
A Framework for Scalable, Parallel Performance Monitoring using TAU and
MRNet

Aroon Nataraj1 Allen D. Malony1 Alan Morris1 Dorian Arnold2

Barton Miller2

1Department of Computer and Information Science
University of Oregon, Eugene, OR, USA

{anataraj,malony,amorris}@cs.uoregon.edu

2Computer Sciences Department
University of Wisconsin, Madison, WI, USA

{darnold,bart}@cs.wisc.edu

Abstract

Performance monitoring of HPC applications offers
opportunities for adaptive optimization based on dynamic
performance behavior, unavailable in purely post-mortem
performance views. However, a parallel performance
monitoring system must have low overhead and high ef-
ficiency to make these opportunities tangible. We de-
scribe a scalable parallel performance monitor called
TAUoverMRNet (ToM), created from the integration of
the TAU performance system and the Multicast Reduction
Network (MRNet). The integration is achieved through a
plug-in architecture in TAU that allows selection of dif-
ferent transport substrates to offload online performance
data. A method to establish the transport overlay struc-
ture of the monitor from within TAU, one that requires
no added support from the job manager or application,
is presented. We demonstrate the distribution of perfor-
mance analysis from the sink to the overlay nodes and the
reduction in large-scale profile data that could otherwise
overwhelm any single sink. Results show low perturbation
and significant savings accrued from reduction at large
processor-counts.

Keywords: Online, measurement, reduction

1 Introduction

With the advent of multi-core, heterogeneous, and ex-
treme scale parallel computing, there has been a recent
shift in perspective [1] of parallel performance analysis as
a purely static, offline process to one requiring online sup-
port for dynamic monitoring and adaptive performance
optimization. Given the prerequisites of low overhead and
low perturbation for performance measurement methods,
the addition of runtime performance query and analysis
capabilities would seem antithetical to the performance
tool orthodoxy. What is surprising, however, is the will-
ingness in the neo-performance perspective to consider
the allocation of additional system resources to make dy-
namic performance-driven optimization viable. Indeed,
as parallel systems grow in complexity and scale, this may
be the only way to reach optimal performance.

A parallel performance monitor couples a system for
performance measurement with runtime infrastructure for
accessing performance data during program execution.
Parallel performance measurement systems, such as the
TAU Performance SystemTM[2], can scale efficiently by
keeping performance data local to where threads of ex-
ecution are measured. Providing low-overhead access to
the execution-time performance data for dynamic analysis

1

is a different challenge because it requires global program
interaction. If additional system resources can be utilized,
a robust parallel performance monitor can be built.

How performance monitoring is used in practice (e.g.,
frequency of interaction, amount of performance data, #
processors) will define architectural guidelines for a mon-
itor’s design. However, to optimize the tradeoff of mon-
itoring overhead versus additional resource assignment,
a comprehensive characterization of monitor operation is
required. It is important to provide a flexible framework
for scalable monitoring and a methodology for evaluation
that would allow engineering optimizations to be deter-
mined given choices of acceptable levels of overhead and
resource allocation.

The TAU over MRNet (ToM) performance monitor in-
tegrates TAU with the MRNet scalable infrastructure for
runtime program interaction. This paper reports our ex-
periences building a scalable parallel monitor (based on
the ToM prototype) and evaluating its function and per-
formance. Section 2 presents the system design and op-
erational model. Here we define an abstract monitor-
ing interface to support infrastructure interoperability and
leverage MRNet’s programming capabilities for analysis-
filter development. Section 3 describes how the transport
network is instantiated at the start of program execution.
Once in place, ToM can be used in a variety of ways for
performance data analysis. Section 4 discusses the dif-
ferent methods we have implemented. In Section 5 we
assess monitor performance using benchmark codes and
the FLASH application. Our goal is to evaluate different
parameters of ToM’s configuration and use. Given space
constraints, we refer the reader to the related work de-
scribed in our first-generation work on performance mon-
itoring [3] and our MRNet paper [4].

2 Scalable Monitor Design

The problem of scalable, online parallel monitoring
naturally decomposes into measurement and transport
concerns. With TAU performing the measurement, the
choice of a transport needs to consider several fac-
tors including, i) the availability of specialized physical
networks, ii) the nature and size of performance data
(e.g. profile vs. trace) and feasibility of distributed
analyses and data reduction, iii) availability of moni-

MRNET
Comm Node

+
Filter

MRNET
Comm Node

+
Filter

TAU
Front-End

Streams

Streams

Back
End

Back
End

Data

Co
nt

ro
l -

->

Data

Control -->

Figure 1. The TAUoverMRNet System

toring/transport resources and iv) the perturbation con-
straints. An extensible plugin-based architecture that al-
lows composition of the measurement system with mul-
tiple, different transports allows flexibility in the choice
of a transport based on these factors. Our current
work, an extension of TAUoverSupermon [3], general-
izes that approach and goes further in exploring the Tree-
Based Overlay Network (TBON) model with an empha-
sis on programmability of the transport (distributed anal-
ysis/reduction) and a transparent solution to allocation of
transport/application resources. We demonstrate scalable
monitor design using the TAUoverMRNet (ToM) proto-
type. The main components and the data/control paths
of the system (shown in Figure 1) are described next.

2.1 Back-End

Figure 2 shows the currently available bindings (NFS,
Supermon and MRNet). The profile output routine
(TAU DB DUMP) in TAU uses a generic interface which
is implemented by each of the specific transport adaptors.
In the case of a NFS, the implementation directly falls

2

Figure 2. ToM Backend

through to the standard library implementation of FILE
I/O. The choice of the transport can be made at runtime
using environment variables. The MRNet adapter in TAU
uses two streams, one each for data and control. The
data stream is used to send packetized profiles from the
application backends to the sink (monitor). The offload-
ing of profile data is based on a push-pull model, wherein
the instrumented applications push data into the transport,
which is in turn drained out by the monitor. The appli-
cation offloads profile information at application-specific
points (such as every iteration) or at periodic timer inter-
vals. The control stream is meant to provide a reverse
channel from monitor to application ranks. It is polled
to check for control messages on every invocation of the
TAU DB DUMP() routine. Control traffic includes mes-
sages for startup/finalization of transport and to set mea-
surement/instrumentation options.

2.2 Front-End

The ToM front-end (FE) invokes the MRNet API to in-
stantiate the network and the streams (data, control). It
sends an INIT on both streams to the application back-
ends (BE) allowing the BEs to discover the streams. In the
simplest case, the data from the application is transported
as-is, without transformations. The FE continues to re-
ceive data until reception of a FIN from every BE. It then
broadcasts a FINACK and proceeds to destroy the MRNet

network. The simplest FE just unpacks and writes the
profiles to disk. More sophisticated FEsaccept and inter-
pret statistical data including histograms and functionally-
classified profiles. These FEs are associated with special
intermediate filters.

2.3 Filters

MRNet provides the capability to perform transforma-
tions on the data as it travels through intermediate nodes
in the transport topology. ToM uses this capability to
i) distribute statistical analyses traditionally performed at
the sink and ii) to reduce the amount of performance data
that reaches the monitor. UpStream filters (USF) can in-
tercept data going from Back-Ends (BE) to the Front-End
(FE) and DownStream filters (DSF) intercept data flowing
in the opposite direction. We discuss the use of filtering in
ToM including distributed histogramming and functional
classification in Section 4.

3 Monitor Transport Instantiation

A scalable monitor design that utilizes additional tool-
specific resources raises the issue of effectively co-
allocating nodes required for efficient transport and anal-
ysis alongside the primary nodes of the target application.
Given two classes (transport and application), the nodes
must be made aware of their roles and the identities of
their neighbors in the network topology. To function cor-
rectly the system requires that i) an additional set of nodes
to be allocated for the purposes of transport and analysis,
ii) the topology of the transport be constructed correctly
from the allocated set of nodes, iii) the application back-
ends discover and connect to their respective parents in
the transport topology and iv) importantly, these require-
ments are met transparently to both the application and
the job scheduling system.

We provide a transparent method for transport instan-
tiation in MPI programs that takes advantage of the fact
that TAU intercepts MPI calls (using the PMPI interface)
for measurement purposes. In the context of the ToM pro-
totype, the steps taken by Rank-0, other tree-ranks and
application ranks are listed in Figure 3. When an applica-
tion calls MPI Init(), TAU intercepts the call on all of the
nodes and first calls PMPI Init(). Based on the parame-
ters of the transport topology and the number of nodes in

3

the application, the required number of transport nodes is
calculated. New communicators are created by splitting
COMM WORLD into transport (tomCOMM) and applica-
tion (userCOMM) ranks.

Rank 0

TAU MPI_Init() Wrapper
S1 : Call PMPI_Init()
S2 : Split Tree/App Comm
S3 : Recv Inter. Hostnames
S4 : Create Tree Topology file
S5 : Fork/Exec Front-End
S6 : Read Host/Port from FE
S7 : Send Host/Port to Appl.
S8 : waitpid() on Front-End
S9 : Send fini to Tree-ranks
S10 : Call PMPI_Finalize()

Tree Ranks 1 to (K-1)

TAU MPI_Init() Wrapper
S0 : Call PMPI_Init()
S1 : Split Tree/App Comm
S2 : Send Hostname to Rank0
S3 : Call MPI_Irecv(fini)
S4 : sleep 5
S5 : if(MPI_Test() == false)

 goto S4
S6 : Call PMPI_Finalize()

Application Ranks
TAU MPI_Init() Wrapper

S0 : Call PMPI_Init()
S1 : Split Tree/App Comm
S2 : Recv Host/Port Parent
S3 : return

Other TAU MPI Wrapper
S0 : if(comm ==
MPI_COMM_WORLD)
 comm = userComm;
S1 : Call PMPI routine
S3 : return

Figure 3. Transport Instantiation

The tree ranks (still within MPI Init()) register their
hostnames with Rank-0 using MPI communication,
which constructs a topology file and spawns a ToM FE.
The FE in turn uses the MRNet API to instantiate a tree-
network and provides to Rank-0 the list of hosts and ports
that the application BEs need to connect to. Rank-0 sends
this information to each BE rank so it can connect to the
transport. Rank-0 then waits for the FE’s termination.
The BEs return from MPI Init() and execute the rest of the
application. Every MPI call from an application rank (BE)
on the COMM WORLD communicator is intercepted by
TAU and the corresponding PMPI call is issued by TAU
using the userCOMM in place of COMM WORLD. This
ensures that no changes are required to the application.

At this stage all the other intermediate tree-ranks could
proceed directly to Finalize(). But on many user-level
networking solutions (e.g. using Infiniband [5]) block-
ing MPI calls (like finalize, barrier, recv, and wait) poll
continuously to avoid context-switch latency. Hence call-
ing MPI Finalize() would consume 100% cpu, starv-
ing the intermediate transport processes. To prevent
this the intermediate ranks repeatedly perform a non-
blocking check for a FINI from Rank-0 using MPI Irecv,
MPI Test and sleep calls. The tree-ranks never return
from MPI Init() and instead call PMPI Finalize() inside
the TAU MPI Init() wrapper once the FINI is received.

4 Distributed Analysis and Reduction

Ideally, one would want to retrieve and store as much
performance detail as the measurement system can pro-
vide. But the perturbation caused to the measured ap-

Node 2

A

A

B

B

C

C

AFE USF

Node 0

A

A

DSF

USF

B

Node 1

BE

BE

Node 3

Node 4

A

A

USF

DSF

B

BE

BE

Node 5

Node 6

: Back End
: Front End

: UpStream Filter
: DownStream Filter

BE
FE

USF
DSF

A
Phase A
B
Phase B
C

Phase C

KEY

C

Figure 4. Distributed Analysis

plication and the transport and storage costs associated
with the performance data, require that we trade-off mea-
surement data granularity (in terms of events, time inter-
vals and application ranks) against the costs. One method
to vary the level of performance detail is through perfor-
mance data reduction as the data flows through the trans-
port. This is feasible by distributing performance anal-
yses traditionally performed at the front-end, out to the
intermediate transport nodes. ToM implements three such
filtering schemes, each building upon and extending the
previous one. Figure 4 describes the data paths used by
the distributed analyses and reductions we examine next.

4.1 Statistical Filter

The StatsFilter, the simplest ToM filter, is an Up-
stream Filter (USF) that calculates global summary statis-
tics across the ranks including mean, standard deviation,
maximum and minimum for every event in the profile.
Performance data is assumed to arrive in rounds (i.e. a
round is one profile-offload from every rank). The sum-
mary statistics are calculated by an intermediate node over
the data from all its children. The resulting measures are
passed up to its parent which in turn calculates the mea-
sures over the data from all its children and so on until
a single set of statistical measures for each event arrives
at the monitor. This corresponds to Phase A of the data
path in Figure 4. The StatsFilter consists of a front-end

4

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 50 100 150 200 250 300 350

Ti
m

e
(u

se
cs

)

Step

FLASH3 SOD | Allreduce

min
max

mean
sd

Figure 5. Allreduce Statistics

Stats FE, derived from ToM FE and a filter shared object
StatsFilter.so loaded on the intermediate nodes. An ex-
ample of the output from such a reduction when monitor-
ing the FLASH application running a 2-D Sod problem is
shown in Figure 5. The event shown is that of cumulative
MPI Allreduce() time at each application iteration. This
data uncovered an anomaly that caused the Allreduce per-
formance to drop (probably due to external factors) during
a single iteration at Step 100.

4.2 Histogramming Filter

 70 80 90 100 110 120 130 140 150 160

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0

 50

 100

 150

 200

 250

 300

 350

No Ranks

Allreduce

Step

Time (usecs)

No Ranks

Figure 6. Allreduce Histogram

The StatsFilter while providing global summary statis-
tics for every event, loses considerable spatial distribution

information. A histogram is one method of reducing data
while still maintaining a level of distribution information.
The HistFilter extends the StatsFilter and provides his-
tograms for each event in addition to the summary statis-
tics. Given a number of bins, to perform histogramming
accurately, the global min/max must be known (so that the
ranges of the bins may be calculated). Below the root of
the ToM tree, global information is not available. To be
able to distribute the histogramming function across the
intermediate nodes in the ToM tree, the global min/max
first needs to be ascertained.

Figure 4 shows the 3-phase approach used. Here in
Phase-A, unlike for summary statistic calculation, i) it
is sufficient to only determine the global min/max and
ii) the USF continues to buffer the original performance
data after Phase-A. Once the root of the tree (Hist FE
FE) receives the global min/max, it is packetized and
pushed down the tree in Phase-B. On this reverse path
downstream-filters (DSF) intercept this packet, retrieve
the min/max and pass it on to the USF (whose memory
address space they share as threads). In Phase-C, the
USF at the lowest level first performs the binning of event
data using appropriately sized bins. It pushes the result-
ing histograms up to its parent. In every round, the parent
receives one histogram from each child, merges them and
pushes upward again. The process repeats until a single
histogram reaches the monitor at the root of the tree. Inter-
nal buffering within the filters ensures that the phases are
non-blocking and can be pipelined. Figure 6 shows a por-
tion of the histogram (from Step 70 to 150) corresponding
to the summary statistic in Figure 5. The HistFilter was
configured to use 10 bins to monitor 1024 MPI ranks with
a ToM fanout of 8. The figure shows how the Allreduce
time is unevenly distributed across the ranks and how that
distribution evolves over time. The sudden increase in
Allreduce time at Step 100 is seen here as well.

4.3 Functional Classification Filter

As an example, the spatial unevenness of the Allre-
duce across the ranks seen in Figure 6 may be attributable
to network performance issues, load-imbalance issues or
the existence of different classes of application ranks per-
forming specific roles (i.e. not a purely SPMD model). In
the latter two cases, it is important to distinguish between
imbalance within the classes versus across them. The

5

ClassFilter groups the ranks into classes using a purely
functional definition of a class. Given a performance pro-
file, all of the event names are concatenated together and
a hash of the resultant string is found. This is used as a
class-id. Ranks with profiles that generate the same class-
id are assumed to belong to the same functional class. Fur-
ther, within these classes distributed histogramming using
the 3-Phase approach is carried out. The output, then, is
a set of histograms per event, one for each class. The
method of classification can be application-specific or tai-
lored to what the observer wishes. For instance, the class-
id can be generated based only on a subset of application
events (e.g. based on depth in the call-tree or if they are
MPI routines). It must be noted that classification pro-
vides more information than simple histogramming. And
it allows control of that detail through the class-id genera-
tion scheme. Hence, again, the type of classification must
be traded-off against the extra data that it generates.

We use the Uintah Computational Framework
(UCF) [6] for demonstration of varying functional classi-
fication schemes. The TAU profiling strategy for Uintah is
to observe the performance of the framework at the level
of patches, the unit of spatial domain partitioning. UCF is
instrumented with events where the event name contains
the AMR level and patch index. This case focuses on a 3
dimensional validation problem for a compressible CFD
code. The domain decomposition in this case results in
outer cubes that enclose eight (2x2x2) level 0 patches.
Inner cubes cover the interesting portions of the domain
that have been selected by the AMR subsystem for mesh
refinement on level 1. Events are given names such as
”Patch 1 -> 1” which represents the 2nd patch on level 1.
The application is run over 64 ranks and monitored with
a ToM fanout of 8 using the ClassFilter under different
classification schemes. In the Default scheme all events
in the profile are considered for creating the class-id.
Only overall patch events are considered in Patch Only.
The AMR L1 Patch Only scheme goes a step further
and restricts class-id calculation to level-1 AMR patches.
Lastly, MPI Only looks at only the MPI events. In all the
schemes, complete profile information from all events is
still preserved.

Figure 7 plots the no. of classes (left y-axis) and the
reduction factor RF (right y-axis) . The RF is the total
non-reduced data size divided by data size with reduction.
Both metrics are plotted for every application iteration,

 0

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

No
. o

f C
la

ss
es

Re
du

ct
io

n
Fa

ct
or

Step

Functional Classification | Uintah

Default
Patch Only

AMR L1 Patch Only
MPI Only

[BRF] Single Class
[RF] Default

[RF] Patch Only
[RF] AMR L1 Patch Only

[RF] MPI Only

Figure 7. Functional Classification

with the latter being cumulative upto that iteration. The
number of histogram bins is 5. The base-reduction fac-
tor (BRF) plots the reduction in profile data size achieved
by performing histogramming without classification. The
Default scheme eventually results in 64 unique classes (as
the ranks diverge over time). Because there are as many
unique patches created as available ranks, the Patch Only
scheme behaves similarly. The RF in both the schemes re-
duces to 0.98 since there are as many classes as ranks and
there is some overhead to histogramming. MPI Only re-
sults in 13 unique classes in the worst case with a resultant
RF of 3. AMR L1 Patch Only results in an overall RF
of 12 times and a maximum of 3 classes – class0: rank 0,
class1: ranks that work on the first 8 large level 1 patches
and class2: all other ranks. Larger number of ranks should
increase the overall reduction factor.

5 Evaluation

5.1 Perturbation

% Overhead DUMP() (msec)
Type N=64 N=512 N=64 N=512

Tau-PM 0.049 0.23 - -
ToM 0.56 0.77 3.49 3.60

ToM Reduce 0.17 0.70 3.29 3.55

Table 1. Perturbation Overheads

6

time = get_time();
for(i=0; i<iterations; i++) {
work(usecs);
TAU_DB_DUMP();
MPI_Barrier();

}
time = get_time()-time;
tot.time = time-(usecs*iterations);
avg.time = tot.time/iterations;

Figure 8. Offload Benchmark

Any measurement scheme, in particular online mon-
itoring, raises the issue of perturbation. The perturba-
tion caused is due to overheads from both measurement
and performance data offloads. Our real-world work-
load to evaluate perturbation is the FLASH3 [7] applica-
tion running a 2-D Sod problem. The problem is scaled
weakly from 64 processors to 512 processors. The dif-
ferent modes are: i) uninstrumented to acquire a baseline,
ii) TAU-PM: with TAU instrumentation and data offload
at termination, iii) ToM: with online data offload per it-
eration and iv) ToM Reduce: with online data offload per
iteration along with histogramming. ToM was configured
with a Fanout of 8. All experiments were run on the Atlas
cluster at Lawrence Livermore National Laboratory. The
mean (over 3 runs) of the % overhead over the baseline for
the three cases are reported in Table 1. With over 120 ap-
plication events (including all MPI events) in a real, com-
plex parallel application the overheads in all cases were
under 1%. For completeness the cost of performing the
TAU DB DUMP() operation is also reported.

5.2 Data Reduction Costs

The different types of performance data reduction in
ToM were demonstrated in Section 4. In each case ex-
tra work is performed in order to achieve the reduction
(e.g. the 3-Phase histogram). Under what circumstances
is reduction beneficial, if at all? We evaluate the costs
of performing that reduction versus the savings obtained
from doing so. The metric used is the average time taken
to perform a single offload at the BE. As the rate at which
offloads occur increases beyond the service rate offered
by ToM (and the underlying physical network), persis-
tent queuing leads to buffer exhaustion and eventually to

a blocked send() call. This cost is reflected in the aver-
age time to offload data onto ToM. While a non-blocking
send() may not directly suffer these costs, the system
will still require the same amount of time (or possibly
more since offload rate will not be reduced by blocking)
to eventually transfer the queued performance data. It
should be noted that the experiments in this section are
a severe stress-test of ToM.

We use a simple offload benchmark summarized in
Figure 8. The avg.time variable is a measure of the
mean of the worst offload time suffered per round across
the ranks and is plotted as the Benchmark Performance
in Figure 9. The x-axis (Profile Period) represents the
interval between offloads in microseconds. The y-axis
is the ToM Fanout. The ToM curve represents the the
avg.timewith no reduction and the ToM Reduce curve
represents the case with reduction using histogramming.

In Figure 9(A) (application ranks, N=64), at relatively
low offload rates both curves are overlaid. The knee ob-
served in the curves is due to the offload rate increasing
above the service rate. At Fanout=2, the knee in ToM
Reduce occurs later than that in ToM. And at Fanout=4,
while the knee occurs at the same rate, the magnitude of
increase in ToM Reduce is smaller. In both cases, savings
from data reduction clearly trump the costs of performing
histogramming. At Fanout=8 ToM Reduce loses its ad-
vantage from data reduction. Reduction using histogram-
ming has its own costs. For instance, it requires that each
intermediate ToM rank has double the number of threads
(due to the DownStream Filter). As Fanout increases the
costs dominate the savings obtained from data reduction,
suggesting that with low N and high Fanout, reduction
does not help. In contrast, in Figure 9(B) where N is larger
(256, 512), even with double the Fanout (16), ToM Re-
duce performs an order of magnitude better than ToM. As
N increases, the savings obtained from reduction propor-
tionally increases. Whereas the Fanout remains fixed and
so too the cost of performing the reduction. This also sug-
gests that at lower offload rates, much higher fanouts can
be used, effectively reducing transport resource usage.

These experiments were run with a modest number of
events (20). Repeating the runs with 50 and 150 events
(results not shown here) had similar results. At small N,
the cost of performing the reduction increased to be larger
than the savings obtained. But with large N, the results
closely resembled Figure 9(B), confirming that reduction

7

 25000

 50000

 75000

 100000

 125000 2

 4

 8

 10
 20
 30
 40
 50
 60
 70
 80

Benchmark Performance (msecs)

Offload Benchmark | N=64

ToM
ToM Reduce

Profile Period

Fan-Out

Benchmark Performance (msecs)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 25000 50000 75000 100000 125000

Be
nc

hm
ar

k
Pe

rfo
rm

an
ce

 (m
se

cs
)

Profile Period

Offload Benchmak | Large N

N=512 FO=8
N=512 FO=8 Reduce

N=256 FO=16
N=256 FO=16 Reduce

(A) (B)

Figure 9. Offload Benchmark (A) N=64, (B) Large N (256, 512)

is beneficial with relatively large processor counts.

6 Conclusion

Our experiences with the ToM prototype confirm the
high return on investment of additional system resources
in support of performance monitoring. For instance, with
a fanout of 64, overhead for additional transport nodes is
just over 1.5% – a reasonable price to pay for the per-
formance benefits. In addition to providing a scalable
tree-structured network for consolidated data transfer, the
ability to program MRNet for data analysis and reduction
relieves the burden on front end processing. The ToM ar-
chitecture and implementation provides a solid founda-
tion for porting ToM to other platforms and evolving its
capabilities in the future. Our immediate interest is to test
ToM on extreme scale systems with tens of thousands of
nodes. We will also develop new MRNet analysis compo-
nents, especially ones that support feedback to the appli-
cation on performance dynamics, such as for use in load
balancing and resource (re-)allocation. In future, we envi-
sion connection of ToM to an interactive graphical moni-
tor for real-time performance visualization and steering.

References

[1] “SDTPC: Workshop on Software De-
velopment Tools for Petascale Comput-

ing, Washington D.C,” 1-2 August 2007,
http://www.csm.ornl.gov/workshops/Petascale07/.

[2] S. Shende and A. D. Malony, “The TAU parallel per-
formance system,” The International Journal of High
Performance Computing Applications, vol. 20, no. 2,
pp. 287–331, Summer 2006.

[3] A. Nataraj et al., “TAUoverSupermon : Low-
Overhead Online Parallel Performance Monitoring,”
in Europar’07: European Conference on Parallel
Processing, 2007.

[4] P. Roth, D. Arnold, and B. Miller, “Mrnet: A
software-based multicast/reduction network for scal-
able tools,” in SC’03: ACM/IEEE conference on Su-
percomputing, 2003.

[5] J. Liu et al. , “Design and implementation of MPICH2
over InfiniBand with RDMA support,” in Interna-
tional Parallel and Distributed Processing Sympo-
sium (IPDPS 04), April 2004.

[6] J. Davison de St. Germain et al., “Uintah: A mas-
sively parallel problem solving environment,” in
HPDC’00: International Symposium on High Perfor-
mance Distributed Computing, 2000, pp. 33–42.

[7] R. Rosner et. al., “Flash Code: Studying Astrophys-
ical Thermonuclear Flashes,” Computing in Science
and Engineering, vol. 2, pp. 33–41, 2000.

8

