefinite blocking in system calls. It
proved to work well for several of our experimental
studies.

To compare last timestamps across hosts, we con-
vert them to the absolute time, assuming that the
system clocks of all hosts are well synchronized.
Next, we compute the mean and standard deviation
of last timestamps across all hosts. If the earliest
timestamp is substantially different from the mean
and the delta exceeds the attainable clock synchro-
nization precision [19], we assume the fail-stop sce-
nario and report the host with the earliest times-
tamp to the analyst. Otherwise, we assume that the
problem has the non-fail-stop property. Such prob-
lems as performance degradations, livelocks, star-
vation, infinite loops in the code are often harder
to debug than fail-stop crashes, and we locate them
with the following technique.

4.2 Finding Behavioral Outliers

To find anomalous hosts that exhibit non-fail-stop
behavior, we identify outlier traces, i.e. individual
traces or small collections of traces that appear dif-
ferent from the rest. To identify such traces, we use
a distance-based outlier detection approach [4, 24].
First, we define a pair-wise distance metric that es-
timates the dissimilarity between two traces. Then,
we construct a suspect score that estimates the dis-
similarity between a trace and a collection of traces
that we consider normal. We use the suspect score
as a rank of a trace. Traces with the highest rank
are of interest to the analyst as they correspond to
hosts whose behavior is most different from normal.

Note that outliers can correspond to either true
anomalies or to unusual but normal behavior. For
example, the master node of a master-worker MPI
application may behave substantially different from

the worker nodes. Workers perform units of work,
while the master distributes the units among the
workers. Approaches that look for outliers would
flag the normal behavior of the master as an
anomaly.

To eliminate such false positives, our approach
utilizes data from known-correct previous runs, if
available. If a previous correct run contained a trace
similar to that of the MPI master node in the cur-
rent run, the master will not be flagged as an out-
lier. Our analyses provide a uniform framework to
handle both the case when we have data only from
the failed execution (the unsupervised case [13]) and
when we also have data from a known-correct pre-
vious run (the one-class ranking case [28]).

4.2.1 Pair-wise Distance Metric

To define the distance between traces for two hosts,
g and h, we use a two-step process similar to Dick-
inson et al. [11]. First, we construct per-trace func-
tion profiles that serve as a summary of behaviors
in each trace. Then, we define the distance metric
between the profiles. The profile for host h is a vec-
tor p(h) of length F , where F is the total number
of functions in the application.

p(h) =

(

t(h, f1)

T (h)
, . . . ,

t(h, fF )

T (h)

)

(1)

The ith component of the vector corresponds to a
function fi and represents the time t(h, fi) spent in
that function as a fraction of the total run time of
the application, T (h) =

∑

F

i=1
t(h, fi).

Note that unlike the count profiles of Dickinson
et al., we use time profiles. In our experience,
time profiles are able to detect a wider range of be-
havioral problems. For example, if an application
blocked indefinitely in a system call, the anomaly
will be immediately visible in the time profile, but
not the count profile. Also, time profiles are a nat-
ural match for detecting performance problems.

We can treat different call paths to each func-
tion as separate functions, so our definition of the
profile can seamlessly include call path profiles. For
example, assume that an execution trace contains
two paths to function C: (A → B → C) and
(D → E → C), where (A → B) denotes a call from
A to B. We can consider these two paths as two
different functions, f1 and f2. The time t(h, f1) at-
tributed to f1 is equal to the time spent in C when
it was called from B when B was called from A,
and the time t(h, f2) is equal to the time spent in
C when it was called from E when E was called
from D. Since the algorithms presented below are
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Figure 1: Geometric meaning of profiles.

The two data points correspond to hosts g and
h with profile vectors p(g) and p(h). The coor-
dinates of the points are determined by the rel-
ative contributions t(A) and t(B) of functions A
and B to the total time T on each host. δ(g, h)
is the difference vector between p(g) and p(h).

independent of the type of profile used, we will re-
fer to the components of profile vectors as functions
for simplicity of presentation. Section 6 presents
experimental results for the path-based method.

The profile vector defines a data point in an
F -dimensional space, where the ith coordinate is
t(fi)/T , that is the time spent in function fi as
a fraction of the total time. Figure 1 shows the
geometric interpretation of profiles for an example
application that has two functions, A and B (i.e.,
F = 2). Host g has a profile of (0.6, 0.4), represent-
ing the fact that it spent 60% of the time in A and
40% in B, and host h has a profile of (0.75, 0.25).

The distance between traces g and h, d(g, h),
is then defined as the Manhattan length of the
component-wise difference vector between p(g) and
p(h), δ(g, h) = p(g) − p(h). Our experiments with
the Euclidean metric showed similar results.

d(g, h) = |δ(g, h)| =

F
∑

i=1

|δi| (2)

If g and h behave similarly, each function will con-
sume similar amounts of time on both hosts, the
points for g and h will be close to each other, and
the distance d(g, h) will be low. The advantage of
computing distances between profiles rather than
raw traces is that profiles are less sensitive to in-
significant variations in behavior between hosts. For
example, the same activity occurring on two hosts
at different times may make their traces look sig-
nificantly different, while the profiles will remain
the same. The main disadvantage of profiles is that
they may disregard subtle but real symptoms of a
problem. In our experience however, once a fail-
ure occurs, the behavior of a host typically changes
substantially and the change is clearly visible in the
profile.

4.2.2 Suspect Scores and Trace Ranking

Our goal is to compute a suspect score for each
trace. Traces with the largest scores will be of pri-
mary interest to the analyst as probable anoma-
lies. We present two algorithms for computing such
scores. The first algorithm applies to the unsuper-
vised case where we have trace data from only the
failed execution. The second algorithm applies to
the one-class classifier case [28] where we have addi-
tional data from a known-correct previous run. This
additional data allows us to identify anomalies with
higher accuracy. Both algorithms are based on the
same computational structure.

In the unsupervised case, we operate on a set
of traces T collected from the failed run. We as-
sume that T consists of one or more types of com-
mon behaviors and a small number of outliers. Ra-
maswamy et al. detected outliers by ranking each
data point according to its distance to its kth near-
est neighbor [24]. We use this idea to compute our
suspect scores in the unsupervised case and extend
it to handle the one-class classified case.

To determine a good value of k, we evaluated the
sensitivity of the algorithm to k on our data sets.
As expected, values of k less than the total number
of outliers (our data sets had up to three anomalies)
produced false negatives, ranking some anomalous
traces as normal. High values of k potentially can
produce false positives, ranking some normal traces
as anomalies, but we have not seen such cases in our
data sets. The algorithm worked well for all k larger
than 3 and up to |T |/4, where |T | is the number of
traces in T . Furthermore, the cost of a false positive
to the analyst (examination of an additional normal
trace) may be significantly lower than that of a false
negative (overlooking a true anomaly). Therefore,
we have adopted a conservative value of k = |T |/4.

For each trace h ∈ T in the unsupervised case,
we construct a sequence of traces Td(h) by ordering
all traces in T according to their distance to h:

Td(h) =
〈

h1, h2, . . . , h|T |

〉

(3)

Here, d(h, hi) ≤ d(h, hi+1), 1 ≤ i ≤ |T |. The sus-
pect score for trace h is then defined as the distance
of h to its kth nearest neighbor hk:

σ(h) = d(h, hk) (4)

A trace is considered normal if it has a low sus-
pect score and an anomaly if it has a high sus-
pect score. Informally, σ(h) defined by Equation 4
tries to quantify the dissimilarity between h and
the nearest common behavior, since we consider all
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Figure 2: Unsupervised case.

Computing the suspect scores σ(g) and σ(h) for
an anomalous trace g and normal trace h. C is
a large collection of traces with similar behaviors;
gi and hi are the ith trial neighbors of g and h
respectively; n1 is the first normal neighbor of g.

common behaviors as normal. Parameter k deter-
mines what is a common behavior: a trace must
have at least k close neighbors to receive a low sus-
pect score and be considered normal.

Figure 2 shows two examples to illustrate the al-
gorithm when k = 2: Trace h is part of a large set C,
representing one of the common behaviors; h has a
large number (more than k = 2) of close neighbors.
As a result, its kth neighbor, h2, will be relatively
close, the suspect score σ(h) = d(h, h2) will be low,
and h will be considered a normal trace. In con-
trast, trace g is an outlier. It is far away from any
common behavior and has only one (i.e., less than
k) close neighbor. As a result, its kth neighbor, g2,
will be far away, the suspect score σ(g) = d(g, g2)
will be high, and g will be considered an anomaly.

For these two cases, the unsupervised algorithm
produces desired results. It reports a high suspect
score for an outlier and a low suspect score for a
common behavior. However some outliers may cor-
respond to unusual but normal behavior and they
are of little interest to the analyst. Now we present
a modified version of our algorithm that is able to
eliminate such outliers from consideration by us-
ing additional traces from a known-correct previous
run.

We add a set of normal traces N to our analysis.
N contains both common behaviors and outliers,
but all outliers from N correspond to normal ac-
tivities. As a result, if an outlier g from T is close
to an outlier n from N , g is likely to correspond
to normal behavior and should not be marked as
an anomaly. To identify true anomalies, i.e. traces
that are far from any large collection of traces from
T and also far from any trace in N , we compute the
suspect scores as follows.

Similar to sequence Td(h) defined by Equation 3,
sequence Nd(h) arranges all traces in N in the order
of their distance to h:

Nd(h) = 〈n1, n2, . . . , nH〉 (5)
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Figure 3: One-class case.

Computing the suspect scores σ(g) and σ(h)
where both g and h are normal, but g is un-
usual; n1 is the closest normal neighbor of g.

Here, d(h, ni) < d(h, ni+1), 1 ≤ i ≤ |T |. Suspect
score σ(h) is now defined as the distance of h to
either its kth neighbor from T or the first neighbor
from N , whichever is closer:

σ(h) = min{d(h, hk), d(h, n1)} (6)

Figure 3 shows two examples to illustrate this
idea: Similar to Figure 2, trace h will be considered
normal, as it is part of a large collection of trial
traces. Trace g is an outlier. It is far away from any
common behavior and has only one (i.e., less than
k) close trial neighbor. However, it has a normal
trace n1 nearby. Therefore, its suspect score σ(g) =
d(g, n1) will be low, and g will also be considered
normal.

Note that the one-class approach can also benefit
from examples that may contain prior faulty behav-
iors, if available. Such data can be used to eliminate
generic symptoms, i.e. anomalies common to many
unrelated problems. Since such symptoms are not
specific to any problem, identifying them may not
help the analyst locate the actual problem. How-
ever, by treating examples of previous unrelated
failures as normal behavior, our one-class algorithm
is able to eliminate generic symptoms and identify
symptoms that were unique to the problem at hand.

5 Data Analysis: Finding the

Cause of the Anomaly

Once the anomalous trace is found, we provide sev-
eral techniques for locating a function that is a likely
cause of the problem. To define the concepts used
in this section, we consider the following steps of
problem evolution [1]. The first step is the occur-
rence of a fault, also referred to as the root cause of
a problem. In the second step, the fault causes a
sequence of changes in the program state, referred
to as errors. Finally, the changes in the state cause
the system to fail: crash, hang, or otherwise stop



providing the service. We refer to such an event as
a failure.

5.1 Last Trace Entry

A simple technique for identifying a function that
caused the found host to behave abnormally is to
examine the last entry of the host’s trace. The tech-
nique can be viewed as a natural extension of our
earliest last timestamp approach from Section 4.1.
We identify not only the host that stopped gener-
ating trace records first, but also the last function
executed by that host. Such a function may be a
likely cause of the failure. The technique is often
effective for identifying the causes of crashes and
freezes, but may not work for non-fail-stop prob-
lems.

5.2 Maximum Component of the Delta

Vector

To locate the causes (or at least symptoms) of non-
fail-stop problems, we developed an approach that
is a natural extension to the outlier-finding ap-
proaches described in Section 4.2. After locating
outlier traces, we identify the symptoms that led
us to declare those traces as outliers. Specifically,
we find a function whose unusual behavior had the
largest contribution to the suspect score for the out-
lier trace.

Recall that in Equations 4 and 6, the suspect
score of a trace h is equal to the distance d(h, g)
of h to another trace g, where g is either the kth

trial neighbor of h or the first known-normal neigh-
bor of h. In turn, the distance d(h, g) is the length
of the delta vector δ(h, g). Component δi of δ(h, g)
corresponds to the contribution of function fi to
the distance. Therefore, by finding the δi with the
maximum absolute value, we will identify a func-
tion with the largest difference in behavior between
h and g:

anomFn = argmax
1≤i≤F

|δi| (7)

This technique worked well in our experiments. Our
outlier-finding approaches were able to accurately
identify the anomalous traces; examination of the
maximum component of the delta vector explained
their decisions and located the anomalies.

5.3 Anomalous Time Interval

Note that our approach identifies the location of the
failure, but not necessarily the root cause of a prob-
lem. For example, if function A corrupted memory

and caused function B to enter an infinite loop, we
will locate B, but A will remain undetected. To
help the analyst transition from the failure to the
fault, we extended our analysis to identify the first
moment when the behavior of the anomalous host
started deviating from the norm. Namely, we par-
tition traces from all hosts, normal and anomalous,
into short fragments of equal duration. Then, we
apply our outlier detection algorithm to such frag-
ments rather than complete traces and identify the
earliest fragment from the anomalous host that is
marked as the top outlier. Knowing the time inter-
val where the change in behavior occurred provides
additional diagnostic precision.

6 Experimental Results

To evaluate the effectiveness of our techniques, we
used the spTracer prototype to locate the causes
of bugs in a large production environment running
a distributed cluster management system called
SCore [27]. The installation of SCore on a pub-
lic computational cluster suffered from occasional
failures with varying symptoms. Here, we describe
the key features of SCore and show how we used
spTracer to collect and analyze traces in such envi-
ronment.

6.1 Overview of SCore

SCore is a large-scale parallel programming environ-
ment for clusters of workstations. SCore facilities
include distributed job scheduling, job checkpoint-
ing, parallel process migration, and a distributed
shared memory infrastructure. It is implemented
mainly in C++, and has a large code base: it has
more than 200,000 of lines of code in 700 source
files.

A typical SCore usage scenario looks as follows.
First, the user submits a job to the central sched-
uler. Then SCore finds an appropriate number of
compute nodes and schedules the job on the nodes.
As the job runs, scored daemons on each node
monitor the status of the job’s processes executing
on the same node. Finally, when the job terminates,
SCore releases acquired nodes.

To detect hardware and software failures, clus-
ter nodes exchange periodic keep-alive patrol mes-
sages. All scored processes and a special process
called sc watch are connected in a uni-directional
ring; when a process in the ring receives a patrol
message from one neighbor, it forwards the mes-
sage to the other neighbor. The sc watch process
monitors the patrol messages; if it does not receive



such a message in a certain time period (ten min-
utes, by default) it assumes that a node in the ring
has failed and attempts to kill and restart all scored
processes. Note that the patrol mechanism does not
allow sc watch to identify the faulty node. Upon a
failure, sc watch knows that at least one node has
failed, but it does not know which one.

In three months of monitoring a public instal-
lation of SCore v5.4 on a 129-node computational
cluster at the Tokyo Institute of Technology, we wit-
nessed several failures. To investigate the causes
of such failures, we applied spTracer to collect
function-level traces from scored processes on ev-
ery node in the cluster. When each scored process
starts, we inject our tracer agent into its address
space and it starts collecting records of function
calls and returns made by scored. When sc watch

times out waiting for a patrol message, spTracer
saves the accumulated trace buffers to disk. Later,
we analyze collected data to locate the failed nodes
and identify the cause of the anomaly.

6.2 Network Stability Problem

The network link stability problem exhibited the
following symptoms. The system stopped schedul-
ing jobs, and sc watch detected the failure after
ten minutes and restarted the scored management
daemons on all nodes without errors. The failure
happened multiple times in two months, making it
important to find its cause.

Our earliest last timestamp approach described
in Section 4.1 determined that the failure exhib-
ited a clear fail-stop behavior. We identified that
host n014 stopped generating trace records more
than 500 seconds earlier than any other host in
the cluster. We examined the last trace entry on
host n014 and found that scored terminated vol-
untarily by calling the score panic function and
eventually issuing the exit system call. However,
we could not find the caller of score panic due
to the fixed-size trace buffer. The entire buffer
preceding score panic was filled with calls to
myri2kIsSendStable, evicting the common caller
of myri2kIsSendStable and score panic from the
buffer. Future versions of our tracer will address
this limitation by maintaining a call stack for the
most recent trace record and reconstructing the call
stacks for earlier records.

For the problem at hand, we used the source code
to find that myri2kIsSendStable and score panic

were called from freeze sending. This finding sug-
gests that scored waited until there were no more
in-flight messages on the host’s Myrinet-2000 NIC.
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Figure 4: Suspect scores in the scbcast prob-

lem

When this condition did not occur after numerous
checks, scored aborted by calling exit. We re-
ported the results of our analyses to the SCore de-
velopers. Their feedback confirmed our findings.
They had observed such symptoms in Ethernet-
based networks, but our report showed them that a
similar problem exists in Myrinet networks.

6.3 Scbcast Problem

Another problem occurred when an SCore compo-
nent, called scbcast, stopped responding to re-
quests from scored. Scbcast is a broadcasting
service in SCore that runs on the supervisor node.
It aggregates monitoring information produced by
scored, to which client programs can connect to re-
trieve this information rather than contacting indi-
vidual scoreds directly. While this technique elim-
inates some load from scored processes, it intro-
duces an additional point of failure. In one ex-
ecution, an scbcast process stopped responding
to incoming requests and the entire SCore system
stopped functioning. Here we describe how sp-
Tracer was able to establish that scbcast was the
cause of that failure.

First, we decided that the problem did not exhibit
a fail-stop behavior: the maximum difference be-
tween the last timestamps was only 20 seconds; the
earliest host terminated less than a second earlier
than the second earliest. Having identified that the
problem was not fail-stop, we used our path-based
ranking algorithms with results shown in Figure 4.
For each point, the x-coordinate corresponds to the
name of a node, and the y-coordinate to its suspect
score. As we see, the suspect score of node n129 is
substantially higher than those of other nodes, mak-
ing it a likely candidate for detailed examination.
To obtain Figure 4, we used traces from the failed
run, and also added reference traces from previous



runs. The reference traces for previous faulty runs
with unrelated symptoms proved especially useful
as they allowed us to eliminate a second node, whose
anomalous behavior was a response to more than
one type of problem, and therefore could not point
to a specific problem cause.

In contrast, the behavior of n129 has not been
seen in other executions. Our algorithm explained
the cause of such behavior by identifying that the
path (output job status → score write short

→ score write → libc write) had the largest
contribution to the node’s suspect score. Of 12
minutes of execution, scored spent 11 minutes ex-
ecuting in libc write on that path. By visualiz-
ing the trace with the Jumpshot tool [5], we found
that scored entered score write and started call-
ing libc write in a loop, never returning from
score write. As a result, sc watch received no
patrol message for more than 10 minutes, killed
all scored processes, and tried to restart them.
We see that n129 was a true anomaly; our outlier-
identification approaches were able to locate it, and
the maximum-component approach found the cor-
rect symptom. Inspecting all traces manually would
have required substantial effort.

Examination of the source code revealed that
scoredwas blocking while trying to write a log mes-
sage to a socket connected to the scbcast process
that we did not trace. Such behavior would oc-
cur if scbcast froze and stopped reading from the
socket [16]. If other scored nodes output a suffi-
cient number of log messages, they would have also
blocked. The fact that scored was not prepared to
handle such failures points to a bug in its code. We
reported the bug and it is being fixed for a future
release of SCore.

7 Related work

Debugging of parallel and distributed applications
has been an active area of research for several
decades. Here, we survey only those approaches
that perform some of the analysis automatically.
The work of Dickinson et al. [11], Yuan et al. [32],
Pinpoint [6], and Magpie [2] are most similar to
our work. These approaches collect run-time infor-
mation and use data mining techniques to simplify
debugging of complex software. Unlike their data
collection approaches that require static instrumen-
tation, ours is dynamic. It can be activated and
deactivated at any time and works on unmodified
applications. Though we note that our dynamic ap-
proach could be applied to their systems. Below, we

compare our data analysis approaches.

7.1 Dickinson et al.

In beta testing, the analysts examine execution re-
ports coming from the users to determine the causes
of failures. The work by Dickinson et al. [11] aims
to reduce the number of reports an analyst has to
inspect as follows. First, the users run instrumented
programs to collect call profiles. Next, similar pro-
files are clustered together using several distance
metrics. Finally, the analyst examines one or sev-
eral profiles from each cluster to determine whether
the entire cluster corresponds to correct or failed
executions.

Similar to Dickinson et al., we operate on func-
tion profiles and use a distance metric to estimate
similarity between profiles. Their clustering ap-
proach could also be applied to our goal of identify-
ing anomalous behaviors: we could locate anomalies
by finding clusters that contain one or a small num-
ber of nodes. In practice however, we found that
this technique, like other unsupervised techniques,
generates false positives reporting unusual but nor-
mal behaviors as anomalies. Although not a serious
problem in their scenario that assumes manual data
examination, false positives present a challenging
obstacle for fully-automated online diagnosis.

Another difference between our approaches is
that our method further automates problem diag-
nosis. After identifying an anomaly, our algorithm
attempts to find a single function or a call chain
that is the root cause of the problem (see Section 5
for details). In contrast, the approach of Dickinson
et al. requires manual effort from the analyst to
identify the cause of each problem.

7.2 Yuan et al.

Yuan et al. propose a technique for classifying fail-
ure reports from the field to quickly diagnose known
problems. They collect a system call trace from an
application that demonstrates a reproducible fail-
ure. Next, they apply a supervised classification
algorithm to label the trace using its similarity to
a collection of previous labeled traces. The label of
the trace determines the type of observed problem,
and therefore, the root cause of the problem.

Yuan et al. operate on system call traces that
have coarser granularity than our function traces.
In our experience, once a problem happens, the
behavior of an application changes significantly, so
that even system call traces may appear anomalous.
This property is often used in anomaly-based intru-



sion detection (e.g., see [12, 30]). Although useful
for detecting anomalies in system applications, it
remains to be seen whether system call traces can
accurately represent the behavior of other applica-
tions, such as parallel numeric codes. Moreover,
system call traces may not be sufficient for finding
many performance anomalies and their causes. In
general, if the cause of a problem is in a function
that does not make system calls, finding its location
from system call traces may not be possible.

The approach of Yuan et al. would also work
on our function-level traces. It could be applied to
our problem at two different stages. First, it could
be used to classify our function-level traces into two
classes: normal and anomalous. A similar technique
has also been used by Cohen et al. [9] to correlate
aggregate metrics, such as system CPU utilization,
with violations of performance objectives. Both ap-
proaches are supervised, requiring examples of pre-
vious traces to be labeled into normal and anoma-
lous. In contrast, our approach is able to operate
without any reference or with examples of only one
class.

Second, the approach of Yuan et al. could be used
at the root-cause identification stage to classify an
anomalous trace into the most similar failure cate-
gory. However, it would require manual effort from
the analyst to classify traces for previous failures.
Furthermore, this technique targets the root causes
of known problems and would be unable to diagnose
new failures.

Another difference between our approaches is
that Yuan et al. use cross-run repetitiveness of an
application’s behavior. Traces from different runs
(on the same or different machines) are compared
to each other to identify root causes of failures. In
contrast, our approach can use both the cross-run
and within-run cross-process repetitiveness inherent
in large-scale distributed systems. As a result, we
can perform diagnosis in a single application run.
Previous approaches have not explored within-run
repetitiveness, as it is specific to large-scale envi-
ronments.

7.3 Magpie

Magpie builds workload models in e-commerce
request-based environments. Its techniques can be
used for root cause identification as follows. First,
Magpie collects event traces for client requests. It
represents requests as strings of characters, where
each character corresponds to an event, such as a
context switch or an I/O event. Second, similar re-
quest strings are clustered together according to the

Levenshtein string-edit distance metric [10]. In the
end, strings that do not belong to any sufficiently
large cluster are considered anomalous requests. Fi-
nally, to identify the root cause (the event that is
responsible for the anomaly), Magpie builds a prob-
abilistic state machine that accepts the collection of
request strings [3]. Magpie processes each anoma-
lous request string with the machine and identi-
fies all transitions with sufficiently low probabil-
ity. Events that correspond to such transitions are
marked as the root causes of the anomaly.

Such data analysis techniques can be applied
to our function-level data by representing function
calls as Magpie’s events. A key difference between
our approaches is that Magpie groups raw traces
based on the edit distance between them. We first
summarize traces to compute profiles and then ana-
lyze similarity between the profiles. In our environ-
ment, application nodes perform similar activities
in the long run, but their instantaneous behaviors
can be radically different. The advantage of profiles
in such situations is that they would still be similar
while the difference between raw traces would be
significant.

A disadvantage of profiles is that we may overlook
subtle but real symptoms of a problem. In our ex-
perience however, the behavior of a node typically
changes substantially upon a failure. The failed
node and the location of the failure can then be
easily identified from the profiles. Whether either
approach can detect latent faults that occur before
the failure remains to be seen.

7.4 Pinpoint

Pinpoint [6, 7, 8] detects faults in client-server sys-
tems and locates their root causes as follows. First,
it records traces of components involved in pro-
cessing each client request. Traces are obtained
from application-specific or middleware-specific in-
strumentation present in many commercial systems.
Second, Pinpoint determines whether each request
completed successfully or failed. It looks for faults
with known symptoms (e.g., network timeouts) us-
ing an auxiliary fault detector. It is also able to
detect statistically significant deviations from the
norm using PCFG (probabilistic context-free gram-
mars). This approach is similar to that of Mag-
pie, but Pinpoint applies it to fault detection rather
than to root cause identification. Finally, Pinpoint
uses two independent techniques, clustering and de-
cision trees [8], to look for correlations between the
presence of a component in a request and the failure
of the request.



To identify an anomalous host, we could use
Pinpoint’s external fault detectors. However, they
would not allow us to find silent problems, such as
the one described in Section 6.3. Alternatively, we
might be able to apply their PCFG-based approach.
However, as discussed in Section 7.3, this approach
may not be effective on raw function-level traces
due to their variability.

To locate the root cause of a problem from clas-
sified traces, we could use Pinpoint’s decision trees
or clustering of coverage data. When applied to
function-level coverage data, both approaches only
would be able to detect a narrow class of problems.
If a problem is not manifested by a difference in
function coverage across traces, it will not be de-
tected.

7.5 Other Diagnostic Approaches

Another approach for root cause identification is be-
ing investigated by the CBI (Cooperative Bug Iso-
lation) project [15]. CBI instruments an applica-
tion to collect the values of three types of predicates
for each run: whether each conditional branch was
taken or not, whether a function returned a nega-
tive value or not, and whether one scalar variable is
greater than another. Further, each run is labeled
as either failed or successful, depending on whether
the application crashed or not. In the last step, CBI
uses statistical techniques to analyze the collected
data sets from numerous runs and identify pred-
icates that are highly correlated with failed runs.
Such predicates allow the analysts to focus their
analysis on specific parts of the code.

If we introduce a different set of predicates that
determine whether each function was present in the
trace or not, the CBI analysis can be applied to
data collected by spTracer. The key difference be-
tween our approaches is similar to that between
spTracer and the first approach of Pinpoint: we
do not rely on an externally-provided classification
of traces into normal and anomalous and identify
anomalies from the traces themselves.

Aside from the mentioned projects, there exists a
variety of more specialized approaches that aim at
locating a particular kind of problem. Since they do
not attain the level of generality of approaches dis-
cussed above, we only survey them briefly. Several
tools aim at detecting memory-related errors in ap-
plications [14, 21, 23]. Such tools can detect buffer
overruns, memory leaks, attempts to use uninitial-
ized memory, free operations on an already-freed
memory region, and similar errors. There is also
an extensive body of work on finding race condi-

tions in multithreaded programs [21, 22, 25, 26].
These techniques monitor memory accesses as well
as lock and unlock operations performed by differ-
ent threads to make sure that all shared memory
locations are guarded by locks.

8 Conclusion

We presented an automated approach that com-
bines dynamic instrumentation and trace analy-
sis for explaining failures in large-scale distributed
environments. The approach looks for anomalies
rather than massive failures as anomalies are often
harder to locate than massive failures. We iden-
tify both fail-stop and non-fail-stop anomalous be-
haviors and further attempt to explain the cause of
the anomaly. Evaluation of our prototype in a real-
world distributed environment demonstrated the ef-
fectiveness of described techniques.
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