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ABSTRACT
Program binaries are an artifact of a production process that
begins with source code and ends with a string of bytes rep-
resenting executable code. There are many reasons to want
to know the specifics of this process for a given binary—for
forensic investigation of malware, to diagnose the role of the
compiler in crashes or performance problems, or for reverse
engineering and decompilation—but binaries are not gener-
ally annotated with such provenance details. Intuitively, the
binary code should exhibit properties specific to the pro-
cess that produced it, but it is not at all clear how to find
such properties and map them to specific elements of that
process.

In this paper, we present an automatic technique to re-
cover toolchain provenance: those details, such as the source
language and the compiler and compilation options, that
define the transformation process through which the binary
was produced. We approach provenance recovery as a clas-
sification problem, discovering characteristics of binary code
that are strongly associated with particular toolchain com-
ponents and developing models that can infer the likely
provenance of program binaries. Our experiments show that
toolchain provenance can be recovered with high accuracy,
approaching 100% accuracy for some components and yield-
ing good results (90%) even when the binaries emitted by
different components appear to be very similar.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers,code generation; I.5.1 [Pattern Recognition]: Mod-
els—statistical

General Terms
Languages, Security

Keywords
Program provenance, forensics, static binary analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17–21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00.

1. INTRODUCTION
Program binaries are created through a process, a series of

stages wherein an idea is instantiated and transformed into
machine-interpretable code. Binaries are not merely the end
result of this process, but are also a record of it, exhibit-
ing characteristics that are particular to the set of decisions
made and tools used in building the program. In most cir-
cumstances, these characteristics are interesting only insofar
as they influence the program as it is used—how much faster
an optimizing compiler makes it run, or the support for con-
currency available in a particular language. For particular
disciplines, however, the production process of a program—
its provenance—is of primary importance. Developers and
researchers in the security, software engineering, testing and
performance analysis communities can benefit from knowl-
edge of how a program binary was produced; the difficulty
lies in obtaining details of this process when only the end
result is available.

We have previously shown that the compiler family that
produced a particular program can be recovered solely by
examining the properties of the program’s executable code
[24]. This information helped to solve the basic analysis
task of finding code in binaries stripped of debugging sym-
bols, and is a major facet of a program’s provenance. The
compiler family, however, is hardly the limit of interesting
provenance details. Identifying finer-grained components of
the compiler toolchain, such as the specific version of com-
piler, the optimization level of the code, and other options
can aid analyses that are sensitive to compiler-specific code
transformations [21]. Fine-grained compiler details could
augment crash reports in deployments where vendors do not
control the compilation environment for the software or ex-
ternal dependencies [17], such as open source projects, to
help diagnose crashes due to compiler bugs or incompati-
bilities. Higher level program properties like the original
source code language can assist in reverse engineering, de-
compilation, and other binary analyses that are tailored to
specific languages [4, 23]. From a security perspective, pro-
gram provenance reflects the set of explicit and implicit user
choices made in producing a program and is directly relevant
to investigators in the field of digital forensics [18].

We have developed novel techniques that extend our ear-
lier compiler work to toolchain provenance: the compiler
family, versions, optimization options and source languages
that characterize the production process for a given binary.
We rely only on observable properties of the executable code;
by ignoring meta information such as program headers or de-
bugging symbols, our techniques are broadly applicable even



when such information is missing, corrupt, or inapplicable
such as when applied to incomplete snippets of binary code.
We formulate provenance recovery as a machine learning
task, constructing models of binary code that reflect its gen-
eration through a multiple step production process. These
models allow us to infer the process that produced new bina-
ries, revealing their provenance. We explore several methods
of representing programs and modeling provenance, show-
ing how trade-offs between model complexity and program
representation provide different benefits for provenance in-
quiries on real-world binaries.

Our paper makes the following contributions:

• We define the problem of provenance recovery as two
tasks: (1) building representations of program bina-
ries that capture properties that are characteristic of a
particular source language and production toolchain,
and (2) defining and learning the parameters of mod-
els that allow inference of the provenance of previously
unseen binaries. We introduce algorithms for both of
these tasks, building on techniques for finding patterns
in binary code [23] and the machinery of support vec-
tor machines [5] and conditional random fields [15],
respectively.

• We implement a tool called Origin that extracts sig-
nificant features from binary programs and classifies
the programs according to their toolchain provenance.
Origin is designed around several different classifiers
and can be applied to whole programs or smaller snip-
pets of binary code. To our knowledge, ours is the first
tool for recovering detailed toolchain provenance from
program binaries.

• We evaluate provenance recovery on a large set of real-
world software across several compiler families, ver-
sions, optimization levels and source languages. Our
results show that toolchain provenance can be recov-
ered accurately (approaching 100% for some compo-
nents) even when the code distinctions between com-
ponent variations are extremely subtle, or where the
binaries contain code of mixed provenance.

2. OVERVIEW
The toolchain provenance of a program can be thought of

as those components of its provenance that are involved in
the transformation from source code to an executable binary.
These transformations determine the form and contents of
the resulting binary code; identifying those characteristics
that are strongly related to particular components should
allow us to infer the composition of the toolchain that pro-
duced a particular binary. The machine code in a binary
is not solely determined by the toolchain, of course, but is
also highly dependent on the intended functionality of the
program, the author’s use of particular algorithms and pro-
gramming practices, and so forth. In order to use code char-
acteristics to infer toolchain provenance, we must choose a
program representation that captures those details that are
particular to the toolchain. Using this representation, our
goal is to discriminate between code produced by various
toolchain components. This task is essentially a classifi-
cation problem: we need to establish decision criteria that
allow us to label an example—some binary code—as belong-
ing to the class of code produced by a particular toolchain

component. We approach the selection of these criteria as
a machine learning problem, which informs our technique’s
high-level workflow:

1. We collect a set of programs compiled with the toolchain
components of interest, and divide these programs into
classes corresponding to individual component vari-
eties. For example, open source software in various
programming languages is readily available, and can
be compiled with various compilers under diverse com-
pilation settings.

2. Using existing techniques for recursive traversal pars-
ing [29], a control flow graph of each binary is con-
structed. Both the control flow graph and the under-
lying instructions are used to form a novel representa-
tion, or features, of the code, which representation we
describe below.

3. A subset of the features describing the binary are se-
lected. The features we use are designed to richly rep-
resent the binary code, as we do not know a priori
what properties will be useful for toolchain component
classification. This approach leads to a preponderance
of candidate features. While it is the job of the selected
machine learning algorithm to choose, in some sense,
the “right” features, the cost of learning can often in-
crease with the size of the feature space. We therefore
perform feature selection to choose a subset of features
that are likely to be valuable for classification.

4. A training set of programs represented by the selected
features is used to build a classifier for toolchain com-
ponents. There are many different discriminative ma-
chine learning algorithms that we could apply to this
task, each having varying strengths and weaknesses.
We consider two examples of broad classes of algo-
rithms: support vector machines [5], which are appli-
cable to classification of independent example data;
and conditional random fields [15], which are a type
of probabilistic graphical model that can capture rich
dependencies between examples.

2.1 Binary Code Representation
At the lowest level of abstraction, absent the program

header metadata or other formatting, a binary is simply a
sequence of bytes, some of which represent machine inter-
pretable instructions. While it is certainly possible to work
with binaries at this level [24]—that is, without considering
any structural properties—we overlay a function abstraction
on this linear view, dividing the program into a sequence of
functions as depicted in Figure 2. This representation has
the advantage that (1) it entails significantly less compu-
tation than modeling every byte of code explicitly, and (2)
it is a more consistent representation from a provenance
standpoint: for the compilation toolchains that we consider,
functions are the smallest unit of output.1 Furthermore, by
recovering provenance at the function level, our technique is
flexible enough to represent binaries of mixed provenance;
such binaries frequently arise when programs are statically
linked against precompiled libraries.

1Inline assembly embedded in source code is an exception,
as it can be thought of as a sub-function level output of some
other toolchain.



int bar(int foo) {
int i, j;

for(i=0;i<foo;++i) {
i = j + i;
j *= i;

}
return j;

}

(a) source

test edi,edi
jle 4004ae <bar+0x16>
mov eax,0x0
lea eax,[rdx+rax]
imul edx,eax
add eax,0x1
cmp edi,eax
jg 4004a1 <bar+0x9>
mov eax,edx
ret

(b) GCC 4.4

xor edx,edx
test edi,edi
jle 400989 <bar+0x11>
add edx,eax
imul eax,edx
inc edx
cmp edx,edi
jl 40097e <bar+0x6>
ret

(c) ICC 11

Figure 1: Comparing the assembly generated by two different compilers. Both compilers were run at their
‘high’ optimization levels. The assembly displays differences in idioms for adding two variables, ordering of
independent operations, and incrementing counter variables. The expressiveness of the IA-32 instruction set
allows compilers great flexibility, even in such small code snippets.

After dividing the binary into functions, we are left with
the choice of how to represent those functions in a way that
captures properties specific to their toolchain provenance.
Because our technique uses only the executable code, these
properties are manifest solely in the instructions of the pro-
gram and their layout. The Intel IA-32 instruction set, our
target platform, provides ample opportunity for variations
in the toolchain to produce differences in the machine in-
structions. For example, simple operations like adding a
constant to a variable can be encoded by either an explicit
pair of store and addition instructions (mov eax,edi; add

eax,5) or a curious use of the ‘load effective address’ instruc-
tion (lea eax,[edi+5]). Figure 1 shows a slightly longer
example sequence of code as interpreted by two different
compilers; there are several differences in the sequence of
instructions for this code snippet alone. The ways in which
different compilers vary in their implementation of high-
level language constructs arise as systematic differences in
instruction choices and the ordering and layout of code. The
features that we describe in Section 3 are designed to capture
these properties.

2.2 Provenance Modeling
The features with which we represent functions can be

thought of as a collection of simple predicates about the

...

funci−1 funci funci+1funci+2

...

Header Code Data

Figure 2: The function-provenance abstraction over
a typical binary code artifact, such as a Linux ELF
binary. Header information is only used to find func-
tions if available. The binary code is represented as
a linear sequence but is not necessarily contiguous:
there may be gaps containing non-executable data,
padding, or random bytes interspersed among ma-
chine instructions.

binary code. We model a binary’s provenance by assuming
that there exists some relationship between these predicates
and the toolchain that generated the code. For example, if
functions generated by the GNU C Compiler were known to
almost always begin with a push ebp instruction and those
generated by the Microsoft Visual C compiler almost never
did so, then a model with a decision function like

comp(F i) =

{
gcc if firstinsn(F i) = push ebp

msvc otherwise

for some function F i in a binary would be reasonable. Un-
fortunately, even the differences between compiler families
are not so apparent, so the modeling question becomes how
to combine a potentially large number of predicates into a
decision function that can discriminate accurately between
code generated by different toolchains.

Machine learning techniques provide a mechanism by which
to construct appropriate decision functions. The general
process for learning such classifiers is to define a function
with some number of parameters that maps from the fea-
ture space onto a class label, and then to search through
the parameter space while minimizing the error on a train-
ing set of data. The classifier trained in this way can then
predict labels for data outside of the training set; data re-
served for this purpose is usually referred to as the testing
set. Depending on the structure of the function underlying
the classifier, the number of parameters may be quite large
if there are many distinct features in the data.

To solve this problem we have developed a procedure that
incorporates feature selection to reduce the dimensionality
of the representational space and a classifier that predicts
toolchain provenance based on the selected features. Fea-
ture selection consists of choosing those features that will
contribute the most to a classifier, for example by system-
atically training and evaluating models with different sets
of features. Such methods can be prohibitive when model
training is expensive; our procedure instead uses a simpler
approach that ranks features by their significance using a
mutual information criterion [8]. We then train a classifier
using only the K most significant features; we have devel-
oped several algorithms that use the output from different
classifiers to reach a final prediction of program provenance.

3. EXTRACTING BINARY FEATURES
The first step in feature extraction is to parse the binary

to find individual functions. The problem of parsing and



function MatchIdioms(F = (V,E),I)
M ← ∅
for all ι ∈ I do

for all v ∈ V do
{µ}1:k ← Decode(v)
for i← 1 to k − |ι| do

if ι = {µ}i:i+|ι| then
M ←M ∪ ι

return M

Figure 3: Idiom matching algorithm. Returns a mul-
tiset M containing idioms ι ∈ I that match the code
comprised by F . The Decode function disassembles
the linear sequence of instructions in a basic block.

finding code in binaries is well studied [4, 23, 29]; we use
the ParseAPI [19] library to build interprocedural control
flow graphs from binaries, where a CFG is a directed graph
G = (V,E, τ) over the basic blocks of the binary, and is
defined by:

• the set V of vertices corresponding to basic blocks,

• the set E ⊆ V × V corresponds to control flow edges
between blocks, and

• the labeling function τ : E → T that associates a
particular edge in the graph with a type.

The ParseAPI represents functions as intraprocedural sub-
graphs Fi = (Vi, Ei, τ

′) where Vi ⊆ V,Ei ⊆ E, and τ ′ as-
signs only intraprocedural edge types (i.e., excluding calls
and returns). This representation allows us to extract a rich
set of features not only over the basic blocks V of the binary
code, but also over control flow relationships between these
blocks.

As we discussed in the previous section, specific toolchain
components greatly influence the instructions comprised by
a program binary. Our early work in capturing binary code
properties such as the characteristic patterns of function en-
try points [23] has demonstrated the utility of idiom fea-
tures: short sequences of instructions with wildcards. For
example, the idiom

u1 = (push ebp | * | mov esp,ebp)

describes a common stack frame set-up operation with a sin-
gle wildcard between the push and mov instructions. More
formally, an idiom ι ∈ I is a function of N machine instruc-
tions ι : x × µ1 × · · · × µN → {0, 1} where x is an offset
within the sequence of bytes representing the binary code;
this function takes the value 1 if the N instructions disas-
sembled from offset x match each instruction in the idiom
and zero otherwise. With a wildcard that matches any in-
struction, idioms can be thought of as a relaxed N-gram rep-
resentation; our technique uses idioms of length 1–3. There
may be hundreds of thousands of unique idioms in a single
binary; below we describe a feature selection procedure to
automatically choose idioms that reflect differences in code
provenance. The algorithm for extracting the idioms in a
function is presented in Figure 3.

Toolchain components influence not only the instructions
that make up a program, but also the way those instruction
combine to form the control flow graph. We enhance our
idiom-based binary representation with additional features

cpuid
jmp L2
...

L1:
cmp ecx,edx
jle L1

L2:
mov eax, 0x5
sysenter

(a)

σ3 σ1

σ1

τ1

τ2

τ1

(b)

Figure 4: A code example and a corresponding
graphlet. The vertex colors and edge labels are de-
termined by the particular graphlet feature mapping
functions (for example, both of the blocks repre-
sented by ( ) vertices contain system instructions).

based on graphlets [20]: small, non-isomorphic subgraphs of
the CFG. These subgraphs Gs = (Vs, Es, τ

′, σ) are exten-
sions of the CFG that include a labeling function σ : V → Σ
that assigns a color to vertices (basic blocks). The set of
block colors Σ varies for different graphlet-based features,
depending on the properties that we are trying to capture;
the edge labeling function τ ′ may also map to a different
set of edge types T . Our features are based on graphlets
with three vertices, as depicted in Figure 4. We include two
different types of graphlet features in our binary code repre-
sentation: one that captures the layout of particular classes
of instructions and one that focuses on the particular in-
structions used to implement control transfer.

Instruction summary graphlets are inspired by a binary
code representation used in polymorphic worm detection
[13], where basic blocks were colored according to fourteen
instruction classes such as string operations, branches, logic
operations, etc. Following this scheme, the color of a ver-
tex in summary graphlets is a fourteen-bit number encoding
whether instructions of each class are present in a block.
More formally, summary graphlets supply a labeling func-
tion σ : V → [0, 214−1]; our experience has been that ba-
sic blocks rarely include instructions from more than a few
classes, so the total number of colors represented in a set of
programs is small. This representation captures differences
in the arrangement of code without being sensitive to the
particular instructions used, thus avoiding redundancy with
the idiom features.

Our experience analyzing code emitted by different com-
pilers suggests that the branch instructions used to direct
control flow are highly indicative of compiler family or ver-
sion. For example, one version of the GNU C compiler might
frequently use the jge (jump if greater-than or equal) in-
struction to test a loop condition, while a different version
might re-order the block layout and condition tests and use
a jl (jump if less-than) instruction for the same source code.
In the interest of explicitly capturing this phenomenon, we
define branch graphlets similar to summary graphlets, but
with a color labeling function σ : V → B, where B is the set
of unique branching instructions in the IA32 instruction set.

We test for graphlets in a CFG by computing a canon-
ical labeling that is identical for the isomorphisms of any
subgraph of size three under the particular graphlet fea-
ture coloring function σ. Producing a canonical labeling
is equivalent to the graph isomorphism problem, for which
no polynomial time algorithm is known. However, canoni-



function MatchGraphlets(F = (V,E),τ ,σ,C)
M ← ∅
for all v ∈ V do

for all {na, nb} ∈ Neighbors(v) do
Vs ← {v, na, nb}
Es ← Vs × Vs ⊆ E
c← Canonical(Vs, Es, τ, σ)
if c ∈ C then

M ← c
return M

function Canonical(G,E,τ ,σ)
c← Sort(σ(G))
for d← 1 to max deg(v ∈ G) do

Wd ← {v| deg(v) = d}
for all v ∈ Π(Wd) do . See caption

c← c || τ((∗, v) ∪ (∗, v) ∈ E)

return c

Figure 5: An algorithm for finding graphlets in a
function. The canonical label for every connected
triple of blocks is computed and tested against the
set of graphlet features. The canonical ordering of
vertices is over vertex color τ , vertex degree, and
lexicographic ordering of in/out edge colors (Π).
The 3-graphlets we use require testing at most six
permutations to find the canonical ordering, but ver-
tex degree ordering frequently reduces that number.

cal labelings can often be efficiently computed in practice,
particularly for small graphs such as ours. A labeling is the
concatenation of the graph’s adjacency matrix; the canonical
labeling is the minimum labeling under a lexicographic or-
dering. In general this requires examining K! permutations
for a K-vertex graph; in practice we can reduce this search
space by partitioning the set of nodes based on properties
that are invariant to isomorphism (such as vertex degree)
[14]. The general graphlet matching algorithm is presented
in Figure 5.

We also extract the high-level layout of functions in the
binary. The binary parser assigns an offset to each func-
tion indicating at which byte in the address space it begins.
While we have observed previously that binary functions are
not necessarily contiguous (and may in fact be interleaved
or share some code), it is commonly the case that functions
occupy disjoint regions of the address space; the offset pro-
vided by the ParseAPI library allows us to order functions
by their location in the binary. While this ordering is not
a code feature in the same sense as the idiom or graphlet-
based features, we make use of it in the models we describe
in the following section.

4. MODEL DEFINITIONS
We model the characteristics of binary code in order to

build classifiers that can discriminate between code with dif-
ferent toolchain provenance. The features we described in
the previous section form the evidence that we use both to
train classifiers and to infer provenance. To be precise, let a
program binary P be a sequence of functions {F}k ordered
by their entry addresses a1 · · · ak. The task of a classifier is
to assign labels y1 · · · yk to the sequence of functions, where
each yi ∈ Y is the identity of some provenance component

(such as source language) or set of components (such as both
compiler family and version), depending on the model for-
mulation. Classification can be applied to a function F i
independently of any others (predicting yi) or jointly over
the entire binary sequence (predicting y1 · · · yk).

Each function is represented by a binary feature vector
that indicates whether a particular feature is present. We
define a set of feature functions f ∈ Φ that map from the
various binary code features from the previous section to
binary values. For each idiom ι ∈ I we defined a function

fι(F i) =

{
1 if ι ∈MatchIdioms(F i, I)
0 otherwise

that tests for that idiom in a particular function, or for the
number of occurrences depending on the model. Graphlet
feature functions are defined over the set of summary graphlets
b ∈ GS and branch graphlets b ∈ GB , respectively:

fs(F i) =

{
1 if b ∈MatchGraphlets(F i, GS)
0 otherwise

fb(F i) =

{
1 if b ∈MatchGraphlets(F i, GB)
0 otherwise

If we admitted all possible idiom and graphlet feature
functions, the feature vectors describing each function would
grow unmanageably large,2 making training difficult. We re-
duce the number of features used to build models by select-
ing those features that are most significant in the training
set. We consider one feature to be more significant than
another if the mutual information between the feature and
the class label of an example is greater than that of another
feature. More precisely, we compute

I(Φ,Y) =
∑
f∈Φ

∑
y∈Y

p(f, y) log

(
p(f, y)

p(f)p(y)

)
,

on the training set, where p(f) and p(y) are the empirically
observed probabilities of features and class labels, respec-
tively, and p(f, y) is the probability of co-occurrence of these
variables. Mutual information is closely related to Shan-
non entropy, and measures how much uncertainty about the
value of one random variable is reduced by knowing the
value of another. In this setting, mutual information can be
thought of as measuring both positive and negative correla-
tion of particular features and class labels. For example, if a
particular idiom feature frequently occurs in programs com-
piled from C++ code but never in Fortran and only rarely
in C, then it will be ranked high under this criterion. On
the other hand, if an idiom is observed uniformly regardless
of a binary’s provenance, that idiom tells us little about the
provenance label and will receive a low score. When training
our models, we use only the top K features ranked by the
mutual information score.

4.1 Independent Classification
Since functions are the smallest unit of code that can be

associated with a particular toolchain component—for ex-
ample, a single C-language function could be compiled and

2There are approximately 1.4 million unique features in our
typical training sets.



linked into a binary comprising mostly C++ code—we first
model provenance over individual functions. This model as-
sumes that functions are statistically independent, and uses
as evidence the feature vectors we described in the previous
section. Each feature is associated with a parameter, and the
learning task is framed as choosing parameter values that
minimize a loss function, which measures the fit between
the model and the data. There are many probabilistic and
non-probabilistic models that are applicable to this problem
formulation. We use linear support vector machines (SVMs)
due to their good performance on high-dimension data sets
and the availability of a robust implementation.

SVMs operate by finding a weight vector w that defines
a decision boundary in the feature space that best separates
two different classes; the distance from a particular exam-
ple to that boundary is the margin and is defined as wTx,
where x is the feature vector. In such a binary classifier, an
example is assigned to class +1 or −1 depending on the sign
of the margin. Such a classifier can be extended to K classes
through a simple procedure:

1. Train K weight vectors w1 · · ·wK by repeatedly par-
titioning the data into two groups: one for the current
class, and one for everything else.

2. For each input to the classifier, choose the label k ∈
[1,K] that maximizes the class-specific margin

arg max
k

wT
k x.

We use the LIBLINEAR linear support vector machine
library [6] to independently model function provenance. We
scale the values of each feature across all functions to the
interval [0, 1]; scaling prevents frequently occurring features
from drowning the contribution of rarer ones. As we discuss
in the evaluation section, this model can accurately recover
some provenance components, but is outperformed on others
by more sophisticated models.

4.2 Joint Classification
While our provenance recovery techniques are designed to

accommodate binaries that contain code of different prove-
nance, our intuition is that there should be a good deal of
provenance consistency from one function to the next: com-
pilation units (source files) rarely consist of single functions.
To capture this expected local consistency, we introduce a
simple notion of adjacency into our feature representations:
two functions within a binary are considered adjacent if they
are adjacent in the ordering imposed by the function offsets
returned by the binary parser. Clearly this is a weak def-
inition of adjacency—two functions could be separated by
megabytes of data and still be considered adjacent—but our
evaluation shows that it is nonetheless a powerful tool for
improving provenance models.

Adding relationships between individual functions leads
naturally to the formulation of our problem as a probabilis-
tic graphical model : probabilistic in the sense that we frame
provenance recovery as a probabilistic inference problem,
and graphical because the adjacency relationship induces a
dependence graph between the functions. Formally, for pro-
gram P with functions {F}k and evidence X = {x}k, we
define an unnormalized probability distribution

P (Y |X) ∝ exp

(
k∑
i=1

[∑
u∈U

λyi,u·fu(xi)

+

k∑
j=1

∑
b∈B

λyi,yj ,b·fb(xi, xj)

])
,

(1)

where U are unary feature functions taking a single example
as input and B are binary feature functions that relate two
examples. The λ terms are feature weights associated with
particular class labels y ∈ Y or pairs of labels, and are the
parameters of the model.

We can construct a model of this form using the idiom
and graphlet features we have previously defined as unary
features and introducing an adjacency feature function

fa(F i,Fj) =

{
1 if F i is adjacent to Fj
0 otherwise,

introducing only an additional |Y| × |Y| parameters over
those required by the independent functions model. We have
found that parameter estimation for such models converges
slowly in practice, possibly due to the contribution of the
vastly more unary feature terms dominating the objective
function during both inference and optimization. Instead,
we modify the idiom feature function

fι(F i,Fj) =

 1 if ι ∈ MatchIdioms(F i, I) and
F i is adjacent to Fj

0 otherwise

to test for adjacency; the graphlet features are modified sim-
ilarly. Importantly, the actual test for idiom existence still
only considers one example. This formulation multiplies the
putative number of model parameters by |Y| × |Y|; we have
not found this to be a problem in practice, as many com-
binations of provenance labels are unsupported in our data
sets. The trade-offs between this formulation and the previ-
ous may be different under other circumstances.

4.3 Joint Model Structure
So far we have said little about the nature of the prove-

nance labels Y and how they relate the components of the
toolchain: source language, compiler family, compiler ver-
sion and code optimization level. Every function in a pro-
gram has a specific combination of provenance correspond-
ing to each of these components. If we allow each component
to take on a set of values—S for source language, C for com-
piler, V for version, and O for optimization—then a natural
choice is to define labels as tuples 〈s, c, v, o〉. If we train clas-
sifiers using unique tuples as classes, then the model defined
by Equation 1 is a linear-chain conditional random field [15],
so called because the nodes in this graphical model are con-
nected in a linear chain, as depicted in Figure 6.

Linear-chain CRFs are useful because an algorithm for
exact inference in such models is known. However, fixing la-
bels to a particular combination of provenance components
can be problematic; it can be difficult to interpret classi-
fier output when a subset of components are ambiguous. If
we allow each of the toolchain components to be labeled
independently this problem is ameliorated, at the cost of in-
creased model complexity. Such a CRF can be visualized as



... yi-1 yi yi+1 ...

Figure 6: A linear chain CRF over adjacent func-
tions in a program binary. Each function F i has a
label yi and a set of evidence ( ). Label nodes are
joined in a linear chain by feature functions that also
depend on the evidence.

a collection of linear sequences where cotemporal label nodes
are fully connected, as depicted in Figure 7. This general
CRF corresponds to the model

P (Y |X) ∝ exp

(
k∑
i=1

k∑
j=1

∑
b∈B

[
λsi,sj ,b · fb(xi, xj)

+λci,cj ,b·fb(xi, xj)+λvi,vj ,b·fb(xi, xj)+λoi,oj ,b·fb(xi, xj)
])
(2)

that updates Equation 1 by dropping the unary terms and
replacing the Y label terms with a set of terms over L =
{s, c, v, o}, the individual provenance components. The pa-
rameters λ are defined for each label component, e.g. λci,cj ,b
indexes the parameter for a particular feature function fb
when its inputs have compiler labels ci and cj . Exact infer-
ence in this kind of loopy graphical model is intractable in
general; nonetheless, good approximate inference algorithms
are known, and our evaluation suggests that such approxi-
mations are appropriate for provenance recovery.

We have implemented the joint classification models de-
scribed in this section using the linear-chain CRF implemen-
tation from the MALLET package [16] and the GRMM soft-
ware for inference in general-structure conditional random
fields [28]. We evaluate these and the independent function
classifier in the following section.

5. EVALUATION
We evaluated our provenance recovery technique on a cor-

pus of real-world program binaries generated from software
written in several programming languages and compiled with
various toolchain components. Our evaluation shows that:

s1 s2 s3 ...

c1 c2 c3 ...

o1 o2 o3 ...

v1 v2 v3 ...

Figure 7: A conditional random field with a grid
structure. Data nodes are omitted for clarity.

Optimization Level O
Compiler Family C Version V Low High

GNU Compiler
Collection (GCC)

3.4.x -O0,-O1 -O2,-O3
4.2.x -O0,-O1 -O2,-O3
4.3.x -O0,-O1 -O2,-O3
4.4.x -O0,-O1 -O2,-O3

Intel Compilers
(ICC)

10.x -O0 -O2,-O3
11.x -O0 -O2,-O3

Microsoft Visual
C++ (MSVC)

VS 2003 /Od /O2
VS 2005 /Od /O2
VS 2008 /Od /O2

Table 1: Variations of compiler toolchains used in
this study. Arbitrary compiler revisions (e.g. 4.4.2)
were selected. The MSVC compilers are from un-
patched Visual Studio installations. he compiler
family and version values are used as provenance la-
bels in our learning framework; we condense the dif-
ferent optimization level options to ‘low’ and ‘high’
classes.

• The binary code features extracted by Origin effec-
tively capture the characteristics of program prove-
nance. We achieve classification accuracy of 80% when
all component labels are predicted jointly; individual
provenance recovery accuracy for source language, com-
piler family, and code optimization level exceeds 95%.

• The trade-offs between model complexity and classi-
fier performance make different model formulations ap-
propriate depending on the requirements of the prove-
nance recovery task. The SVM-based classifier is faster
for training and classification, at some cost to accuracy,
particularly for identifying the compiler version. This
model may nevertheless be the best choice when other
toolchain components are of primary interest.

• Origin can automatically model and recover prove-
nance with only modest computational cost. Training
with a data set of about 200,000 binary functions takes
between 10 and 90 minutes on average, depending on
the model. We stress that model training is a one-time
cost for a given training set. Labeling binaries is much
less expensive, taking on average 100ms for binaries in
our corpus.

5.1 Evaluation Data Set
We collected source code for 175 programs written in the

C, C++, and Fortan programming languages. The programs
were collected from eight open source software packages: the
GNU binutils and coreutils utilities, GNU grep, the GNU
groff typesetting package, Mozilla Firefox, LAPACK, and
Xpdf (a free PDF viewer). For the compilation toolchain,
we obtained several compiler versions from each of the GNU
Compiler Collection (GCC), the Intel C Compiler (ICC),
and the Microsoft Visual C Compiler (MSVC). Table 1 lists
the compiler versions and optimization options we used to
construct our experimental dataset.

We generated the binaries that make up our dataset by
compiling the source packages with all applicable combina-
tions of compiler versions and optimization options. The
resulting data set comprises 2,686 binaries containing in to-
tal over 955,000 functions. For each binary, we record the



source language, compiler family, version, and optimization
options used to generate it; these form the ground truth label
tuples y = 〈s, c, v, o〉 that we use for training and evaluation.

5.2 Methodology
The performance of any classifier depends on both the

training data used for parameter estimation and the testing
data; any particular selection of data may not be represen-
tative of another selection. To mitigate the possibility that
results may be biased by the particular choice of training and
testing data, it is common practice to use cross-validation
to repeat training and evaluation over multiple folds of the
data, where each fold consists of disjoint sets of training and
testing examples randomly selected from the entire corpus.3

We generate ten experimental folds as follows:

1. Randomly select 30 training programs without replace-
ment from the source corpus.

2. Randomly select 30 testing programs without replace-
ment from the remaining programs.

3. For each selected program, add binaries with all com-
binations of toolchain components to the training or
testing set, as appropriate.

The remaining evaluation steps are repeated independently
over each of the folds.

To select a subset of significant features, Origin uses the
ParseAPI parsing library to obtain the control flow graphs
for each binary in the training set. We then exhaustively
enumerate all idioms and graphlet-based features that occur
in the training data, using the occurrences of these features
along with the provenance labels to compute the mutual
information score for each feature. There are typically over
one million features in a given training set; we select the top
20,000 to reduce the size of the feature space.

For each function in each binary, we use the selected fea-
tures to construct a sparse feature vector representing the
output of the appropriate feature functions for each model
(feature counts for the SVM classifier, boolean values for the
CRFs). Origin also records the ground truth label tuple
for each function. The label that we provide to the learn-
ing algorithms depends on the kind of provenance modeling
in which we are interested: as discussed in Section 4.3, we
can concatenate the label components into a single class,
use only single components or a concatenated subset, or al-
low all of the labels to be considered individually (the latter
applies only to the general-structure CRF model). All of
the functions are aggregated for the SVM classifier based
on LIBLINEAR; the sequences of functions in each training
binary are constructed separately for the CRF implemen-
tations based on MALLET and GRMM. All three of the
learning packages automatically perform parameter estima-
tion over the training data.

Testing data is formatted using the selected features in
the same way as training data, except that the ground truth
provenance labels are retained only as reference for evalua-
tion. We use the parameters estimated in the training pro-
cess to assign the most probable provenance labels to the

3This differs slightly from standard cross-validation, where
experiments are repeated over a random partition of the
data. We use random subsets of data to reduce training
time for one of the models described below.

Component Labels Acc. Spread

0.53 1.0

Compiler family 3 .987
Optimization 2 .971
Compiler version 9 .616

All components 18 .604

Table 2: Classification accuracy for individual func-
tions. The compiler version component of prove-
nance is difficult to capture with this independent
function model.

testing data, based on the features present. Our evaluation
focuses not only on classification accuracy, but also on the
types of errors encountered.

5.3 Independent Classification Results
We trained several provenance models over independent

functions as described in Section 4.1 using Origin’s SVM-
based classifier mode. Table 2 lists classifier accuracy for
models trained to recover various provenance components;
here and in the following discussion, results are averaged
over the ten experimental folds unless otherwise noted. The
results reported for “all” in Table 2 use the concatenation of
all provenance components as labels.

The independent classification results show that for most
of the toolchain components we consider, individual func-
tions contain sufficient details to correctly determine their
provenance. The version of compiler used to produce a pro-
gram appears to be significantly more difficult to determine.
Consider the version labeling errors made on three repre-
sentative binaries, below, where errors that confuse versions
within a single compiler family are shaded blue ( ) and those
that confuse different compiler families are shaded red ( ):

Label Error rate Error distribution

〈gcc, 34, lo〉 .130

〈icc, 11, hi〉 .088

〈msvs, 2005, lo〉 .576

The histograms show the distribution of errors in each bi-
nary. Note that the level of detail is insufficient to resolve
errors at the function level; the shading indicates the pres-
ence of a classification error in that segment of the binary,
not contiguous errors. There are several important details
to note in these error distributions. First, the classifier tends
to rarely mislabel a function with a version associated with
a different compiler family; such errors make up only 4% of
all version classification errors. This matches our intuition
that code emitted by one version of a compiler bears more
similarity to code emitted by a different version than to code
produced by a different compiler family.

Note also that while the average error rate for labeling
the version provenance component is high, it is not uniform
across the test set and the compiler version can be accurately
inferred for many binaries. A small set of binaries account
for the majority of errors; of these, the Microsoft Visual C
data set is disproportionately represented. The data suggest
that different compiler families have varying rates of “churn”



across versions, with the GCC and ICC compilers produc-
ing significantly more varied code between versions than the
MSVC compiler. We found that up to 70% of the functions
in our data set are bitwise identical when generated by the
Visual Studio 2003 or 2008 versions with the optimization
level held constant. In other words, the code generator in
Visual Studio has remained relatively fixed between these
versions. This invariance poses a fundamental limitation for
provenance recovery techniques that treat functions inde-
pendently.

5.4 Joint Classification Results
We incorporated intra-binary function adjacency into the

models based on both the linear chain and general condi-
tional random fields that are presented in Section 4.3. For
the linear chain models, we evaluated inference of individ-
ual provenance components (source language, compiler fam-
ily, version, and optimization level), as well as recovery of
all components simultaneously using concatenated-tuple la-
bels as in the previous section. The general CRF takes the
grid structure of Equation 2 with fully connected cotempo-
ral label nodes. The linear chain models are learned using
MALLET’s exact inference mode; we use approximate Tree
Reparameterization [30] for inference during learning and
classification for the grid models. Table 3 lists classifier ac-
curacy on the test set.

Incorporating the adjacency features significantly increases
the accuracy of provenance recovery, particularly for the
compiler version component. Both the individual compo-
nent classifiers and the classifier based on concatenated la-
bels accurately recover provenance on our test set. Despite
the single outlier fold for the second CRF, the difference in
classifier accuracy of the two models is statistically insignif-
icant. The distinction between the two arises in runtime
cost: retrieving all three of the reported provenance compo-
nents with the individual component CRFs requires training
three separate models and running inference three times; the
concatenated-label model achieves comparable results at one
third of the cost.

The grid-structured conditional random field has the poor-
est performance on our test set, though again its accuracy
for the compiler and version provenance components is com-
parable to the other models. The output of this model may
be easier to interpret, however. While the linear chain CRFs
provide a single estimate for a particular label likelihood, the
grid-structured CRF provides estimates for each component
of the label tuple while still representing their dependen-
cies. This can make interpreting uncertainty in the version
component easier, for example: the labels for compiler fam-
ily and optimization level might be assigned high confidence
values by the model, while the version would be lower. By
contrast, the concatenated-label CRF would assign low con-
fidence to the entire tuple, giving no indication as to where
the ambiguity lies.

The types of errors made by these classifiers offer fur-
ther insight into the provenance recovery problem. The dis-
tribution of errors is quite skewed: on average across the
experimental folds, the concatenated-label CRF makes no
errors on 84% of test set binaries. The remaining binaries
exhibit errors in three different modes, typified by misla-
beled version ( ) and optimization level ( ) in the following
examples:4

4These examples from the previous section.

Label Error rate Error distribution

〈icc, 10, lo〉 .048

〈msvs, 2008, lo〉 .433

〈msvs, 2008, lo〉 1.00

The latter two examples reflect the difficulty of inferring
the compiler version, even in these composite models with
adjacency features. In some cases only a subsequence of the
binary is incorrectly labeled; for a small number of others,
almost the entire binary is assigned the incorrect label for
the version component. This error mode is more common
in binaries from the Microsoft data set, due to the relatively
few differences between different compiler versions.

The first example exhibits the most common error mode
on our testing set, and occurs more frequently in the GCC
and ICC binaries. Further analysis of these errors reveals
that they arise due to the existence of statically linked li-
brary code appended to the end of these binaries by the
compiler. Binaries produced by the Intel compiler tend to
include more of such code, in the form of optimized sup-
port routines specific to that compiler. These functions are
counted as errors because we produce ground truth labels at
the binary level—a limitation of how we generated our cor-
pus, but not of our technique. Indeed, these “errors” demon-
strate that the classifier is capable of detecting regions of the
binary with varying provenance.

5.5 Source Language
Evaluating the source language provenance component is

challenging because many of the programs in our data set are
written in a mixture of languages (e.g. both C and C++).
While mixed provenance poses no intrinsic challenge for our
technique, it can be difficult to automatically establish a
ground truth labeling without laborious human analysis. We
therefore evaluate the source component on a subset of the
corpus consisting of 28 programs written in C, C++ and
Fortran, which subset we have examined by hand to ensure
a (mostly) uniform source language. Our ground truth label-
ings are likely to still be imprecise for this reduced data set,
so classification accuracy may be artificially understated.

Independent classification of the source component using
Origin’s SVM mode achieves an average accuracy of 91%.
The results for classification of the source language compo-
nent and for joint classification using the the linear chain
CRF with concatenated labels are listed in Table 4. These
results are not directly comparable to the larger study of
the compiler family, version, and optimization level compo-
nents from the previous section due to the use of a different
training and evaluation corpus; nevertheless, our evaluation
suggests that the source language of a program can be ac-
curately inferred with our provenance recovery technique.

Component Accuracy Spread

0.98 1.0

Language .999

Joint .987

Table 4: Classification accuracy on a corpus incor-
porating source language labels.



Linear CRF Linear CRF (concat.) General CRF

Component Accuracy Spread Accuracy Spread Accuracy Spread

0.87 1.0 0.81 1.0 0.73 1.0

Compiler .999 .998 .992
Optimization .999 .993 .982
Version .919 .910 .845

Joint .918 .905 .831

Table 3: Classification accuracy for provenance models incorporating function adjacency. The joint accuracy
for the linear CRF (first column) was computed by concatenating the labels assigned by the individual
component classifiers. The individual component accuracies for the concatenated-label CRF were computed
by considering only those portions of the label tuple from the joint classification.

6. DISCUSSION
Our evaluation shows that, depending on the toolchain

component of interest, several models may be able to accu-
rately recover provenance. The runtime cost—for training
or for classification—will be the deciding factor for many ap-
plications. The SVM-based classifier is the least expensive
to train, requiring approximately ten minutes on average
to estimate parameters from our training set; this classifier,
however, does not perform as well for the version prove-
nance component. The linear chain CRF models require
more training time (approximately 80 minutes); training is
in general an infrequent operation, however, so this addi-
tional expense may be of little impact. Both types of clas-
sifier infer provenance of binaries comprising hundreds of
functions in on the order of 100ms. By contrast, the grid-
structured CRF is substantially more expensive for training
and inference, due to the difficulty of even approximate in-
ference in such loopy graphical models. Training from our
corpus took almost 24 hours for some of the models; in-
ference for labeling a binary takes almost ten seconds on
average. We expect training to be an infrequent task; the
higher cost of classification may be worthwhile for some ap-
plications due to easier interpretation of labels.

The conclusions we draw from our evaluation are sub-
ject to limitations inherent in interpreting empirical studies.
Threats to internal validity apply to our claim that Ori-
gin recovers the toolchain provenance components that we
report—the alternative being that our models actually cap-
ture some other properties of the code, such as the program
functionality. We addressed this issue by generating, for
each program, binaries constructed using all applicable com-
piler families, versions, and optimization levels. Using such
a parallel corpus reduces the potential for program function-
ality to confound the results.

Our results are derived from a specific corpus, raising the
question of whether our technique generalizes to other bi-
naries. We address this concern by training and evaluating
over random folds of the corpus. We find consistent results
on each fold, which supports the generality of the technique.
The feature selection and training procedure, moreover, is
inherently specialized to particular provenance components
in its training corpus; if new components arise, models that
incorporate them can be easily constructed.

7. RELATED WORK
Most of the existing program provenance literature relates

to authorship attribution, focusing on extracting author-

specific characteristics from source code. Spafford and Wee-
ber [27] introduce the notion of extending authorship attri-
bution to the binary code level, but did not further develop
the idea. Later research has focused exclusively on recov-
ering authorship characteristics from source code [7, 9, 12].
These approaches make use of carefully crafted stylistic fea-
tures such as indentation style or variable naming and have
had mixed success [9]. The provenance recovery techniques
we present in this paper are most closely related to the com-
piler family inference techniques we have previously devel-
oped [24]. The present paper extends both the scope of that
work (by recovering fine-grained characteristics of toolchain
provenance) and the methods (the binary code features and
models for learning and inference).

The problem of code clone detection in program binaries—
finding instruction sequences that are repeated exactly or in-
exactly in programs—bears many similarities to provenance
recovery, particularly choosing feature representations of bi-
nary code and computing the similarity of code sequences
based on those features. Saebjornsen et al. [25] developed
a clone detection technique that performs inexact match-
ing of binary code using an instruction-based representation
similar to our idiom features. While the mechanics of clone
detection and provenance recovery are similar, the goals are
orthogonal: clone detection seeks to find code instances with
similar functionality and as the authors note is hampered
by compiler-introduce variations; provenance recovery tools
must ignore patterns due to program functionality and focus
on the compiler or other toolchain components.

Many different ways of representing binary code have been
proposed in the context of malware classification and clus-
tering, including byte-level patterns [11], subsequences of in-
structions [10], abstract instruction semantics [3], high-level
behavioral semantics of the program [1, 22], or structural
characteristics of the binary code or executable metadata [2,
26]. Our idiom features, which group machine instructions
by mnemonic and abstract away immediate operand details,
combine aspects of the templates described by Christodor-
escu et al. [3] and n-perms used by Karim et al. [10]. Idiom
features are distinguished by incorporating wildcards that
allow flexible matching of instruction sequences. Our sum-
mary graphlets are inspired by graph-based features used to
detect polymorphic malware variants [13].

8. CONCLUSION
We have presented a technique for accurately and auto-

matically recovering the toolchain provenance of program



binaries. Our provenance recovery techniques achieve on
average 90% accuracy when jointly inferring the source lan-
guage, compiler family and version, and optimization level
options used to produce a binary. Framing provenance re-
covery as a classification problem, we designed instruction-
and control flow-based representations for binary code that
capture significant characteristics of toolchain components.
We developed provenance models based on support vector
machines and conditional random fields and showed how pa-
rameters for these models can be learned with only mod-
est computational cost. Our prototype, Origin, automat-
ically extracts features from program binaries for learning
and classification. The results of the evaluation of Ori-
gin strongly support our claim that toolchain provenance
can be recovered solely from the characteristics of the ex-
ecutable code in program binaries. Our approach of de-
signing generic representations—idioms and graphlets—and
combining large numbers of features with probabilistic mod-
eling provides a general framework for further investigation
of information retrieval from program binaries, with appli-
cations in security and forensics, testing, and debugging.
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