
HYBRID ANALYSIS AND CONTROL OF MALICIOUS CODE

by

Kevin A. Roundy

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2012

Date of final oral examination: 5/1/2012

The dissertation is approved by the following members of the Final Oral
Committee:

Barton P. Miller, Professor, Computer Sciences
Somesh Jha, Professor, Computer Sciences
Shan Lu, Assistant Professor, Computer Science
Thomas Ristenpart, Assistant Professor, Computer Sciences
Nigel Boston, Professor, Electrical and Computer Engineering, and

Mathematics



© Copyright by Kevin A. Roundy 2012
All Rights Reserved



i

For Dianita.



ii

acknowledgments

It is only right that I begin by thanking my Advisor, Bart Miller, who has
taught me many extremely valuable professional and life lessons, and who
stuck with me when those lessons were not sinking in. I am particularly
grateful for the many hours he spent teaching me how to write, and for
the time he spent proofreading this document and several others. I would
like to thank the office mates I have had over the years. It has been a
pleasure sharing an office with Drew Bernat, I also owe him a great debt
for his collaboration on many aspects of this work, without his help, my
research would have taken much longer to bring to completion. Nate
Rosenblum put up with me for a similarly long period of time, he was
a great companion, and provided useful feedback on my research and
prose on many occasions. All other members of the Paradyn group have
been extremely supportive and provided excellent feedback on papers
and presentations. In particular, I would like to thank staff members
Bill Williams and Matt Legendre for the all the help they gave me, and
Mike Brim, who has revised prose for me on numerous occasions, and
exchanged condolences with me during the thesis-writing process. I would
also like to thank the many excellent professors in the Computer Sciences
Department that instructed me, and my fellow graduate students, who
have made the CS department a fun and welcoming place.

I am greatly indebted to the members of my Ph.D. committee, for the
feedback they provided on this document, and on my research in general
when it was in its formative stages. Their advice was extremely helpful,
and I am particularly grateful to Somesh Jha for his advice on my research
and career. I also thank Will Benton for providing the latex template that
I used to format this dissertation, by doing so he saved me many hours
of latex twiddling, freeing me to spend those hours on the document’s
prose.



iii

My family has been extremely supportive and patient with me during
the years it has taken me to complete my studies. My wife, in particular,
has lived in poverty with me for many years and never complained about it,
and was very understanding and supportive on those occasions in which I
had to work late hours. I thank her for her unending patience with me as I
have worked through my graduate career, and I thank my loving daughters,
with whom I have at times spent less time with than they or I would have
liked. Finally, my parents also been incredibly loving and supportive, and
I thank them particularly for their prayers and encouragement, for their
love, and for their great examples.



iv

contents

Contents iv

List of Tables vi

List of Figures vii

Abstract viii

1 Introduction 1
1.1 Background and Challenges 3
1.2 Techniques 5
1.3 Contributions 10
1.4 Results 12

2 Background and Related Work 15
2.1 Methodology 16
2.2 The Obfuscation Techniques 17
2.3 Obfuscation Statistics 55
2.4 Summary 63

3 Static Analysis 65
3.1 Accurate Code Parsing 65
3.2 Accurate Function Identification 74

4 Dynamic Code Discovery Techniques 77
4.1 Instrumentation-Based Code Capture 78
4.2 Response to Overwritten Code 81
4.3 Exception-Handler Analysis 90

5 Stealthy Instrumentation 93



v

5.1 Background 96
5.2 Algorithm Overview 101
5.3 CAD and AVU Detection and Compensation 107
5.4 Results 116

6 Malware Analysis Results 120
6.1 Analysis of Packed Binaries 120
6.2 Malware Analysis Results 130

7 Conclusion 135
7.1 Contributions 135
7.2 Future Directions 138

References 141



vi

list of tables

2.1 Packer statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Stackwalk of Conficker A . . . . . . . . . . . . . . . . . . . . . 134



vii

list of figures

1.1 Flow-graph illustration of our instrumentation algorithm . . 6

2.1 Packing transformation performed by the UPX packer . . . . 19
2.2 Examples of non-returning call sequences . . . . . . . . . . . 26
2.3 Examples of call-stack tampering . . . . . . . . . . . . . . . . 27
2.4 Overlapping instructions and basic blocks in Armadillo code 37
2.5 Program constant obfuscations used by Yoda’s Protector . . 40
2.6 Illustration of ASProtect’s stolen bytes technique . . . . . . . 47

3.1 Code sequences that tamper with the call stack . . . . . . . . 68
3.2 Code sequences that tamper with the call stack . . . . . . . . 75

4.1 Illustration of our code overwrite detection and response mech-
anisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Illustration of our analysis techniques for exception-based con-
trol flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Problems with data dependency graphs over instructions . . 102
5.2 Overview of our algorithm for sensitivity-resistant instrumen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Challenges in detecting internally CAD-sensitive instructions 110
5.4 Performance as compared to Dyninst 7.0 and PIN . . . . . . 118

6.1 Conficker A’s Control Flow Graph . . . . . . . . . . . . . . . 133



viii

abstract

State of the art analysis techniques for malicious executables lag signifi-
cantly behind their counterparts for compiler-generated executables. This
difference exists because 90% of malicious software (also known as mal-
ware) actively resists analysis. In particular, most malware resists static
attempts to recover structural information from its binary code, and resists
dynamic attempts to observe and modify its code.

In this dissertation, we develop static and dynamic techniques and
combine them in a hybrid algorithm that preserves the respective strengths
of these techniques while mitigating their weaknesses. In particular, we
build structural analyses with static parsing techniques that can disassem-
ble arbitrarily obfuscated binary code with high accuracy, and recover the
structure of that code in terms of functions, loops, and basic blocks. We
develop dynamic techniques to identify transitions into statically unreach-
able code and respond to malware that overwrites its code. These dynamic
techniques remove overwritten and unreachable code from our analysis
and trigger additional parsing at entry points into un-analyzed code, be-
fore this code executes. Our stealthy instrumentation techniques leverage
our structural analysis to stealthily and efficiently instrument binary code
that resists modification. These instrumentation techniques hide the mod-
ifications they make to the binary code, and the additional space that they
allocate in the program’s address space to hold instrumentation.

We demonstrate the utility of our techniques by adapting the Dyninst
7.0 binary analysis and instrumentation tool so that its users can analyze
defensive malware code in exactly the same way that they analyze non-
defensive binaries. We also build customizable malware analysis factories
that perform batch-processing of malware binaries in an isolated environ-
ment, to help security companies efficiently process the tens of thousands
of new malware samples that they receive each day. Finally, we use our



ix

analysis factory to study the most prevalent defensive techniques used
by malware binaries. We thereby provide a snapshot of the obfuscation
techniques that we have seen to date, and demonstrate that our techniques
allow us to analyze and instrument highly defensive binary code.



1

1 introduction

Malicious software infects computer systems at an alarming rate, causing
economic damages that are estimated at more than one hundred billion
dollars per year [84]. Immediately upon discovering a new threat, ana-
lysts begin studying its code to determine damage done and information
extracted, and ways to curtail its impact. Analysts also study malware for
clues about how to clean infected systems and construct defenses. The
time analysts spend analyzing the malware represents a time-window
during which the malware remains effective. Thus, a primary goal of
malware authors is to make these analysis tasks as difficult and resource
intensive as possible. This goal explains why 90% of malware program
binary files contain defensive techniques that protect their code from anal-
ysis [17]. These defenses result in labor intensive analyses that take a long
time; companies take an average of 18 days to contain cyber-attacks [59]
and 31% of cyber-crimes affecting computer users are never solved [83].
By comparison, friendly program binaries are far easier to analyze because
current tools can automatically analyze the binary code, enabling analysts
to understand it in terms of familiar concepts like functions and loops.
Regrettably, these static analysis techniques have not been able to deal with
the defensive techniques employed by malware [77]. The result is that
malware analysts have turned instead to run-time analysis techniques and
typically try to build up an understanding of the malware by looking at
traces of executed instructions [37]. This approach frequently overwhelms
inexperienced analysts [99], requires the malicious code to be executed
before it is understood, and involves modifying the monitored code in
detectable ways [3, 43, 106].

This dissertation shows how to build structural analyses for malicious
code based on a hybrid of static and dynamic analysis techniques. We
have developed static techniques that build accurate structural analyses of



2

defensive code. Our dynamic instrumentation techniques discover code
that is not visible to static analysis, while hiding any code modifications
that we need to monitor and control the malware [11]. Our static and
dynamic analysis techniques are implemented as independent compo-
nents for analysts to build on [16, 87]. We also show that we can provide
structural analysis and dynamic instrumentation of defensive code prior to
its execution by combining our static and dynamic techniques in a hybrid
algorithm [103]. With our hybrid approach we have analyzed more code
in defensive binaries than is possible through static or dynamic analysis
alone. We demonstrate the effectiveness and utility of our hybrid analy-
sis approach by providing foundational techniques in a general-purpose
framework to speed up the development of future malware analysis tools.
The foundational analysis techniques we provide are the following:

• The ability to find the code in the program binary. Even in compiler-
generated binaries, accurately identifying the code is challenging
because binaries also contain data, padding, and junk bytes that are
interspersed with the code. Malware binaries make code identifi-
cation even harder, both by hiding their code from static analysis
through obfuscations, code-packing, and code overwrites, and by
reducing the accuracy of code identification techniques through the
use of valid control transfers into non-code bytes. Our hybrid analy-
sis techniques allow us to find code both statically and dynamically,
before the code executes.

• The ability to structurally analyze the code prior to its execution. This
involves building a structural analysis of the program’s control flow
that includes functions and loops. Researchers have developed static
techniques to mitigate particular code obfuscations [28, 62, 63], but
have not built techniques to parse arbitrarily obfuscated code. We
build static code-parsing techniques to analyze the code, while our



3

dynamic techniques trigger further analysis in response to resolved
code obfuscations, code unpacking, and code overwrites.

• The ability to instrument the code. Instrumentation serves both as
a means for the analyst to dynamically analyze and control mal-
ware, and to support our own analyses by detecting places that leave
statically understandable code and transition to un-analyzed code.
Analysis tools built on our framework control the malware’s exe-
cution by using structural analysis to choose locations at which to
change and add to the malware’s code. We find additional code
at run-time by instrumenting potential transitions into code that is
hidden by defensive techniques like code obfuscations and run-time
code unpacking. This instrumentation triggers structural analysis of
the new code prior to its execution. Since malware frequently em-
ploys defensive techniques to detect instrumentation, we developed
compensatory techniques to hide the effects of instrumentation from
malware [11].

The current ease with which program analysis tools are developed for
non-defensive binaries owes a great debt to the existence of binary analysis
frameworks such as Dyninst [57], ROSE [97], and Vulcan [113] that provide
these basic analysis primitives. This dissertation establishes techniques
by which such frameworks can be adapted to work on defensive malware.
We demonstrate the practicality of our techniques by implementing them
in Dyninst, and by then using Dyninst to successfully analyze defensive
malware.

1.1 Background and Challenges

Both static and dynamic analyses are used on malware, but neither is
sufficient by itself. While static analyses glean information from source code



4

or program binary files, dynamic analyses execute programs and learn about
them by observing their run-time behavior. Static analysis techniques
have the ability to analyze the binary as a whole, and thereby recover
structural information such as functions and loops that are familiar to
the programmer [118]. This familiar view can significantly accelerate the
analyst’s understanding of the code. However, static techniques cannot
always predict the targets taken by control-transfer instructions, even
through the application of costly dataflow analyses such as pointer aliasing
[5, 56]. Dynamic techniques, on the other hand, resolve the targets of
all obfuscated instructions that execute. However, their corresponding
downside is that they do not find or analyze code that does not execute.

Defensive malware binaries employ a wide variety of techniques to
further exploit the weaknesses of static and dynamic analyses. To hide
code from static analysis, malware authors employ code obfuscation, code
packing, and code overwriting techniques. The goal of code obfuscation tech-
niques is to make the program’s code difficult to understand. Malware au-
thors apply obfuscations both at the level of individual machine-language
instructions and at the function and program level. For example, malware
authors frequently obfuscate individual control transfers by using instruc-
tions that determine their targets based on register contents or memory
values, rather than by using instructions whose targets are explicitly de-
fined by instruction operands. An example of function-level obfuscation is
the practice of placing a function’s basic blocks in non-contiguous regions
of the program’s address space. Code packing techniques compress or en-
crypt the binary’s malicious code and package the binary with bootstrap
code that decompresses the malicious payload into the program’s address
space at run-time, often doing so incrementally or in multiple stages. Code
packing is present in at least 75% of all malware binaries [12, 119]. Taken
together, code obfuscations make what little code is present in a packed
program binary file hard to analyze, while code packing makes the rest



5

of the code inaccessible until it is unpacked at run-time. Code overwriting
techniques replace or modify machine-language instructions at run-time.
The effect of code overwrites is that a given address or memory buffer can
contain different machine language instructions at different points in the
program’s execution. This defensive technique makes program analysis
harder in two ways. First, for programs that overwrite their code, there
is no time at which all of the code is present in the program’s memory
[32]. Second, when an overwrite occurs, structural analyses of the pro-
gram’s code become both incomplete and invalid. Incompleteness comes
because the new code is not included in the analysis, while invalidity
occurs because the analysis includes code that no longer exists.

Defensive malware also targets dynamic techniques, both by protecting
the integrity of its code and by trying to detect that it is executing in a mon-
itored environment. Integrity checks target patch-based instrumentation
of the code, and frequently involve scanning the program’s code space
at run-time to compare the checksum of that region to the checksum of
the original code. If the checksums do not match, the program’s integrity
has been violated. Environment checks look for signs that the program is
executing in a supervised environment. For example, a malware program
may attempt to detect that it is executing in a virtual machine [106] or that
a debugger process is attached to it [42]. When malware detects tampering
or a supervised environment, it exits early, typically before exhibiting its
intended malicious behavior. These defensive techniques pose significant
challenges to static and dynamic analysis and are discussed at greater
length in Chapter 2.

1.2 Techniques

The goal of our hybrid analysis techniques is to deal with the nasty de-
fensive mechanisms employed by malware binaries so that analysts can



6

Parse from known entry points

Execute

Apply user’s instrumentation

Dynamic capture 
instrumentation

Exception 
interceptor

Overwrite
detector

1

2 3 4

Show analysis to user

Figure 1.1: Hybrid algorithm for our binary analysis and instrumentation
framework. Technique 1 (in red) applies static parsing techniques while
the program is stopped, to build a structural analysis of the code. The
analysis tool built on our framework consumes this analysis, and specifies
instrumentation that we apply to the binary. We then execute the program,
with dynamic analysis techniques 2, 3, and 4 (in green) in place to detect
transitions to code that may require further analysis and instrumentation.
We use the new entry points found by these techniques to start a new
iteration of our hybrid algorithm.

naively analyze and instrument defensive malware as if it contained nor-
mal binary code. To this end, we develop static and dynamic analyses
that are hardened to withstand defensive techniques. By incorporating
these techniques into the hybrid algorithm shown in Figure 1.1, we miti-
gate the weaknesses of static and dynamic analyses while providing the
benefits of both. Static parsing techniques find code and incorporate it
into a structural analysis prior to its execution. We use dynamic analysis
techniques to capture any code that was missed by our parser because



7

of obfuscation, code packing, and code overwrites. These dynamic tech-
niques identify new entry points into the program that we use to seed
further parsing, which restarts our iterative analysis and instrumentation
algorithm. Further descriptions of algorithmic components in Figure 1.1
are presented below, together with a fifth supporting technique that hides
our instrumentation from the malware.

1. Parsing. Parsing allows us to find and analyze binary code by travers-
ing statically analyzable control flow starting from known entry
points into the code. No existing algorithm for binary code analysis
achieved high accuracy on arbitrarily obfuscated binaries, so we
create a modified control-flow traversal algorithm [112] with a low
false-positive rate. Our initial analysis of the code may be incom-
plete, but we fall back on our dynamic capture techniques to find
new entry points into the code and use them to re-seed our parsing
algorithm.

2. Dynamic Capture. Dynamic capture techniques allow us to find
and analyze code that is missed by static analysis either because it is
not generated until run-time or because it is not reachable through
statically analyzable control flow. Our static analysis of the program’s
control flow identifies control transfer instructions that may lead to
un-analyzed code; we monitor these control transfers using dynamic
instrumentation, thereby detecting any transition to un-analyzed
code in time to analyze and instrument it before it executes.

3. Code Overwrite Monitoring. Code overwrites invalidate portions
of an existing code analysis and introduce new code that has not yet
been analyzed. We detect code overwrites by applying DIOTA’s [72]
method of write-protecting memory pages that contain code and
handling the signals that result from write attempts. The hard part
is accurately detecting when overwriting ends, as large code regions



8

are often overwritten in small increments. Accurately detecting
the overwrite’s end is important because updating the analysis is
expensive, and accurate detection allows us to update our analysis
only once in response to a group of incremental overwrites. We
detect the end of code overwriting in a novel way by using our
structural analysis of the overwrite code to detect any loops that
enclose the write operations and delaying the analysis update until
the loop exits.

4. Signal- and Exception-Handler Analysis. Static parsing techniques
assume that the program’s control flow is entirely regimented by
explicit control-transfer instructions, and do not account for the out-
of-band control transfers caused by signal- and exception-raising
instructions. The reason for this assumption is that statically deter-
mining whether an instruction will raise a signal or exception is a
hard problem, both in theory and in practice [78, 93]. We use dy-
namic analysis to resolve signal- and exception-based control trans-
fer obfuscations [44, 93]. We detect signal- and exception-raising
instructions and find their dynamically registered handlers through
dynamic techniques, and then add the handlers to our analysis and
instrument them to control their execution.

5. Stealthy instrumentation. We provide the ability to instrument and
modify the program without these changes being visible to malware
programs that perform integrity checks. These stealthy techniques
enable tools built on our dynamic instrumentation framework to
hide their modifications, and hides the instrumentation used by our
dynamic capture, code-overwrite monitoring, and exception-handler
analysis techniques. We prevent the malware both from detecting
our changes to its code, and from detecting the extra space that
the instrumenter needs to accommodate its instrumentation in the



9

malware’s address space. We hide our modifications by redirecting
the program’s read and write instructions to a copy of the program’s
code sections. We hide the instrumentation buffer through further
instrumentation-based monitoring of these same read and write
instructions.

From an analyst’s perspective, analyzing and instrumenting defensive
code with our hybrid algorithm is the same as analyzing non-defensive
code with a binary analysis and instrumentation framework such as Vul-
can [113] or Dyninst [57]. The only difference to the tools built on our
framework is that we periodically deliver analysis updates in response to
changes in the underlying binary code, affording the tool the opportunity
to further analyze and instrument the new and modified portions of the
program’s control flow graph. Without our hybrid analysis techniques,
Dyninst and Vulcan can only analyze and instrument binary code that is
not hidden by obfuscation, code packing, and code overwrites.

Our techniques are applicable to a broad range of binary analysis and
instrumentation tools. However, we do not compensate for all the ways
that these tools control the program’s execution, limiting their ability to
analyze and control malware. In particular, analysis tools use a variety
of mechanisms to supervise the malware’s execution, the most prevalent
of which are the debugger interface provided by the operating system,
software drivers in the operating system, and virtual-machine-monitors
outside of the monitored operating system. Each of these monitoring
techniques can be detected by malware through different collections of
techniques [42, 43, 106]. We implemented our techniques in Dyninst,
which uses the OS-provided debugger interface, and though we make a
best-effort to hide Dyninst’s use of this interface from the malware, we
do not claim that our implementation is impervious to all possible anti-
debugging attacks. For example, any tool that relies on the debugger
interface is fundamentally unable to hide itself from malware with rootkit



10

components that can directly access kernel data structures.
Where possible, our techniques have been designed to have expensive

failure modes (in terms of computation resources) rather than incorrect
failure modes. For example, our stealthy instrumentation techniques are
based on conservative analyses that can fail to determine that instructions
are safe to execute natively; in these cases the cost of our instrumentation
techniques increases, but should never instrument programs incorrectly
or unsafely. Similarly, our code-overwrite handling techniques respond
correctly to code overwrites in all cases, but malware authors could de-
sign self-modifying programs for which our techniques would incur high
execution-time overheads. For some aspects of our work that do not affect
the correctness of our instrumentation techniques, we rely on heuristics
that work well in practice but are not completely robust. In particular, a
determined malware author could design a binary for which our static
analysis of the code mistakenly includes many non-code bytes, and could
also limit the accuracy of our function boundary identification techniques.
However, these aspects of our structural analysis are not critical for in-
strumentation correctness or for automated malware analysis; they serve
primarily for the use case in which a human analyst wishes to manually
consume our structural analyses of the code. Fortunately, human analysts
can tolerate some analysis errors. Furthermore, at present there are no
alternative techniques that can construct structural analyses that are more
robust with respect to these obfuscations.

1.3 Contributions

This dissertation makes the following contributions to the analysis of
defensive malware.

• We recover structural constructs such as functions and loops from de-
fensive binary code. In other words, we provide the benefits of static



11

analysis, including foundational control- and data-flow analyses
such as control-flow graph construction and binary slicing [23].

• We provide a binary instrumentation technique that modifies the
malware’s code in accordance with the user’s expectations while
hiding its impact from the program. Specifically, we prevent the
malware from detecting our changes to its code, and from detecting
that we allocate extra space for instrumentation code in the malware’s
address space (this work was done jointly with Andrew Bernat [11]).

• By combining static and dynamic techniques we allow the analyst
to find and analyze code that is beyond the reach of either static or
dynamic analysis alone, thereby providing a fuller understanding of
the malware’s possible behavior. Prior hybrids of static and dynamic
analyses do not work on defensive code, and are further limited
to only finding and disassembling the code [79] and produce their
analysis results only after the program has fully executed [71].

• Our hybrid techniques not only provide the first pre-execution struc-
tural analysis of defensive code, but provide this analysis to guide the
use of instrumentation. By bringing analysis-guided instrumenters
[57, 113] to malware for the first time, we allow analysts to be se-
lective in the program components they monitor, the operations in
those components that they select, and in the granularity of data
they collect. Current tools that can monitor packed or obfuscated
code do not provide flexible instrumentation mechanisms; they trace
the program’s execution at a uniform granularity, either providing
fine-grained traces at the instruction or basic-block level [37, 82], or
coarse grained traces (e.g., at interactions with the OS) [127]. These
tools either bog the analyst down with irrelevant information (a sig-
nificant problem for inexperienced analysts [99]), or can only give a
sketch of the program’s behavior).



12

• Our pre-execution analysis allows analysts to perform informed and
controlled executions of malicious programs based on an under-
standing of the program’s structure and the ability to instrument
and modify the malware binary. By contrast, analysts frequently
analyze malware in an iterative process, starting with a blind, un-
controlled execution of the malware to help them unpack it [53],
followed by application of static techniques to analyze the unpacked
code. The analyst must clean up the infected system before executing
the program again, this time with some knowledge of the code’s
structure. This process is often manual-labor intensive [12, 126, 127],
and fails to fully analyze packed binaries that exhibit polymorphism
(see Chapter 2). Our hybrid approach avoids these problems while
achieving the same goal of informed and controlled execution in a
single pass.

1.4 Results

Our combination of defense-resistant parsing and instrumentation tech-
niques facilitates rapid creation of higher-level analysis tools. To demon-
strate this, we created the following tools using our techniques:

1. We built a general-purpose binary analysis and instrumentation
framework that works on malware [11, 103]. We demonstrate that
our hybrid techniques enable analysis-guided instrumenters such as
Dyninst and Vulcan on malware by implementing our techniques in-
side of Dyninst. We thereby provide structural analysis of defensive
binary code prior to its execution, and use that analysis for controlled
malware executions. We demonstrate the efficacy of this framework
both on real and representative synthetic malware samples that are
highly defensive.



13

2. We built a customizable malware analysis factory on top of our hy-
brid analysis and instrumentation framework [103]. Our factory
performs batch-processing of malware samples in an isolated en-
vironment, producing customizable reports on the structure and
behavior of malware samples. Analysts at large security companies
receive tens of thousands of new malware samples each day [86]
and must process them efficiently and safely to determine which
samples are of greatest interest. Our factory meets their needs while
automatically finding and analyzing code that is beyond the reach
of static or dynamic analysis alone.

3. We built a tool based on our hybrid analysis and instrumentation
framework to study the most prevalent defensive techniques used
by malware binaries. To determine what those techniques are, we
apply our tool to binaries created by the packer toolkits that mal-
ware authors most often use to add defensive techniques to their
binaries [17]. Using our tool, we catalog and describe the defensive
techniques employed by these binaries and report on their relative
frequency and impact.

The rest of this dissertation proceeds as follows. In Chapter 2 we
discuss the defensive techniques that malware authors use to counter
analysis and existing countermeasures to those techniques. In Chapter 3
we discuss our hardened static parsing techniques. In Chapter 4 we present
our dynamic code-discovery techniques, including our instrumentation-
based dynamic capture techniques for finding additional code, (Section
4.1), our techniques for dealing with code overwrites (Section 4.2), and
our approach to dealing with exception- and signal-based control flow
(Section 4.3). In Chapter 5 we discuss techniques that make our patch-
based instrumentation techniques safe, even for programs that check for
code-patches. In Chapter 6 we show our results, and we conclude in



14

Chapter 7.



15

2 background and related work

Our work is rooted in the field of obfuscated program analysis, which is a
sub-field of program binary analysis. In this chapter we survey previous
works on program binary analysis, describe the impact of binary code
obfuscations on those works, and discuss approaches that researchers
have devised for dealing with these obfuscations.

Prior to our research in this area, there had been no comprehensive
studies of the obfuscation techniques that are present in malware code,
though there have been studies in the related areas of binary packing
[126], anti-debugging [42], and anti-unpacking [44] techniques. Since the
first step in analyzing defensive malware is to understand what obfusca-
tions are most-prevalent in real-world malware, we performed a broad
examination of the obfuscation techniques used by the packer tools that
are most popular with malware authors [18]. Our snapshot of current
obfuscation techniques captures the obfuscations that we have seen to date,
and will need to be periodically refreshed as obfuscation techniques con-
tinue to evolve. We describe obfuscations that make binary code difficult
to discover (e.g., control-transfer obfuscations, exception-based control
transfers, incremental code unpacking, code overwriting); to accurately
disassemble into instructions (e.g., ambiguous code and data, disassem-
bler fuzz-testing, non-returning calls); to structure into functions and basic
blocks (e.g., obfuscated calls and returns, call-stack tampering, overlap-
ping functions and basic blocks); to understand (e.g., obfuscated constants,
calling-convention violations, chunked control-flow, do-nothing code);
and to manipulate (e.g., self-checksumming, anti-relocation, stolen-bytes
techniques). For each obfuscation technique, we present the approaches
that previous works have taken to dealing with this technique.

Typical surveys of previous works do not include a section on method-
ology, but we include one because in the process of doing our survey, we



16

required an active evaluation of prevalent packer tools. We follow the
methodology section with a taxonomy of obfuscation techniques used
by malware, together with the approaches taken by previous works for
dealing with those techniques (Section 2.2). As they read this section,
readers may wish to reference Section 2.3, where we provide a summary
table of the obfuscation techniques that shows their relative prevalence
in real-world malware. Section 2.4 also provides brief descriptions of the
packer tools that are most-often used by malware authors. We summarize
our discussion of previous works in Section 2.4.

2.1 Methodology

We used a combination of manual and automated analysis techniques
to study malware obfuscations. We began by creating a set of defensive
program binaries that incorporate the obfuscation techniques found in
real-world malware. We created these binaries by obtaining the latest ver-
sions of the binary packer and protector tools that are most popular with
malware authors [18] and applying them to program binaries. The packer
tools transformed the binaries by applying obfuscations to their code and
compressing or encrypting their code and data bytes. At run-time the
packed binaries unroll the code and data bytes of their payload into the
program’s address space and then execute the payload code. We carefully
analyzed the obfuscated metacode that packer tools incorporate into such
binaries; packer metacode is software that consists of the obfuscated boot-
strap code that unrolls the original binary payload into memory, and the
modifications that the packer tool makes to the payload code, but does
not include the payload code.

We obtained most of our observations about these obfuscated binaries
with the assistance of the malware analysis techniques that are the primary
contributions of this dissertation [11, 103], as implemented in the Dyninst



17

binary code analysis and instrumentation tool [16]. This dissertation
includes techniques to make instrumentation tools resistant to errors in
the analysis [11], however, our initial set of techniques were not resistant
to errors, and we therefore ran head-on into nearly every obfuscation
technique employed by these programs [103]. We automatically generated
statistical reports of defensive techniques employed by these packer tools
with our obfuscation-resistant version of Dyninst, and we present those
results in Section 2.3 of this chapter.

We also spent considerable time perusing each binary’s obfuscated
code by hand in the process of getting Dyninst to successfully analyze
these binaries, aided by the OllyDbg [128] and IdaPro [52] interactive
debuggers (Dyninst does not have a code-viewing GUI). In particular, we
systematically studied the metacode of each packed binary to achieve a
thorough understanding of its overall behavior and high-level obfuscation
techniques.

2.2 The Obfuscation Techniques

We structure this discussion around foundational binary analysis tasks.
For each task, we describe solutions to those tasks, present defensive tech-
niques that malware authors use to complicate the tasks, and survey any
counter-measures by which previous works have dealt with the defensive
techniques.

We proceed by presenting foundational analysis tasks in the following
sequence. The analyst must begin by finding the program binary’s code
bytes. The next task is to recover the program’s machine-language instruc-
tions from the code bytes with disassembly techniques. The analyst can
then group the disassembled bytes into functions by identifying function
boundaries in the code. To modify and manipulate the code’s execution,
the analyst may patch code in the program binary. Finally, the analyst may



18

attempt to bypass the defensive code in malware binaries by rewriting the
binary to create a statically analyzable version of the program.

Binary Code Extraction

The most fundamental task presented to a binary analyst is to capture the
program binary’s code bytes so that the code itself can be analyzed. This
is trivially accomplished on non-defensive binaries that do not generate
code at run-time, because compilers typically put all of the code in a .text
section that is clearly marked as the only executable section of the program
binary. Static analysis techniques, which extract information from program
files, can collect the program’s code bytes by simply reading from the
executable portions of the binary file. The code bytes of non-defensive
binaries can also be extracted from the program’s memory image at any
point during its execution, as the code does not change at run-time and
binary file formats clearly indicate which sections of the program are
executable.

Binary code extraction becomes much harder, however, for programs
that create and overwrite code at run-time. Defensive malware binaries
are the biggest class of programs with this characteristic, though just-in-
time (JIT) compilers such as the Java Virtual Machine [67] (which compiles
java byte code into machine-language sequences just in time for them
to execute) also fit this mold. Since the same analysis techniques apply
both to obfuscated programs and JIT compilers, we discuss techniques for
analyzing dynamic code after our description of code packing and code
overwriting.

Code packing

At least 75% of all malware binaries use code-packing techniques to pro-
tect their code from static analysis and modification [12, 119]. A packed



19

imports section

16 90 08 27 c0 73 1c 88 48 
6a d8 6a d0 56 4b fe 92 57 
af 42 b9 51 84 02 1c 22 8e 
63 01 00 0c b6 f2 64 32 f5 
14 8a 14 26 60 d9 83 a1 37 
1b 00 0c b6 f2 64 32 f5 07 

b6 66 21 0c 85 a5

16 90 08 27 c0 73 1c 88 48 
6a d8 6a d0 56 4b fe 92 57 
af 42 b9 51 84 02 1c 22 8e 
63 01 00 0c b6 f2 64 32 f5 
14 8a 14 26 60 d9 83 a1 37 
1b 00 0c b6 f2 64 32 f5 07 

b6 66 21 0c 85 a5

bootstrap code

packed code, 
data, 
imports

kernel32.dll

kernel32.dll

entry point
imports

code section

data section

advapi32.dll f1 f2 f12
user32.dll f1 f2 f33

…

…

…

empty code section

empty data section

empty imports section

entry point
imports

f1 f2 f20
…

entry point
imports

kernel32.dll f1 f2

empty code section

empty data section

empty imports section

kernel32.dll f1 f2 f18…

f1 f2

kernel32.dll

malware.exe packed by UPXoriginal malware.exe

memory view memory view disk view

bootstrap code

packed code, 
data, 
imports

original entry point original entry point

import 
address 
table

f1 f2

Figure 2.1: Abstract view of a representative packing transformation as
performed by versions of the UPX packer up through Version 3.08. UPX
compresses malware.exe’s code and data, setting the packed binary’s
entry point to its bootstrap code, which will unpack the code and data
into memory at run-time. UPX replaces malware.exe’s Import Table and
Import Address Table with its own, much smaller tables that import only
the LoadLibrary and GetProcAddress functions. UPX uses these functions
to reconstruct the original import table at run-time.



20

binary is one that contains a payload of compressed or encrypted code
that it unpacks into its address space at run-time. In practice, most mal-
ware authors incorporate this technique by compiling their code into a
normal program binary and then processing the binary with a packer
tool to create a packed version. Figure 2.1 illustrates the packing trans-
formation performed by UPX; most other packer transformations can be
thought of as elaborations on UPX’s basic scheme. The packer tool sets
the executable’s entry point to the entry point of bootstrap code that un-
packs the payload and then transfers control to the payload’s original
entry point (OEP). When the bootstrap code unrolls packed code and data,
it places them at the same memory addresses that they occupied in the
original binary so that position-dependent instructions do not move and
data accesses find the data in their expected locations. UPX also packs
the Portable Executable (PE) binary format’s Import Table and Import
Address Table (IAT) data structures, which list functions to import from
other shared libraries. These tables are packed both because they would
reveal significant information about the payload code and because they
are highly amenable to compression. Upon loading a binary into memory,
the Windows linker/loader processes these tables and writes imported
function addresses into the IAT, but since packed binaries decompress the
payload binary’s import tables after load time, packer bootstrap code must
fill in the payload binary’s IAT itself.

The most common elaboration on this basic recipe for binary packing
is one in which portions of the packer’s bootstrap code itself are packed.
Most packers use a small unpacking loop to decompress a more sophis-
ticated decompression or decryption algorithm that unpacks the actual
payload. This incremental approach achieves some space savings, but
more importantly, it protects the bulk of the bootstrap code itself from
static analysis. The latter is clearly the motivation for ASProtect, 99% of
whose metacode is dynamically unpacked, and for other similar “protec-



21

tor” tools that unpack their metacode in many stages, often at no space
savings, and frequently overwriting code as they do so.

Approaches Analysis tools use both static and dynamic techniques to
retrieve packed code bytes. The widely used X-Ray technique [92] stati-
cally examines the program binary file with the aim of seeing through
the compression and encryption transformations with which the payload
code is packed. This technique leverages statistical properties of packed
code to recognize compression algorithms and uses known cipher-text at-
tacks to crack weak encryption schemes (i.e., the analyst packs a binary of
their choice and therefore has the unencrypted payload in advance). The
weakness of the X-Ray technique is its ineffectiveness against strong en-
cryption and multiple layers of compression or encryption. An alternative
static approach is to extract the portion of the bootstrap code that does the
unpacking and use it to create an unpacker tool. A research prototype by
Coogan et al. makes strides towards automating this process, and Debray
and Patel built an improved prototype that incorporates dynamic analysis
to help better identify and extract the code that does the unpacking [28, 35].
Though promising, this approach has not yet been shown to work on a
broad sample of real-world malware.

Dynamic analysis is an obvious fit for unpacked code extraction since
packed binaries unpack themselves as they execute, and because this ap-
proach works equally well for JIT-style code generation. Dynamic binary
translation and instrumentation techniques such as those used by Qemu
[8] and DynamRIO [14] have no difficulty in finding dynamic code, since
they do not attempt to discover the program’s code until just before it
executes. However, this approach does not distinguish between code that
is statically present in the binary and code that is created at run-time. Dy-
namic unpacking tools such as Renovo [60] and EtherUnpack [37] detect
and capture unpacked code bytes by tracing the program’s execution at



22

a fine granularity and logging memory writes to identify written-then-
executed code. They leverage the Qemu [8] whole-system emulator and
the Xen virtual-machine monitor [6], respectively, which allows them to
observe the execution of the monitored malware without being easily
detected. The same approach of identifying written-then-executed code
is used by unpackers that monitor programs with first-party dynamic in-
strumenters [98], the debugger interface [104], interactive debugger tools
[51, 96, 116], and sandboxed emulators [50, 115]. Unpacker tools that have
monitored packed malware from the operating system track execution and
memory writes at the coarser granularity of memory pages [53, 74]. The
aforementioned dynamic unpacker tools run packed programs either for
a certain timeout period, or until they exhibit behavior that could indicate
that they are done unpacking [74, 127]. The primary limitations of the fine-
grained monitoring techniques are that they only identify code bytes that
actually executed and they incur orders-of magnitude slowdowns in exe-
cution time. Meanwhile, the efficient design of coarse-grained techniques
makes them suitable for anti-virus products, but their coarse memory-
page granularity means that they cannot identify the actual code bytes on
unpacked code pages and that they cannot identify or capture overwritten
code bytes.

The aforementioned dynamic unpacking techniques deliver the cap-
tured code bytes so that static analysis techniques can be used afterwards
to recover the program’s instructions and code structure. The Bird in-
terpreter [79] instead applies static code-parsing techniques before the
program executes, and uses dynamic techniques to identify and instru-
ment code that is missing from that analysis at run-time. However, Bird
does not capture dynamically unpacked code or rebuild its analysis by
re-applying its code-parsing techniques.



23

Code Overwriting

Self-modifying programs move beyond unpacking by overwriting existing
code with new code at run-time. Code overwrites often occur on the small
end of the spectrum, affecting a single instruction, or even just a single
instruction operand or opcode. For example, the ASPack packer modifies
the push operand of a push 0, ret instruction sequence at run-time to
push the original entry point address onto the call stack and jump to it. On
the other hand, the UPack packer’s second unpacking loop unrolls payload
code on top of its first unpacking loop, removing several basic blocks at
once from the function that is currently executing. Code overwrites range
anywhere from one byte to several kilobytes, but the packers we survey
in this paper only overwrite their own metacode. More complex code
overwriting scenarios are possible, for example, the MoleBox packer tool
and DarkParanoid virus [32] repeatedly unpack sensitive code into a buffer,
so that only one buffer-full of the protected code is exposed to the analyst at
any given time. However, this approach is sufficiently hard to implement
[34] that relatively few malware binaries have attempted it.

Approaches Code overwriting presents a problem to both static and
dynamic approaches to binary code identification and analysis, as there
is no point in time at which all of the program’s code is present in the
binary. For this reason, most unpacking tools do not capture overwritten
bytes. The exception are tools that monitor the program’s execution at
a fine granularity and capture snapshots of each program basic block as
soon as it executes [1, 60].

Representing self-modifying code is challenging, as most binary analy-
sis products do not account for code overwriting. Anckaert et al. propose
an extended CFG representation that incorporates all versions of the code
existing in the program at different points in time [1]. However, most CFG-
building tools for defensive code are not equipped to build Anckaert-style



24

CFGs, since they do not capture overwritten code bytes and do not build
the CFG until after the program is done executing, when the overwritten
code is gone [71, 127].

Disassembly

Once the code bytes have been captured, static analysis techniques can
accurately disassemble most of the code in compiler-generated program
binaries, even when those binaries have been stripped of all symbol in-
formation [52, 101]. The underlying technique employed by disassembly
tools is to disassemble the binary code starting from known entry points
into the program. Linear-sweep parsing [49, 107] disassembles sequen-
tially from the beginning of the code section and assumes that the section
contains nothing but code. Since the code section is not always clearly
indicated as such, and frequently contains non-code bytes such as string
data and padding, this approach yields unsatisfying results. The alternate
recursive-traversal approach [112, 118] finds instructions by following all
statically traversable paths through the program’s control-flow starting
from known function addresses. This technique is far more accurate, but
misses the control transfer targets of instructions that determine their
targets dynamically based on register values and memory contents. This
weakness of recursive-traversal parsing is not significant for binaries that
identify function entry address with symbol information, as most of the
missing control transfer targets are to function entries or to jump table en-
tries that can be identified through additional symbol information or static
analysis [24]. Even for binaries that are stripped of symbol information,
machine-learning techniques can identify enough function entry points
(by recognizing instruction patterns that compilers use at function entries)
to help recursive-traversal parsing achieve good code coverage [102].

Unfortunately for the analyst, binary code can easily flout compiler con-
ventions while remaining efficacious. Anti-disassembly techniques aim to



25

violate the assumptions made by existing parsing algorithms so that they
can both hide code from the disassembler and corrupt the analysis with
non-code bytes. Defensive binaries remove all symbol information, leav-
ing only one hint about the location of code in the binary: the executable’s
entry point. To limit the amount of code that can be found by following
control transfer edges from this entry point, these binaries obfuscate their
control flow. Compensating for poor code-coverage with compiler-specific
knowledge is usually not an option since much of the code is hand-written
assembly code and therefore, highly irregular. Additionally, code obfusca-
tions deliberately blur the boundaries between code and non-code bytes to
make it difficult to distinguish between the two [26, 68, 93]. We begin our
discussion with anti-disassembly techniques that hide code and transition
into techniques that corrupt the analysis with non-code bytes or uncover
errors in the disassembler.

Non-returning calls

The call instruction’s intended purpose is to jump to a function while
pushing a return address onto the call stack so that the called function
can use a ret instruction to pop the return address from the top of the
stack and jump there, resuming execution at the instruction following
the call. However, the call instruction also lends itself to be used as an
obfuscated jmp instruction; its semantics are equivalent to the push-jmp
sequence of Figure 2.2a. Since the call instruction pushes a return address
onto the stack, a misused call is usually paired with a pop instruction
at the call target to remove the PC-relative return address from the stack
(see Figure 2.2b). This easily implemented obfuscation attacks analysis
tools in in three ways. First, parsers assume that there is a function at the
call’s target that will return to the call’s fall-through address (i.e., the address
immediately following the call instruction). Based on this assumption,
recursive-traversal parsers assume that the bytes following a non-returning



26

Call Emulated Call
call <target> push <PC + sizeof(push) + sizeof(jmp)>

jmp <target>

(a)

Misused Call
call <target>
...

.target
pop <register-name>

(b)

Figure 2.2: Part (a) illustrates a call and equivalent instruction sequence
while (b) illustrates an unconventional use of the call instruction that gets
a PC-relative value into a general-purpose register.

call instruction represent a valid instruction sequence, and erroneously
parse them as such. Second, the attack breaks an important assumption
made by code parsers for identifying function boundaries, namely, that
the target of a call instruction belongs to a different function than that
of the call instruction itself. Finally, a binary instrumenter cannot move
the call instruction of such a call-pop sequence without changing the
PC-relative address that the pop stores into a general-purpose register.
Moving the call instruction without compensating for this change usually
results in incorrect program execution, as packer metacode frequently
uses the PC-relative address as a base pointer from which to access data.
On average, 7% of all call instructions used in packer metacode are non-
standard uses of the instruction, and as seen in Table 2.1 of Section 2.4,
most packer tools use this obfuscation.



27

push ADDR push ADDR pop ebp
... call .foo inc ebp
ret ret push ebp

.foo ret
ret

(a) (b) (c)

Figure 2.3: Code sequences that tamper with the call stack. (a) and (b)
are equivalent to jmp ADDR, while (c) shows a procedure that jumps to
return-address + 1

Approaches The recursive-traversal parsing algorithm’s assumption that
there is valid code at the fall-through address of each call instruction
means that it includes many non-code bytes in its analysis of obfuscated
code. Unfortunately, removing this assumption drastically reduces the per-
centage of code that the parser can find, owing to the ubiquity of the call
instruction and the fact that there usually is valid code at call fall-through
addresses, even in obfuscated code. Researchers have proposed removing
the recursive-traversal algorithm’s assumption that calls return and com-
pensating for the loss of code coverage through additional code-finding
techniques. Kruegel et al. [62] compensate by speculatively parsing after
call instructions and use their statistical model of real code sequences to
determine whether the speculatively parsed instruction sequences are
valid. Unfortunately, their tool targeted a specific obfuscator [68] and its
code-finding techniques rely heavily on the presence of specific instruction
sequences at function entry points; most obfuscated code does not exhibit
such regularity. Though pure dynamic analysis approaches identify in-
structions accurately in the face of non-returning calls, they only find those
instructions that execute in a given run of the program.



28

Call-stack tampering

While non-returning calls involve non-standard uses of the call instruc-
tion, call-stack tampering adds non-standard uses of the ret instruction
as well. Figure 2.3 illustrates three call-stack tampering tricks used by the
ASProtect packer. Figure 2.3a shows an obfuscated push-ret instruction
sequence that is used as an equivalent to a jmp ADDR instruction. Fig-
ure 2.3b is a somewhat more complex instruction sequence that is also
a jmp ADDR equivalent. Figure 2.3c shows a function that increments its
return address by a single byte, causing the program to resume its execu-
tion at a location that recursive-traversal parsing would not detect without
additional analysis.

Approaches To our knowledge, prior works have not used static analysis
techniques to identify the targets of ret instructions, though this could
improve the coverage and accuracy of disassemblers for obfuscated code.
Dynamic analysis provides an alternative approach for resolving the tar-
gets of ret instructions (provided that they execute) and this approach is
used by some dynamic instrumenters [14].

Obfuscated control-transfer targets

All of the packers in our study use indirect versions of the call and jmp
instructions, which obfuscate control transfer targets by using register or
memory values to determine their targets at run-time. Of course, even
compiler-generated code contains indirect control transfers, but compilers
use direct control transfers whenever possible (i.e., for transfers with a
single statically known target) because of their faster execution times. One
reason that packers often opt for indirect control transfers over their di-
rect counterparts is that many packers compete for the bragging rights of
producing the smallest packed binaries, and the IA-32 call <register>
instruction is only 2 bytes long, while the direct call <address> instruc-



29

tion occupies 6 bytes. This small savings in packer metacode size is clearly
a significant motivation for small packers, the smallest three of which
choose indirect call instructions 92% of the time, while the remaining
packers use them at a more moderate 10% rate. Obfuscation is also an
important motivating factor, as many indirect control transfers go unre-
solved by static analysis tools. Obfuscators can increase the penalty for not
analyzing an indirect control transfer by causing a single indirect control
transfer to take on multiple targets [68]. ASProtect uses this obfuscation
more than any other packer that we have studied; our analysis of its code
revealed 23 indirect call instructions with multiple targets.

Approaches Indirect control-transfer targets can be identified inexpen-
sively when they get their targets from known data structures (e.g., the
Import Address Table) or read-only memory. By contrast, static analysis of
indirect control-transfer targets is particularly difficult in packed binaries,
as they frequently use instructions whose targets depend on register val-
ues, and because these binaries typically allow writes to all of their sections.
Though value-set analyses [5] could theoretically reveal all possible targets
for such indirect control transfer instructions, this technique requires a
complete static analysis of all memory-writing instructions in the program,
and therefore does not work on binaries that employ code unpacking or
code overwrites. Because of these difficulties in resolving obfuscated con-
trol transfers in the general case, most static analysis tools restrict their
pointer analyses to standard uses of indirect calls and jumps that access
the IAT or implement jump tables [24, 52, 128]. While dynamic analysis
trivially discovers targets of indirect control transfers that execute, it may
leave a significant fraction of the code un-executed and usually will not
discover all targets of multi-way control transfer instructions. Researchers
have addressed this weakness with techniques that force the program’s
execution down multiple execution paths [4, 76], but even these extremely



30

resource intensive techniques do not achieve perfect code coverage [110].

Exception-based control transfers

Signal- and exception-handling mechanisms allow for the creation of ob-
fuscated control transfers whose source instruction and target address
are well-hidden from static analysis techniques [93]. Statically identifying
the sources of such control transfers requires predicting which instruc-
tions will raise exceptions, a problem that is difficult both in theory and in
practice [78]. This means that current disassembly algorithms will usu-
ally parse through fault-raising instructions into what may be non-code
bytes that never execute. Another problem is that on Windows it is hard
to find the exception handlers, since they can be registered on the call
stack at run-time with no need to perform any Windows API or system
calls. An additional difficulty is that the exception handler specifies the ad-
dress at which the system should resume the program’s execution, which
constitutes yet another hidden control transfer.

Approaches Though static analyses will often fail to recognize exception-
based control transfers, these transfers can be detected by two simple dy-
namic analysis techniques. The OS-provided debugger interface provides
the most straightforward technique, as it informs the debugger process
of any fault-raising instructions and identifies all registered exception
handlers whenever a fault occurs. However, use of the debugger interface
can be detected unless extensive precautions are taken [42], so the analysis
tool may instead choose to register an exception handler in the malware
binary itself and ensure that this handler will always execute before any
of the malware’s own handlers. On Windows binaries, the latter tech-
nique can be implemented by registering a Vectored Exception Handler
(vectored handlers execute before Structured Exception Handlers) and by
intercepting the malware’s attempts to register vectored handlers of its



31

own through the AddVectoredExceptionHandler function provided by
Windows. Whenever the analysis tool intercepts a call to this API function,
the tool can keep its handler on top of the stack of registered vectored
handlers by unregistering its handler, registering the malware handler,
and then re-registering its own handler.

The analysis tool must also discover the address at which the exception
handler instructs the OS to resume the program’s execution. The handler
specifies this address by setting the program counter value in its exception-
context-structure parameter. Analysis tools can therefore identify the
exception handler’s target by instrumenting the handler at its exit points
to extract the PC value from the context structure.

Ambiguous code and data

Unfortunately, there are yet more ways to introduce ambiguities between
code and non-code bytes that cause problems for code parsers. One such
technique involves the use of conditional branches to introduce a fork in
the program’s control flow with only one path that ever executes, while
junk-code (i.e., non-code or fake code bytes) populate the other path. This
technique can be combined with the use of an opaque branch-decision
predicate that is resistant to static analysis to make it difficult to identify the
valid path [26]. Surprisingly, we have not conclusively identified any uses
of this well-known obfuscation in packer metacode, but the similarities
between this obfsucation and valid error handling code that executes
rarely, if ever, prevents us from identifying instances of it.

A far more prevalent source of code and data ambiguity arises at tran-
sitions to regions that are populated with unpacked code at run-time.
In some cases the transitions to these regions involve a control transfer
instruction whose target is obviously invalid. For example, the last in-
struction of UPX bootstrap code jumps to an uninitialized memory region
(refer back to Figure 2.1), an obvious indication that unpacking will occur



32

at run-time and that the target region should not be analyzed statically.
However, binaries often contain data at control transfer targets and fall-
through addresses that will be replaced by unpacked code at run-time.
The most problematic transitions from code to junk bytes occur when
the transition occurs in the middle of a straight-line sequence of code;
ASProtect’s seven sequentially arranged unpacking loops provide perhaps
the most compelling example of this. ASProtect’s initial unpacking loop
is present in the binary, and the basic block at the loop’s exit edge begins
with valid instructions that transition into junk bytes with no intervening
control transfer instruction. As the first loop executes, it performs in-place
decryption of the junk bytes, revealing the subsequent unpacking loop.
When the second loop executes, it decrypts the third loop and falls through
into it, and so on until the seven loops have all been unpacked. Thus, to ac-
curately disassemble such code, the disassembler should detect transitions
between code bytes and junk bytes in straight-line code. These transitions
are hard to detect because the IA-32 instruction set is sufficiently dense
that random byte patterns disassemble into mostly valid instructions.

Approaches Using current techniques, the only way to identify code with
perfect exclusion of data is to disassemble only those instructions that ap-
pear in an execution trace of a program. Since this technique achieves poor
code coverage, analysts often turn to techniques that improve coverage
while limiting the amount of junk bytes that are mistakenly parsed as code.
As to dealing with the ambiguity arising from transitions into regions that
will contain dynamically unpacked code is to avoid the problem altogether
by disassembling the code after the program has finished unpacking itself.
However, this approach is not suitable for applications that use the anal-
ysis at run-time (e.g., for dynamic instrumentation), does not generalize
to junk code detection at opaque branch targets, and does not capture
overwritten code. Not capturing overwritten code is significant because



33

many packers overwrite or de-allocate code buffers immediately after use.
Code parsing techniques can cope with ambiguity by leveraging the

fact that, though random bytes usually disassemble into valid x86 instruc-
tions, they do not share all of the characteristics of real code. Kruegel et al.
build heuristics based on instruction probabilities and properties of nor-
mal control-flow graphs to distinguish between code and junk bytes [62].
Unfortunately, they designed their techniques for a specific obfuscator that
operates exclusively on GCC-generated binaries [68] and their methods
rely on idiosyncrasies of both GCC and Linn and Debray’s obfsucator, so
it is not clear how well their techniques would generalize to arbitrarily
obfuscated code.

Disassembler fuzz testing

Fuzz testing [75] refers to the practice of stress testing a software com-
ponent by feeding it large quantities of unusual inputs in the hope of
detecting a case that the component handles incorrectly. IA-32 disassem-
blers are particularly vulnerable to fuzz testing owing to the complexity
and sheer size of the instruction set, many of whose instructions are rarely
used by conventional code. By fuzz testing binary-code disassemblers,
packer tools can cause the disassembler to mis-parse instructions or mis-
take valid instructions for invalid ones. A simultaneous benefit of fuzz
testing is that it may also reveal errors in tools that depend on the ability
to correctly interpret instruction semantics (e.g., sandbox emulators and
taint analyzers), which have a harder task than the disassembler’s job of
merely identifying the correct instructions. For example, one of the dark
corners of the IA-32 instruction set involves the optional use of instruction
prefixes that serve various purposes such as locking, segment-selection,
and looping. Depending on the instruction to which these prefixes are
applied, they may function as expected, be ignored, or cause a fault. The
ASProtect packer does thorough fuzz testing with segment prefixes, while



34

Armadillo uses invalid lock prefixes as triggers for exception-based control
flow. Other inputs used for fuzz testing include instructions that are rare
in the context of malware binaries, and that might therefore be incorrectly
disassembled or emulated (e.g., floating point instructions).

Various factors increase the thoroughness of disassembler fuzz testing.
The polymorphic approach whereby PolyEnE and other packers gener-
ate bootstrap code allows them to create new variations of equivalent
sequences of rare instructions each time they pack a binary. In the most
aggressive uses of polymorphic code, the packed binary itself carries the
polymorphism engine, so that each execution of the packed binary fuzz
tests analysis tools with different permutations of rare instructions (e.g.,
ASProtect, EXEcryptor). Finally, packers include truly random fuzz test-
ing by tricking disassembly algorithms into mis-identifying junk bytes as
code, as we have discussed in Section 2.2. This last fuzz-testing technique
stresses the disassembler more thoroughly than techniques that fuzz in-
structions that must actually execute, as the non-code bytes disassemble
into instructions that would cause program failures if they actually exe-
cuted (e.g., because the instructions are privileged, invalid, or reference
inaccessible memory locations). On the other hand, the repercussions of
incorrectly disassembling junk instructions are usually less significant.

Approaches Packed malware’s use of fuzz testing means that disassem-
blers, emulators, and binary translators must not cut corners in their
implementation and testing efforts, and that it is usually wiser to leverage
an existing, mature disassembler (e.g., XED [19], Ida Pro [52], ParseAPI
[87]) than to write one from scratch. Correctly interpreting instruction
semantics is an even more difficult task, but also one for which mature
tools are available (e.g., Rose [97], Qemu [8], TSL [66]).



35

Function-Boundary Detection

In compiler-generated code, function-boundary detection is is aided by
the presence of call and ret instructions that identify function entry and
exit points. Analysis tools can safely assume that the target of each call
is the entry point of a function (or thunk, but these are easy to identify)
and that ret instructions are only used at function exit points. Function
boundary detection is not trivial, however, as it is not safe to assume that
every function call is made with a call instruction or that every exit point
is marked by a ret. Tail-call optimizations are most often to blame for
these inconsistencies. At a tail call, which is a function call immediately
followed by a return, the compiler often substitutes a call <addr>, ret
instruction pair for a single jmp <addr> instruction. This means that if
function A makes a tail call to function B, B’s ret instructions will bypass
A, transferring control to the return address of the function that called A.
A naïve code parser confronted with this optimization would confuse A’s
call to B with an intraprocedural jump. Fortunately, parsers can usually
recognize this optimization by detecting that the jump target corresponds
to a function entry address, either because there is symbol information for
the function, or because the function is targeted by other call instructions
[57].

Function-boundary-detection techniques should also not expect the
compiler to lay out a function’s basic blocks in an obvious way, viz., in a
contiguous range in the binary with the function’s entry block preceding
all other basic blocks. A common reason for which compilers break this
assumption is to share basic blocks between multiple functions. The most
common block-sharing scenarios are functions with optional setup code
at their entry points and functions that share epilogues at their exit points.
An example of optional setup code is provided by Linux’s libc, several of
whose exported functions have two entry points; the first entry point is
called by external libraries and sets a mutex before merging with the code



36

at the second entry point, which is called from functions that are internal
to libc and have already acquired the mutex. Meanwhile, some compilers
share function epilogues that perform the task of restoring register values
that have been saved on the call stack. As we will see in this section,
function boundary identification techniques for obfuscated code must
confront the aforementioned challenges as well as further violations of
call and ret usage conventions, scrambled function layouts, and extensive
code sharing between functions.

Obfuscated calls and returns

As we noted in our discussion of non-returning calls, the semantics of call
and ret instructions can be simulated by alternative instruction sequences.
When call/ret instructions are used out of context, they create the il-
lusion of additional functions. On the other hand, replacing call/ret
instructions with equivalent instruction sequences creates the illusion of
fewer functions than the program actually contains. By far the most com-
mon of the two obfuscations is the use of call and ret instructions where
a jmp is more appropriate. Since the call and ret instructions respectively
push and pop values from the call stack, using these instructions as jumps
involves tampering with the call stack to compensate for these side-effects.
Though there is a great deal of variety among the code sequences that
we have seen tampering with the call-stack, most of these sequences are
elaborations on the basic examples that we presented in Figure 2.3.

Approaches Lakhotia et al. designed a static analysis technique to cor-
rectly detect function-call boundaries even when call and ret instruc-
tions have been replaced with equivalent instruction sequences [63]. The
opposite and more prevalent problem of superfluous uses of the call
instruction has not been addressed by prior works, except in the context
of thunk detection for compiler-generated code [57].



37

0
x
4
5
4
0
1
7

0
x
4
5
4
0
1
b

0
x
4
5
4
0
1
e

b8   eb   07   b9   eb   0f   90   eb   08   fd   eb   0b

mov eax, ebb907eb

jmp 45402c

seto bl or ch,bh jmp 45402e

jmp 454028

Address

Bytes

Block 1

Block 2

Block 3

Figure 2.4: An example of overlapping instructions and basic blocks taken
from the obfuscated bootstrap code of a binary packed by Armadillo. All
three basic blocks actually execute.

Overlapping functions & basic blocks

Of the 12 packer tools we selected for this study, 7 share code between
functions. As in compiler-generated code, the most common use of code
sharing is for optional function preambles and epilogues. Some packed
binaries achieve tiny bootstrap code sizes by outlining short instruction
sequences (i.e., moving them out of the main line of the function’s code)
into mini-functions and calling into various places in these functions to
access only those instructions that are needed. Outlining code in this way
results in a lot of code sharing and strange function layouts; for example,
the function’s entry block is often at a larger address than those of other
basic blocks belonging to the function.

Some packers (e.g., EXEcryptor) extensively interleave the blocks of
different functions with one another and spread function blocks over large
address ranges in the binary. To make matters worse, Yoda’s Protector and
other packers fragment the basic blocks of some of their functions into
chunks of only one or two instructions and spread these around the code
section of the binary.

Since a program basic block is defined as a sequence of instructions



38

with a single entry point and a single exit point, one might assume that
basic blocks cannot overlap each other. However, in dense variable-length
instruction sets such as IA-32, valid instructions can overlap when they
start at different offsets and share code bytes (see Figure 2.4). Since the
overlapping code sequences share the same code range but not the same
instructions, they constitute separate basic blocks if the program’s control
flow is arranged such that each of the overlapping blocks can execute.
Basic-block overlap is frequently dismissed as being too rare to be of any
real concern, yet we have observed it in 3 of the 12 obfuscation tools in our
study and in a custom obfuscation employed by the Conficker worm. The
primary purpose of overlapping basic blocks in packed binary code is to
trip up analysis tools that do not account for this possibility [79, 123] and
to hide code from the analyst, as most disassemblers will only show one
of the overlapping code sequences.

Approaches Function-block interleaving makes it difficult for analysts
to view a whole function at once, as most disassembly tools show code
in a small contiguous range. Ida Pro is a notable exception; it statically
analyzes binary code to build a control-flow graph and can show the func-
tion’s disassembly structured graphically by its intraprocedural CFG [52].
Unfortunately, Ida Pro does not update its CFG as the program executes,
and therefore it does not produce CFG views for code that is hidden from
static analysis (e.g., by means of code-packing, code-overwriting, control-
flow obfuscations, etc.). With regard to the problem of overlapping basic
blocks, some analysis tools do not account for this possibility and therefore
their data structures make the assumption that zero or one basic blocks
and instructions correspond to any given code address [79, 123]. Since
multiple blocks and instructions may indeed map to any given address
(see Figure 2.4), tool data structures should be designed to account for this
possibility.



39

Code Comprehension

Despite the existence of many tools that automate important analysis tasks,
human analysts spend a lot of time browsing through binary code. Build-
ing on the analysis tasks of previous sections, the analyst recovers the
program’s machine-language instructions and views them as assembly-
language instructions or decompiled programming-language statements.
The visual representation of the code itself is often supplemented by views
of reconstructed programming-language constructs such as functions,
loops, structs, and variables. By using an interactive debugging tool like
IdaPro [52] or OllyDbg [128], the analyst can view the program’s disassem-
bly and interact with the program’s execution, either by single-stepping
the program’s execution, patching in breakpoints, modifying sequences
of code or data, or tracing its behavior at single-instruction granularity.

In this section we discuss obfuscations that directly affect a human
analyst’s ability to understand binary code. In previous sections, we pre-
sented several obfuscations that impact code comprehension, but focused
on their other anti-analysis effects; we proceed by summarizing their ef-
fects on code comprehension before moving on to new techniques. First,
packed and self-modifying binaries contain dynamic code that is difficult
for analysts to think about, as most programs do not change over time.
Furthermore, since the dynamic code in these binaries is not amenable
to static analysis, structural analyses of their code and data may not be
available. Second, obfuscations that target disassembler techniques intro-
duce gaps and errors in the disassembly, frequently forcing the analyst to
correct these errors through tedious interactions with a disassembler tool.
Furthermore, fuzz-testing techniques that confuse weak disassemblers
are even more likely to confuse analysts that have to make sense of the
unusual instructions. Finally, unusual function layouts and obfuscated
function boundaries make it hard to identify functions and their relation-
ships to one another, which is bad for the analyst, as code is easiest to



40

Not obfuscated Obfuscated
mov ecx, 0x294a mov ecx, 0x410c4b

sub ecx, 0x40e301

Not obfuscated Obfuscated
mov ebp, -0xab7 call <next>

pop ebp
sub ebp, 0x40e207

Not obfuscated Obfuscated
mov edi, <OEP> mov edi, ptr[eax+a4]

rol edi, 7

Figure 2.5: Simple examples of program-constant obfuscations taken from
metacode produced by the Yoda’s Protector packer. In each case, the packer
simulates the behavior of a simple instruction and constant operand with
a sequence of instructions that obfuscate the constant, thereby slowing
down the analyst.

understand when it is structured the way it is written, viz., in functions
with well-defined interactions.

The remainder of this section presents additional obfuscations that im-
pact code-comprehension. We begin with machine-language instructions
whose constant operands are obfuscated, then discuss calling-convention
violations, and conclude by describing the role of do-nothing code in
obfuscated programs.

Obfuscated constants

Half of the packers we have studied obfuscate some constants in machine
language instructions, and a third of the packers obfuscate constants exten-
sively. The constant that packers most-frequently obfuscate is the address
of the original entry point of the payload binary. Obfuscated uses of the
OEP address make it harder for analysts to reverse-engineer packer boot-



41

strap code by packing a binary of their choice for which they know the
OEP address beforehand, and then searching for the known OEP address
in the program’s code and data. The degree of obfuscation applied to the
OEP and other program constants ranges from simple examples like those
of Figure 2.5 to more elaborate encryption algorithms.

Approaches Constant obfuscations make the code harder to understand,
with the goal of slowing down analysts that try to make sense of the pro-
gram’s instructions. Fortunately, decompiler tools resolve many constant
obfuscations while aiding code comprehension generally [55, 122]. In
the process of creating programming language statements from machine-
language insructions, decompilers translate the instructions into an in-
termediate representation on which they apply basic arithmetic rules
(a restricted form of symbolic evaluation) to reduce complex operations
into simpler forms [15]. This approach produces programming language
statements from which constant obfuscations that do not involve memory
accesses are eliminated. Unfortunately, current decompilers do not work
on code that is dynamically unpacked at runtime, so the analyst must first
reverse engineer the program such that dynamically unpacked code is
statically present in the rewritten binary. For programs that do not employ
the anti-unpacking techniques that we will discuss in Section 2.2, there
are general-purpose unpacking tools that may be able to automate the
reverse-engineering task [13, 127]. However, for binaries that do employ
anti-unpacking, the analyst must reverse-engineer the binary by hand
and must therefore manually de-obfuscate uses of the OEP address. In
these situations, analysts de-obfuscate constants using techniques that are
more manual-labor intensive, such as using a calculator program to do
arithmetic or an interactive debugger to force the obfuscated instructions
to execute.



42

Calling-convention violations

Calling conventions standardize the contract between caller functions and
their callees by specifying such things as where where to store function
parameters and return values, which of the caller/callee is responsible for
clearing parameter values from the call stack, and which of the architec-
ture’s general-purpose registers can be overwritten by a called function.
Though there are many calling conventions for the x86 platform [46], pro-
gram binaries usually adhere to a single set of conventions and analysts
can quickly adapt to new conventions. This is not as true of aggressively
optimized binaries, which ignore many standardized conventions and can
be nearly as hard to analyze as deliberately obfuscated code.

There is a great deal of stylistic variety in the metacode used by packer
tools to bootstrap payload code into memory and obfuscate the bina-
ries that they produce. Thus, while packed programs may contain some
compiler-generated metacode that adheres to standard calling conven-
tions, nearly all of them contain code that does not. For instance, metacode
functions frequently operate directly on register values rather than adher-
ing to convention-defined locations for parameter lists and return values.
Though this is also true of some optimized code, packer metacode takes
things a step further by sometimes making branching decisions based
on status-register flags set by comparisons made in a called function. In
this instance, the called function is effectively storing a return value in
the x86 status register; we do not believe there to be any standard calling
conventions or compiler optimizations that do this.

The lack of standardized conventions causes problems for analysis
tools and human analysts that have built up assumptions about calling
conventions based on compiler-generated code. For example, a human
analyst may incorrectly expect certain register contents to be unmodified
across function call boundaries. Similarly, for the sake of efficiency, binary
instrumentation tools may modify a function in a way that flips status-



43

register flags based on the assumption that those flags will not be read by
callers to that function. This assumption is safe for compiler-generated
code, but not for packer metacode, where instrumenting based on this
assumption may unintenionally alter the program’s behavior.

Approaches Though assumptions based on calling conventions allow
tools like disassemblers and instrumenters to make significant improve-
ments in such metrics as code coverage [54, 62] and instrumentation effi-
ciency [57], these assumptions limit their tools’ applicability to obfuscated
code. Analysis tools that work correctly on obfuscated code usually deal
with calling-convention violations by using pessimistic assumptions at
function boundaries. For example, many binary instrumenters make the
pessimistic assumption that no register values are dead across function
boundaries (e.g., DIOTA [73], DynamoRIO [14], PIN [70]).

Do-nothing code

Most obfuscation techniques protect sensitive code from analysis and
reverse engineering by making the code hard to access or understand.
Do-nothing code is an alternative strategy that hides sensitive code by
diluting the program with semantic no-ops. As this do-nothing code must
appear to do useful work to attract the analyst’s attention, it is usually
heavily obfuscated. An alternative method of distracting the analyst from
important code is the use of “do-little” rather than actual do-nothing code.
This may include calculating a value that is used for some later compu-
tation in a roundabout way. Do-little code has the benefit of preventing
the analyst from ignoring or even eliding the obfuscated code from the
program’s execution. Do-nothing code and do-little code are most useful
in packers with small bootstrap code sizes, as the larger “protector” tools
already contain so much code that is solely designed to cause problems
for analysis tools that the code that is actually responsible for unpacking



44

is already a very small fraction of the packer metacode. PolyEnE and
most other packers that employ this strategy usually make the inclusion
of do-nothing code optional, since many users of packer tools wish their
packed binaries to be small.

Approaches Christodorescu et al. developed techniques to detect seman-
tic nops in malware programs and remove them, by rewriting the binary
into a “normalized” form [22]. Their techniques also normalize control-
flow graphs that have been chunked into tiny basic blocks and they ac-
count for a single layer of code packing, but do not account for common
defensive techniques such as code overwriting, multi-layer packing, and
anti-patching (see Section 2.2).

Do-nothing code that never executes can sometimes be eliminated by
the malware normalization techniques that Bruschi et al. built into the
Boomerang decompiler [15]. They operate on Boomerang’s intermediate
representation of the code, to which they apply arithmetic rules that reduce
the conditional predicates of some branch instructions to “true” or “false”.
Having identified branches that always take one path, they eliminate the
other path from the program. Unfortunately, decompilers do not work
on packed code, so this technique requires that packed binaries first be
reverse engineered into an unpacked state, as described in Section 2.2.

Malware analysts can avoid studying do-nothing code by starting from
a high-level summary of program behavior (e.g., a log of Windows API
[127] or system calls [105]) and then using this summary to focus in on the
interesting parts of the code. This technique is successful when do-nothing
code and do-little code are not embedded into code that is of interest to
the analyst.



45

Code Patching

Code-patching techniques support a variety of dynamic analysis tasks by
modifying and adding to the program’s code and data bytes. In particular,
malware analysts often use code-patching techniques to monitor malware
binaries at a coarse granularity, most often by modifying the entry points
of system libraries to log the malware’s use of Windows API functions
[7, 58, 124, 127]. Fine-grained studies of the program’s execution are no less
common, and frequently involve the use of code patching to implement
software breakpoints in interactive debugger programs like Ida Pro.

On the x86 platform, the software-breakpoint mechanism works by
overwriting the instruction at the breakpoint address with a single-byte
int3 breakpoint instruction. When the int3 executes, it interrupts the
program’s execution and alerts an attached debugger process (or exception
handler) of the event. The debugger process (or the analyst’s exception
handler) then performs the desired analysis task and removes the break-
point so that the program can continue its execution. Because software
breakpoints have a large execution-time cost, analysts frequently modify
binary code by patching the code with jump instructions instead of int3
instructions [57, 58]. This technique allows tools to jump to analysis code
and back again with little execution-time overhead, but is harder to imple-
ment correctly and cannot always be used, as x86 long-jump instructions
are 5 bytes long and may overwrite multiple original instructions and
basic blocks.

Code patching techniques can be applied statically, to the binary file,
or dynamically, to the program binary’s image in memory. Statically
applying code patches to malware binaries is difficult because they are
usually packed, meaning that the only code in the binary file that is not
compressed or encrypted is the packer bootstrap code. Though dynamic
patch-based techniques are a better fit for most malware, even dynamic
techniques are not readily applied to programs that resist code patching



46

with the stolen-bytes and self-checksumming techniques that we describe
in this section.

Stolen bytes

Figure 2.6b illustrates the stolen-bytes technique pioneered by the AS-
Protect packer, which circumvents patch-based tracing of shared-library
functions. Patch-based tracing of binary functions typically involves re-
placing the first instruction of the function with an int3 or jmp instruction
that transfers control to instrumentation code [57, 58, 127]. The stolen-
bytes technique bypasses the patched entry point by creating a copy of
the library function’s first basic block and routing the program’s control
flow through the copy instead of the original block. Since this technique
must read from the shared library to “steal” the first basic block from the
imported function, the byte stealing occurs at run-time, after the shared li-
brary has been loaded and calls to the imported function have been linked
through the Import Address Table. This technique must therefore modify
calls to the imported function so that they target the “stolen” copy of the
function’s entry block. As shown in the figure, ASProtect achieves this
by overwriting calls that get their targets from IAT entries with calls that
directly target the stolen block; other packers achieve the same effect by
writing the stolen block’s address into the imported function’s IAT entry,
thereby allowing them to leave the original call instructions intact. The
packer completes the detour by pointing the control transfer that ends the
stolen block at the subsequent blocks of the library function.

Approaches Tools that instrument Windows API functions with patch-
based techniques (e.g., CWSandbox [124], Detours [58], TTAnalyze [7])
face one of two problems when instrumenting malware that use the stolen-
bytes technique, depending on whether the byte-stealing happens before
or after the instrumenter patches the API functions. If the byte-stealing



47

bufferbuffer

kernel32.dll kernel32.dll

malware.exe

Import Address Table

kernel32.dll

.loadlibrary

…
call ptr [IAT‐entry]

kernel32.dll 
loadlibrary

…

mov edi, edi
push ebp
mov ebp, esp
cmp ptr[ebp+8],0

…

malware.asprotect.exe

Import Address Table

…
call buffer.stolen

kernel32.dll 
loadlibrary

…

malware.armadillo.exe

Import Address Table

…
call ptr [IAT‐entry]

buffer
tampercheck

…

.loadlibrary
mov edi, edi
push ebp
mov ebp, esp
cmp ptr[ebp+8],0

…

.loadlibrary
mov edi, edi
push ebp
mov ebp, esp
cmp ptr[ebp+8],0

…

mov edi, edi
push ebp
mov ebp, esp
cmp ptr[ebp+8],0

.stolen
checksum 

.tampercheck

timing check

(a) (b) (c)

Figure 2.6: Packed programs may interpose on inter-library calls origi-
nating from their packed payload to resist reverse-engineering and code-
patching techniques. In a non-packed program, as in part (a), calls to
functions in shared libraries use indirect call instructions to read their
targets from Import Address Table entries. Part (b) illustrates ASProtect’s
implementation of the stolen-bytes technique, which evades binary instru-
mentation at the entry points of functions in shared libraries by making
a copy of the first block of an imported function and redirecting the call
instruction to point at the “stolen” block. Part (c) illustrates Armadillo’s
method of hooking inter-library calls by replacing IAT addresses with the
address of an Armadillo function that performs anti-tampering techniques
before forwarding the call on to its intended destination.



48

occurs first, the instrumenter’s code patches will have no effect on the
program’s execution, as the Windows API function’s patched first block
will not execute. If the code-patching occurs first, however, the packer’s
byte-stealing code will steal the patched code block instead of the original
code block. In this case, if the tracing techniques have used an int3
instruction, the packer will steal the int3 instruction and copy it to a
new address, resulting in a trap at an unexpected address that current
patch-based techniques would not handle correctly.

There are alternative instrumentation and program-monitoring tech-
niques that do not rely on code patching. For example, analysts can avoid
triggering anti-patching techniques by tracing or instrumenting the code
with tools that do not patch the binary code and instead use just-in-time
binary translation techniques to execute and instrument the monitored
programs (e.g., DIOTA [73], DynamoRIO [14]). However, these techniques
can still be detected because they allocate extra space for instrumentation
code in the program’s address space that would not normally be there
[11]. One avenue through which analysts have avoided this problem is
by building on tools that apply binary translation techniques to the entire
monitored system (e.g., Qemu [8] provides the foundation for several
malware analysis tools [7, 21, 76]). Whole-system monitoring has also
been achieved with tools that extend virtual machine hypervisors [37].
Though it is not possible to monitor malware’s execution in a provably
undetectable way [37], whole-system monitoring comes close to this goal,
with the added benefit that executing the malware in a virtual machine
allows the infected guest system to be rolled back to a clean checkpoint.
The primary drawback of whole-system monitoring is that the monitoring
tool sits outside of the guest system and must employ virtual machine
introspection techniques to make sense of what is happening inside the
guest. Emerging introspection tools such as LibVMI [89], which origi-
nated as the XenAccess project [90], perform the necessary introspection



49

techniques for 32-bit Windows and Linux guest systems, but may not be
compatible with other monitoring tools.

Self-checksumming

Many packed binaries verify that their code has not been tampered with by
applying self-checksumming techniques [3]. These packers take a check-
sum over the program’s code bytes and then recalculate that checksum
at run-time to detect modifications to portions of the program’s code or
data. In most self-checksumming attempts, the packer checksums its own
packer bootstrap code to detect attempts to reverse-engineer the binary
unpacking process (e.g., ASProtect). Some packers also checksum the pro-
gram’s payload once it has been unpacked, to protect it from tampering
and reverse-engineering (e.g., PECompact). Packers may also checksum
the program binary file to protect the integrity of both the packer meta-
code and the packed payload code (e.g., Yoda’s Protector). Finally, packers
often read from their own code without explicitly intending to perform
self-checksumming. For example, the stolen-bytes technique reads binary
code to “steal” code bytes at function entry points. In other cases, code
overwrites work by modifying instructions relative to their current value.
Finally, even conventional optimizing compilers read from code when
they generate instructions that grab constants from nearby code bytes that
happen to match a needed value, thereby obtaining some modest savings
in overall code size.

Approaches The standard method of defeating self-checksumming tech-
niques (pioneered by Wurster et al. [125]) is to redirect all memory access
instructions at an unmodified shadow copy of the program’s code bytes,
while executing patched code bytes. Wurster et al. accomplished this by
modifying the operating system’s virtual memory management so that
the instruction TLB caches patched code pages while the data TLB caches



50

shadow code pages. Rosenblum et al. showed that the same technique can
be achieved with a modified virtual machine monitor [100]. This shadow-
memory-based approach becomes more difficult for programs that unpack
or overwrite their code at run-time, however, as the dynamically written
code bytes must be present in execution-context memory so that they can
execute [48].

Unpacking

Analysts often engage in binary unpacking to subject packed code to static
code patching and analysis techniques. Binary unpacking is a reverse-
engineering task with two major subparts: reconstructing an executable file
that captures dynamically unpacked code and data bytes, and bypassing
the metacode that the packer tool bundles into the packed payload binary.
The difficulty of accomplishing these unpacking tasks ranges widely from
packer to packer; some binaries can be readily unpacked by automated
tools [13, 127], while others are extremely difficult to unpack, even for
expert analysts. In simple cases, binary unpacking involves identifying
the payload code’s original entry point and executing the program until
it jumps to the OEP, by which time the packer’s bootstrap code is done
executing and the binary has been unpacked; at this point the analyst can
copy the program’s payload of unpacked code and data bytes from the
program’s memory image into a reconstructed program binary. For simple
packers, the packer metacode consists entirely of bootstrap code and can
be bypassed by setting the reconstructed binary’s entry point to the OEP.
The last step in constructing a working executable is to rebuild the payload
binary’s imported function data structures so that the Windows loader
can link up calls to imported functions.

Since many customers of packer tools wish to prevent these reverse-
engineering efforts, most binary packers take steps to counter them. In
Section 2.2 we discussed defensive techniques that attack the code extrac-



51

tion task and in this section will focus on techniques that make packer
metacode difficult to bypass. We describe the anti-unpacking techniques
used by the 12 tools of this study; for a broader discussion of possible
anti-unpacking techniques we refer the reader to Peter Ferrie’s surveys on
the topic [44, 45].

Anti-OEP finding

Since finding the original entry point of the packed binary is such a crucial
step in the reverse-engineering process, most binary packers thoroughly
obfuscate their bootstrap code, with special emphasis on hiding and obfus-
cating the control transfer to the OEP. Common techniques for obfuscating
this control transfer include indirect control flow, call-stack tampering,
exception-based control flow, and self-modifying code. The control trans-
fer is often unpacked at run-time, and in some cases (e.g., ASProtect) the
code leading up to the control transfer is polymorphic and unpacked to a
different address on each execution of the same packed binary. To counter
known cipher-text attacks based on the first instructions at the program’s
OEP, the packer may scramble the code at the OEP so that it is unrecog-
nizable yet functionally equivalent to the original (e.g., EXEcryptor).

Approaches In the early days of the code-packing technique, there were
a few dozen packers that security companies had to be able to unpack,
and they often resorted to manual-labor intensive techniques to generate
custom unpacker tools for specific packers [12, 117, 126]. For many packer
tools, the control transfer to the OEP is the same for all packed binaries
that the tool creates, and finding the control transfer to the OEP is instru-
mental in creating unpacker tools for other binaries created by the same
packer. However, recent developments have made this custom unpacking
approach increasingly untenable. The first problem is the emergence of
polymorphic packer tools that generate a different control transfer to the



52

OEP each time they pack a binary. Things get even more problematic for
packer tools that place a polymorphic code generator in the packed binary
itself, because different executions of the same binary unpack different
control transfers to the OEP. Both of these polymorphic techniques make
custom unpacker tools hard to generate, but the biggest obstacle for this
approach came in 2008, when the percentage of packed malware binaries
that used customized and private packing techniques rose to 33% of the
total [17, 18]. Since then, work by Coogan et al. and Debray and Patel has
made strides towards automating custom-unpacker creation by extracting
packer routines from packed programs [28, 35]. The sheer number of
unique packing approaches means that their techniques are probably not
well-suited for anti-virus tools, but they could be used for offline forensic
analysis once the techniques have been shown to work on broad collections
of real-world malware.

Malware analysis tools have largely switched to employing a variety
of general-purpose unpacking techniques that find the OEP of packed
programs with principled heuristics. The most reliable heuristics select the
OEP transfer from among the set of control transfers into dynamically writ-
ten memory regions. This set of control transfers can be large for packed
binaries that unpack in multiple stages, especially if the unpacker tool
tracks written regions at a coarse granularity. For example, the Justin [53]
and OmniPack unpackers [74] track writes at a memory-page granularity,
and detect thousands of false-positive unpacking instances for packers that
place code and writable data on the same memory pages. Pandora’s Bochs
[13], selects among control transfers to written memory by assuming that
the last of these control transfers is the control transfer to the OEP. The
Justin unpacker instead filters out false OEP transfers by checking that
the stack pointer is the same as it was at the start of the packer’s run (this
heuristic fails on Yoda’s Protector), and that command-line arguments
supplied to the packed program are moved to the stack prior to the OEP



53

control transfer. Though these heuristics are based on sound principles, it’s
worth noting that many packer programs have adapted to evade similar
heuristics in the past.

Payload-code modification

The second challenge of anti-reverse-engineering is preventing the analyst
from bypassing the defensive metacode that the packer tool places in
the binary. The metacode of most packed binaries is easily bypassed
because it only serves to bootstrap the packed payload into memory and
never executes again after transferring to the payload’s OEP. For these
packed binaries the metacode is redundant once the binary has been
reverse-engineered such that the unpacked code is statically present and
the original Import Address Table has been reconstructed, so the analyst
can set the modified binary’s entry point to the OEP and the binary will
only execute payload code.

To counter this reverse-engineering technique for bypassing packer
metacode, most members of the “protector” class of packer tools modify
the packed payload with hooks that transfer control to their metacode
so that the metacode executes even after the control transfer to the OEP.
The easiest place to insert hooks to metacode callback routines is at inter-
library calls. This hooking technique involves replacing imported function
addresses in the Import Address Table with the callback addresses, as
shown in Figure 2.6c. The callback metacode may perform timing checks
or probe the binary to detect tampering prior to transferring control to the
imported function corresponding to the IAT entry (e.g., Armadillo).

The IAT-hooking technique is attractive because it requires no modifi-
cation to the payload code itself, though some packer tools do disassemble
the payload code and modify it. For example, rather than modifying IAT
entries, ASProtect replaces the indirect call ptr[<IAT-entry>] instruc-
tions by which compilers reference the IAT with direct calls to ASProtect



54

metacode callbacks, as seen in Figure 2.6b. To make matters worse, AS-
Protect and Armadillo place these callbacks in memory buffers allocated
by the VirtualAlloc Windows API function that are outside of the binary’s
memory image. By so doing, they ensure that reverse-engineering tech-
niques that only capture code in the binary’s memory image will miss the
metacode callbacks and any stolen code bytes that they contain.

Obfuscating compilers provide yet another method of inserting post-
OEP metacode (e.g., Armadillo and Themida provide plugins to the Visual
Studio compiler). These compilers add metacode to the payload program’s
source code with source-code instrumentation techniques that are far
easier to implement than their binary-instrumentation counterparts.

Approaches We are unaware of any generally applicable techniques that
automate a solution to the problem of removing payload-code modifica-
tions. Reverse-engineers manually reconstruct IAT entries that have been
replaced by pointers to metacode wrapper routines by tracing through
the wrapper to discover the originally targeted function address. This
technique may be possible to automate, but would need to account for tim-
ing checks and self-checksumming techniques in the metacode wrapper
routines. An alternative technique is to modify the packer bootstrap code
that fills IAT entries with the addresses of metacode-wrapper routines
instead of the addresses of imported functions. This technique requires
that the analyst identify and patch over the wrapper-insertion code with
code that fills in legitimate IAT entries. While some analysts do adopt this
technique, it requires significant reverse-engineering expertise and is not
easily automated.

Because of these difficulties in reverse-engineering packed binaries in
the general case, most unpacking tools either automate only some parts
of the unpacking process [37, 51, 60], create unpacked binaries that are
amenable to static analysis but cannot actually execute [22, 127], or work



55

only on a subset of packed binaries [13, 28, 35].

2.3 Obfuscation Statistics

We now proceed to quantify the prevalence of code obfuscations to show
which of the obfuscations are most prevalent in real-world malware. To
this end, we study 12 of the 15 code-packing tools that, according to a sur-
vey performed by Panda Research [18], are most-often used to obfuscate
real-world malware. We used Dyninst, our binary analysis and instru-
mentation tool [57, 103], to study the obfuscated code that these tools
bundle with the malware binaries that they protect from analysis. The
three packers that we have not yet been able to study with Dyninst are
Execryptor (4.0% market share), Themida (3.0%), and Armadillo (0.4%).
We also omit the Nullsoft Scriptable Install System (3.6%) from this study,
which is a toolbox for building custom installer programs that may or may
not include code packing and obfuscation techniques. Though Dyninst
can analyze Nullsoft-packed binaries, these binaries do not adhere to a
standard set of obfuscations or packing techniques that we can claim to
be representative of the Nullsoft system.

The results of our study are presented in Table 2.1. We sort the packers
based on the market share that they obtained on malware binaries, as
reported by Panda Research. We structure our discussion of these results
by talking about each of the categories of obfuscation techniques in turn,
and conclude with a description of each packer tool.

Dynamic Code: All of the tools in Table 2.1 pack the code and data
bytes of the binary that they obfuscate through compression or encryption.
As seen in the row A1 of the table, most of these binaries unpack in multiple
stages. We estimate the number of unpacking stages by considering each
control transfer to code bytes that have been modified since the previous
stage to be a new stage. We categorize events of unpacked code overwriting



56

Table 2.1: Packer statistics

UPX

polyEnE
UP

PE

ack

Compact

PEtite
ac

nP
k

ASPack
FSG ac

Nsp
k

ASP
te

Y

ro
ct

oda's Protector W
M
E

Malware market share * 9.5% 6.2% 2.3% 2.6% 2.5% 1.7% 1.3% 1.3% 0.9% 0.4% 0.3% 0.1%

Bootstrap code size in kilobytes 0.4 1.1 1.0 5.8 5.2 2.6 3.3 0.2 4.8 28.0 10.2 1.5

% obfuscated size of 48KB payload 46% 63% 42% 50% 73% 56% 54% 46% 46% 350% 100% 46%

D
yn
am

ic
 C
od

e A1 Unpack instances 1 2 2 2 1 2 2 1 2 4 5 3

A2 Overwrite instances 0 0 1 2 0 0 4 0 1 28 10 0

A3 Overwrite byte count 0 0 64 167 0 0 179 0 194 1126 9889 0

A4 Overwrite of executing function 0 0 1 0 0 0 0 0 0 12 4 0

O
bf
us
ca
te
d 
In
st
ru
ct
io
ns B1 % of calls that are indirect 83% 75% 95% 44% 11% 28% 30% 92% 18% 7% 5% 28%

B2 Count of jumps that are indirect 0 0 0 0 0 0 1 1 0 69 45 0

B3 Non‐standard uses of ret instruction 0 0 1 1 0 0 4 0 0 83 25 0

B4 Non‐standard uses of call instruction 1 4 0 24 0 2 2 1 2 60 85 0

B5 Obfuscated constants

B6 Fuzz‐Test: unusual instructions

C1 Functions share blocks 0 0 4 0 0 0 0 0 0 43 0 0

C2 Blocks share code bytes 0 10 0 0 0 0 0 0 0 6 1 0

Co
de

 L
ay
ou

t

C3 Interleaved blocks from different funcs 0 0 1 14 0 4 1 4 16 52 2 1

C4 Function entry block not first block 0 0 0 0 0 0 1 0 0 10 3 1

C5 Inter‐section functions

C6 Inter‐object functions

C7 Code chunked into tiny basic blocks

C8 Anti‐linear disassembly

C9 Flags used across functions

C10 Writeable data on code pages

C11 Fuzz‐Test: fallthrough into non‐code

A
nt
i‐R

ew
rit
in
g

D1 Code bytes in PE header 0 0 102 0 0 0 0 158 0 0 0 182

D2 Code unpacked to VirtualAlloc buffer 0 0 0 1 0 0 0 0 2 3 0 0

D3 Polymorphism engine in packer tool

D4 Polymorphism engine in packed binary

D5 Checksum of binary file

D6 Checksum of malware payload

D7 Checksum of packer bootstrap code

A
nt
i‐T

ra
ci
ng

E1 Exception‐based control transfers 0 0 0 1 0 0 0 0 0 1 8 0

E2 Windows API callbacks to packer code 0 0 0 2 0 0 0 0 2 0 89 0

E3 Metacode uses WinAPI funcs not in IAT

E4 Timing check

E5 Anti‐Debug: via WinAPI calls

*  As determined by PandaLabs in 2008 study:  http://pandaresearch.wordpress.com/2008/03/19/packer‐revolution/



57

existing code as code overwrites rather than instances of code unpacking,
and list counts of these overwrites in row A2. We observed overwrite sizes
that ranged from a single instruction opcode byte to an overwrite of an
8844 byte range that consisted almost entirely of code. In the latter case,
Yoda’s Protector was hiding its bootstrap code from analysis by erasing
it after its use. As shown in the row A3, some obfuscated programs
overwrite the function that is currently executing or overwrite a function
for which there is a return address on the call stack. Both cases are tricky
for instrumenters, which must update the PC and fix any control transfers
to dead instrumented code so that the new code will execute instead
[72, 103].

Instruction Obfuscations: Indirect calls are fairly common in compiler-
generated code, but most compilers use them only for function pointers,
usually to implement virtual functions or inter-library calls. As seen in
row B1 of Table 2.1, indirect control transfers are extremely prevalent in
some packers, but not in others. In row B2 we see that indirect jumps
are not used by most packers but that ASProtect and Yoda’s Protector
use them extensively. The ret instruction is a form of indirect jump that
several packers use in non-standard ways to obfuscate their control flow
(row B3). Call instructions are misused even more frequently, in which
case they are usually paired with a pop instruction somewhere in the
basic block at the call target (row B4). Another common obfuscation is the
obfuscation of instruction constants, especially for constants that reveal
critical information about the packing transformation, for example, the
address of the program’s original entry point (row B5). In row B6, we
show that some of these packers fuzz test analysis tools by including
rarely used instructions that malware emulators may not handle properly,
such as floating point instructions. ASProtect’s fuzz-testing is particularly
thorough in its extensive use of segment selector prefixes on instructions
that do not require them.



58

Code Layout: Though compilers occasionally share code by inlining
or outlining code sequences that are used by multiple functions, some
packed malware programs do so aggressively, as seen in row C1. On the
other hand, compilers do not exploit the dense variable-length x86 instruc-
tion set to construct valid overlapping instruction streams as malware
sometimes does (row C2). These sequences are necessarily short, and are
not particularly useful, but serve to break the assumptions made by some
analysis tools [62, 79]. Code sharing can result in some interleaving of
blocks from different functions, but not to the extent by which packers
like ASProtect and EXEcryptor interleave function blocks all across large
code sections (row C3). These strange function layouts break the common
assumption that the function entry block is also the block at the smallest
address (row C4). To make matters worse, packer function blocks are
frequently spread across code sections (row C5) and even across code
objects (row C6), in which case part of the code is often in a memory buffer
created by a VirtualAlloc Windows API call. In portions of several obfus-
cated binaries, basic block lengths are reduced by chunking the blocks
into groups of two or three instructions, ending with a jump instruction
to the next tiny code chunk (row C7). The purpose of this code chunking
is sometimes to thwart the linear-sweep disassemblers that are used by
many interactive debuggers (e.g., OllyDbg) and disassembly tools (e.g.,
Objdump). Linear-sweep disassemblers get confused by the padding bytes
that packers put in-between the chunked basic blocks to hide the actual
instructions from the disassembler (row C8). Another prevalent charac-
teristic of obfuscated code is that the contracts between calling functions
and called functions are highly nonstandard. A good example of this is
when a called function sets a status flag that is read by the caller, which
is something that x86 compilers never do, even in highly optimized code
(row C9). Similarly, compilers avoid placing writable data on code pages,
since this has dangerous security implications, whereas obfuscated pro-



59

grams do this extensively (row C10). Finally, several obfuscators fuzz-test
recursive-traversal parsers by causing them to parse into non-code bytes.
They do this either by including junk bytes on one edge of a conditional
branch that is never taken [26], or more often, by causing control flow to
fall through into bytes that will be decrypted in place at runtime (row
C11).

Anti-Rewriting: Analysts frequently try to rewrite packed binaries to
create versions that are fully unpacked and bypass the obfuscated boot-
strap code. One way in which packed binaries make this task challenging
is by placing code in strange places, such as the Portable Executable file
header and in buffers that are created by calls to the VirtualAlloc Windows
API function. Row D1 of this table section shows that the UPack, FSG, and
MEW packers put code in the PE header where it will be overwritten by
a binary rewriter if it replaces the PE header. The code in VirtualAlloc
buffers can easily be missed by the rewriting process, and since ASProtect
places payload code in these buffers using the stolen bytes technique, the
program will crash if the code in these buffers is not preserved by the
rewriting process (row D2). Polymorphism is also a problem for binary
rewriting because polymorphic packer tools produce different packed
binaries each time they pack the same payload executable (row D3). To
make matters worse, ASProtect and other packer tools (e.g., Themida)
include a polymorphic unpacker in the packed binaries themselves, so
that the same packed binary unpacks different bootstrap code and adds
different obfuscations to the program’s payload code (row D4). Finally,
some packers use self-checksumming to detect modifications to their code.
Checksums are most-often calculated over the packed program’s boot-
strap code (row D5), though they are sometimes also calculated over the
unpacked payload code (row D6) and over the packed binary file itself
(row D7).

Anti-Tracing: Tracing techniques are commonly used to study the



60

behavior of obfuscated programs, and may be collected at different gran-
ularities, ranging from instruction-level traces to traces of Windows API
calls, and system calls. Some packers resist tracing with exception-based
control transfers, which obfuscate the program’s control flow and cause
errors in emulators that do not detect fault-raising instructions and handle
exceptions properly (row E1). For normal binaries, analysts look at the
Import Address Table data structure to determine which Windows API
functions are used by the program [58], but most malware binaries circum-
vent the IAT for many of their Windows API calls (row E2), limiting the
effectiveness of this strategy. Timing checks are used by such packers as
Yoda’s Protector, Armadillo, and Themida, to detect significant slowdowns
that are indicative of single-step tracing or interactive debugging. Finally,
in the last table row we list packed programs that use Windows API calls
to detect that a debugger process is attached to their running process.

Packer Personalities

We now supplement the statistical summary of each packer tool in Table
2.1 with a description of the prominent characteristics of each tool. We
organize the list of packers by increasing size of their bootstrap code, but
as seen in line 3 of Table 2.1, bootstrap size is not necessarily indicative of
the size of the binaries that the packers produce, nor is it always indicative
of the degree of obfuscation present in the packer metacode.

FSG (158 bytes): The Fast, Small, Good EXE packer’s goals are stated
in its name. Its metacode code is fast and small (its 158 bytes of metacode
make it the smallest packer in our list), and it offers fairly good compres-
sion ratios considering its tiny size. FSG achieves a significant degree of
obfuscation in its pursuit of compactness, using unusual instructions and
idioms that make its bootstrap code much harder to analyze than its 158
bytes would seem to indicate. A good example of this is a 7-byte code
sequence in which FSG initializes its registers by pointing the stack pointer



61

at the binary and executing a popad instruction. These techniques make
FSG’s bootstrap code small enough to fit comfortably in the one-page
section that contains the Windows Portable Executable (PE) header.

UPX (392 bytes): The Ultimate Packer for eXecutables is notable for
offering the broadest coverage of hardware platforms and operating sys-
tems, and is among the few packer tools that are open sourced. Somewhat
surprisingly, UPX is the most popular packer tool with malware authors
despite its lack of any obfuscation beyond what is afforded by the code-
packing transformation itself. Among the contributing factors for UPX’s
popularity are its early arrival on the packing scene and the ease with
which custom packers can be derived from its open-source code, like the
UPX-based packer that was used to pack Conficker A [95].

UPack (629 bytes): The UPack packer manages to consistently generate
the smallest packed binaries of any tool we have studied, while including
several nasty obfuscation techniques. The UPack authors repurpose non-
essential fields of the binary’s PE and DOS headers with extraordinary
effectiveness, stuffing them with code, data, function pointers, and the
import table, and even causing the DOS and PE headers to overlap. These
PE header tricks cause robust binary analysis tools such as IdaPro and
OllyDbg to misparse some of the PE’s data structures. Meanwhile, its
strange function layouts and code overwrite techniques cause problems
for other types of analysis tools.

PolyEnE (897 bytes): PolyEnE is widely used by malware for its ability
to create polymorphic binaries: each time a binary is packed it uses a
different cipher on the encrypted payload bytes, resulting in changes to
the bootstrap code itself and to the encrypted bytes. PolyEnE also varies
the address of the Import Table and the memory size of the section that
contains the bootstrap code.

MEW (1593 bytes): MEW employs several tricks that save space while
causing problems for analysis tools: it employs two unpacking stages



62

rather than one, wedges code into unused bytes in the PE header, shares
code between functions, and mixes code and writable data on the same
memory pages.

PECompact (1943 bytes): PECompact provides perhaps the broad-
est array of defensive techniques for a packer that offers good compres-
sion. Notable defensive techniques include its early use of an exception
to obfuscate control flow, as well as its optional incorporation of self-
checksumming techniques to detect code patching.

NSPack (2357 bytes): NSPack also contains a broad collection of de-
fensive techniques. NSPack employs two notable defenses against binary
rewriting in that it only unpacks if its symbol table is empty and it places
the bulk of its bootstrap into a memory buffer that it de-allocates after it
has unpacked the payload code.

nPack (2719 bytes): The bootstrap code of nPack-generated binaries
appears to be mostly compiler-generated, without much emphasis on
compactness. Other reasons for its large bootstrap code are its single
unpacking phase and its support for packing binaries that use thread-local
storage. There is little to no code obfuscation in this packer’s bootstrap
code.

ASPack (3095 bytes): Among the packers whose primary goal is to
provide binary compression, ASPack does the most thorough job of ob-
fuscating its control flow. ASPack tampers with the call-stack, uses of
call and ret instructions for non-standard purposes, and overwrites an
instruction operand at run-time to modify a control flow target.

Yoda’s Protector (9429 bytes): This is the smallest of the “protector”
class of packing tools, most of which are written as for-profit tools de-
signed to present intellectual property from reverse engineering. Despite
its moderate size, Yoda’s Protector employs an impressive array of control-
flow obfuscation and anti-debugging techniques. The author of Yoda’s
Protector wrote the first paper on the use of exception-based control flow



63

for the purposes of binary obfuscation [31], and accordingly, Yoda’s Protec-
tor uses exception-based control transfers more extensively than any other
packer. Of the packer tools we studied with Dyninst, Yoda’s Protector is
the only tool to checksum its binary file or perform timing checks.

ASProtect (28856 bytes): ASProtect’s large bootstrap code shares some
code with ASPack, its sister tool, and its main features are likewise directed
towards control-flow and anti-disassembler obfuscations. For example,
ASProtect causes the program to parse into ASProtect-packed binaries
carry a polymorphic code-generation engine which adds considerably
to the difficulty of automatically reverse-engineering binaries that have
been packed by ASProtect. Reverse-engineering is also made particularly
difficult by ASProtect’s use of the stolen-bytes techniques that it pioneered.

2.4 Summary

As most code obfuscations specifically target static analysis techniques, it is
not surprising that most previous works include strong dynamic analysis
components. The few purely static techniques that have been developed
for obfuscated code analysis have focused on countering the effects of
individual obfuscators [15, 62, 63] and do not account for the breadth of
obfuscation techniques that are often present in a single malware sample.

Most dynamic techniques designed for malware have modest goals
with regards to structural code analysis, focusing instead on instruction-
level instrumentation [37, 70], or on simply capturing the raw bytes in
dynamic code regions for delivery to an anti-virus tool [53, 74], to a reverse-
engineering process that produces an unpacked binary [13, 51, 127], or to
a third-party analysis tool [38, 60].

Of the prior works with dynamic analysis components that do provide
structural code analysis, some do not handle code unpacking and code
overwriting [71], while tools that do build structural analyses do so only



64

after the code has finished executing [1, 39, 127]. Since prior works do
not provide structural analysis of obfuscated code until after its execution,
dynamic tools have not been able to leverage the rich structural analysis
products that are available when analyzing non-defensive binaries.



65

3 static analysis

The purpose of our static parsing techniques is to accurately identify bi-
nary code and analyze its structure. Like most other parsing algorithms,
our techniques produce an interprocedural control flow graph of the pro-
gram, organized into basic blocks and functions. However, most parsing
techniques for obfuscated code have been tailored to specific obfuscations
or obfuscators rather than building approaches for arbitrarily obfuscated
code [62, 63, 120]. The two primary measures of quality of a static pars-
ing technique are that it identifies binary code with good accuracy and
coverage. We prioritize accurate code identification because an incorrect
parse can cause incorrect program behavior by leading analysis tools to
instrument non-code bytes, and is ultimately not very useful to an analyst.
The competing goal of achieving good code coverage through parsing is
less of a priority for us because our dynamic techniques help compensate
for lapses in coverage by capturing statically unreachable code at run-time.

A secondary measure of quality of a parsing technique is whether it
accurately identifies function boundaries. Accurate function-boundary
identification is challenging in obfuscated code, both because call and
ret instructions are sometimes not used at function entry and exit bound-
aries, and because these instructions are sometimes used at non-function
boundaries in place of jmp instructions. In this chapter, we present our
accurate parsing and function-labeling algorithms, which are based on a
combination of recursive control-flow traversal parsing and binary slicing
techniques.

3.1 Accurate Code Parsing

Recursive control-flow traversal parsing [112, 118] is the basis for most ac-
curate parsing techniques, but it makes four unsafe assumptions about



66

control flow that can reduce its accuracy (see Section 2.2). First, it assumes
that function-call sites are always followed by valid code sequences. Com-
pilers violate this assumption when generating calls to functions that they
know to be non-returning, while obfuscated programs (e.g., Storm Worm
[94]) often contain functions that return to unexpected locations by tam-
pering with the call stack. Second, the algorithm assumes that both targets
of a conditional branch instruction can be taken and therefore contain
valid code. Obfuscated programs can exploit this assumption by creating
branches with targets that are never taken, thereby diluting the analysis
with junk code that will never execute [26]. Third, the algorithm assumes
that control flow is only redirected by control transfer instructions. Obfus-
cated programs can use an apparently normal instruction to raise a signal
or exception, thereby transfering control to code that is hidden in a signal
or exception handler. The handler can further obfuscate control flow by
telling the operating system to resume execution away from the signal- or
exception-raising instruction (e.g., Yoda’s Protector [30, 31]), potentially
causing junk code to be parsed following the instruction [93]. Fourth,
the algorithm assumes that the code in the program binary is statically
present. Occasionally this problem is easily recognized, as when the UPX
packer uses a jmp instruction to transfer control into a section of the bi-
nary that is not initialized. More often, however, a packed programs will
decrypt code in place and have control-flow fall through into dynamically
unpacked code regions without executing a control-transfer instruction
(e.g., ASProtect).

In our experience with analysis-resistant binaries, we have found that
by far the most targeted vulnerability is the assumption that code follows
each call instruction. Because of the prevalence of non-returning calls and
call-stack tampering in obfuscated code, we use binary slicing techniques
to help us determine whether call instructions will return. The problem
of branches with targets that never execute is a daunting one because of



67

the ubiquity of the conditional branch instruction, but we have not found
this to be a prevalent problem in packed malware. Even harder to detect
with static techniques are the problems of signal- and exception-based
obfuscations and fall-through transitions into unpacked code, as these
require analysis at every instruction. We also develop lightweight static
techniques that eliminate much of the junk code that would otherwise
be parsed because of these obfuscations. After application of our parsing
techniques, most of the remaining errors in the disassembly are due to
signal- and exception-based obfuscations and in-place code-unpacking,
and are detected and resolved by our dynamic techniques at run-time. We
proceed by discussing our techniques for dealing with non-returning calls,
followed by our additional junk-code avoidance techniques. Our dynamic
techniques are presented in Chapters 4, 5, and 6.

Non-returning calls

When a called function either never returns or returns to an unexpected
location by tampering with the call stack [68], one or more junk bytes
may follow call instructions at call sites to that function. The simplest
approach to dealing with these non-returning calls would be to adopt
the assumption taken by Kruegel et al.’s obfuscated code parser [62], that
function calls never return, and rely on run-time monitoring of return
instructions to discover code that follows call sites (Kruegel et al. used
static compensation techniques). It is preferable, however, to detect non-
returning calls statically as this increases overall code coverage by correctly
analyzing code at call fall-through addresses that might not execute when
we run the program. Thus, we develop static techniques to detect call-stack
tampering, but retain run-time monitoring of return instructions as our
technique of last resort.

We take advantage of the depth-first nature of our parsing algorithm to
use the analysis of called functions in deciding whether or not to continue



68

push ADDR pop ebp
... inc ebp
retn push ebp

retn
(a) (b)

Figure 3.1: Code sequences that tamper with the function’s return value
on the call stack

parsing after call instructions. If our analysis of the called function con-
tains no paths that end in a return instruction, we do not resume parsing
after call sites to the function. If the called function does contain return
instructions, we perform static call stack analysis [63, 69, 108] on the called
function to determine if it tampers with the stack or stack pointer to change
its return address.

Our stack analysis is based on binary slicing techniques [23], which are
program slices, as adapted for machine-language instructions. A binary
slice identifies instructions that influence the value that is assigned to a
particular register or memory location. We address call-stack tampering
by using binary slices to determine the control-flow target of each of a
called function’s ret instructions. More precisely, we perform an intra-
procedural backwards binary slice on the call-stack input of each ret
instruction, which delivers a graph of instructions that together define the
value read by the ret instruction (see Bernat et al. for details on the slicing
techniques that we use [11]). For a normal function that does not tamper
with its call stack, the binary slice shows that its ret instructions will
read stack inputs whose values depend only on the call instruction that
invoked the function. However, for a function that does tamper with its
call stack, the binary slice delivers a graph of instructions from which we
must extract the ret instruction’s target. In practice, obfuscated ret targets
are usually constant addresses, and when they are not, we have found
that they can be specified by a linear formula based on the caller-specified



69

return address. We therefore apply symbolic evaluation to simplify the
graph down to a constant or linear formula. As each node in the graph
represents an operation performed by an instruction in the function, this
involves an ordered traversal of the graph that begins at input nodes and
iteratively reduces operations that consume constant or linear inputs down
to constants or linear formulas. When our symbolic evaluation fails to
simplify an operation (e.g., because it performs a non-linear operation
on the caller-specified return address) it produces an inconclusive result.
This can also happen when we try to perform a stack analysis for a called
function that is not fully statically analyzable, typically because it contains
unresolved indirect control flow. In these cases, we mark the function as
possibly non-returning, and disallow parsing at the fall-through addresses
of all call instructions that invoke the function. Fortunately, we are usually
able to compensate for these lapses in code coverage with the dynamic
code-discovery techniques that we present in the next chapter.

Our call-stack analysis detects the actual target of many stack-tampering
techniques that alter normal return addresses; two simple examples are
shown in Figure 3.1. Figure 3.1a shows an instruction sequence that trans-
fers control to ADDR upon executing the return instruction. Figure 3.1b
shows a sequence used by the ASPack and ASProtect packers [2] to incre-
ment the return address of a function by a single byte. In both cases, our
call-stack analysis informs the parser of the actual return address of the
called function. In the former case, the binary slice and symbolic evalua-
tion deliver ADDR as the target of the program’s return instruction, while in
the latter case, they correctly identify the return target as one greater than
the fall-through address of the calling instruction. Our parser uses these
target addresses to seed additional parsing in place of the fall-through
addresses of call sites to the function.



70

Additional junk code avoidance

We use a lightweight analysis to compensate for other obfuscations that
can cause the recursive-traversal algorithm to parse junk code. We were
able to use expensive binary slicing techniques to deal with non-returning
calls because these slices only needed to be applied on a per-function basis.
Regrettably, we cannot afford to apply such a heavyweight analysis ap-
proach to detect junk code at targets of all conditional branch instructions,
as this instruction is widely used; in our study of the obfuscated code
used by prevalent packer tools, conditional branch instructions appeared
in 1 of every 12 instructions. It would be even more expensive to apply
this approach to detect junk after exception-raising instructions and at
fall-through transitions to unpacked code regions, since we would need
to check for these transitions after every instruction in the program.

Our experience with packed binaries has taught us that most junk code
consists of non-code bytes such as data, in-place encrypted instructions,
ASCII strings, and padding bytes. Regrettably, the density of the IA-32
instruction set is such that random byte patterns almost always represent
valid instructions. Fortunately, junk bytes do not share all of the same char-
acteristics as compiler-generated code, and generally exhibit the following
properties:

1. Junk code contains numerous instructions that are extremely rare
in normal or obfuscated code, sometimes because they can only be
executed in a privileged context. Many of these rare instructions
have one-byte opcodes that occur frequently in junk code.

2. Junk instructions that perform load and store operations have arbi-
trary memory addresses as operands and most of these instructions
would result in memory access violations if they were to execute.

3. Junk code based on random bytes contains about as many jump and
branch instructions as normal code because these instructions take



71

up a large percentage of the IA-32 instruction-set’s opcode space.
However, the targets of junk branches are far more likely to be un-
aligned with the program’s actual instructions, producing more
overlapping basic blocks than there are in normal obfuscated code.

4. Junk instructions often use source and destination registers of un-
usual sizes.

5. Constant operands in junk instructions are random and are usually
larger than the constants used by normal instructions.

We have found the first two properties of junk code to be the most reli-
able indicators of junk code. Techniques for code parsing have leveraged
the third, fourth, and fifth characteristics of junk code to disambiguate
between junk and compiler-generated code [52, 102, 107, 120] and between
junk and obfuscated code [62]. However, other researchers have not devel-
oped techniques to disambiguate between junk and arbitrarily obfuscated
code. One significant problem is that obfuscated code also contains the
third, fourth, and fifth characteristics of junk code in some measure. The
third property also holds for some obfuscated code, and when two basic
blocks overlap, it is not clear whether both blocks are valid, both invalid, or
whether one is valid and the other invalid. The fourth property is also true
of packer bootstrap code, which frequently decrypts code at a byte level,
often using IA-32’s compact string operation instructions to do so. The
fifth property of junk code is also a characteristic of instruction-constant
obfuscations, which are prevalent in malware code. This leaves the first
two properties of junk code as the most reliable disambiguators between
junk code and obfuscated code. However, while rare and privileged in-
structions are inexpensively identifiable, determining which instructions
will raise a signal or exception is a difficult problem, both in theory and in
practice [78].



72

We construct a blacklist of instructions that are either privileged or
exceedingly rare in normal code. When our parser encounters a privi-
leged or rare instruction, the parser ends the current basic block after
that instruction, suspends parsing, and adds the block to a list of basic
blocks that end abruptly. This approach eliminates all junk code after rare
instructions. The following are the most prevalent instructions that are
indicative of a bad parse:

• 0x6300 arpl *[eax],ax: The arpl instruction is privileged and
causes a fault if executed by user-mode code. Its one-byte opcode
also corresponds to the ASCII code for ’c’, and since junk bytes often
consist of string data, the arpl instruction occurs more frequently
than at the expected 1/256 occurrence rate. The second byte of the
instruction contains the operand and can take any value.

• 0x06 push eb: This is one of four single-byte push instructions that
push segment registers on the stack. Not only are these instructions
exceedingly rare in normal code, we have not seen them in any obfus-
cated code. In junk code, however, they occur even more frequently
than at the expected 1/64 rate, since they are single-byte instructions
whose opcodes are small numbers: 0x06, 0x0e, 0x16, and 0x1e. By
observation, small numbers are more prevalent in junk bytes; we
can hypothesize about why this is so, but do not have principled
reasons to explain it. Two-byte push’s and mov’s that target segment
registers are similarly rare in normal code and we also use them to
indicate a bad parse.

• 0x0000 add *[eax],ax: This is the most common instruction that
indicates a bad parse, as the Windows loader initializes all memory
bytes to zero. Furthermore, some compilers use this instruction as
padding between basic blocks.



73

Though our black-listing technique does not identify binary code with
perfect exclusion of junk code, there are enough rare single-byte opcodes
in the IA-32 instruction set that we can use them to eliminate the majority
of junk code with extremely low false-positive rates. When false-positive
junk code identification does occur, we are prepare to resolve the error at
run-time by instrumenting after rare instructions. If the rare instruction
actually does execute, the instrumentation will trigger additional parsing
through the dynamic capture techniques that we present in Chapter 4. In
most cases, however, the rare instruction triggers a fault, causing exception-
based control flow that does not return to the subsequent instruction. Our
parsing algorithm has done the right thing in these situations by excluding
the subsequent instructions.

Our junk-code avoidance technique is well-suited to our purposes be-
cause it works well in practice on malware binaries. When evaluating this
technique against the obfuscated bootstrap code of prevalent packer tools,
our techniques stop parsing within 17 bytes on average after a transition
into a junk region and within 93 bytes in the worst case. Furthermore,
we are able to remove most of the remaining junk instructions from our
disassembly at run-time; we remove junk after signal- or exception-raising
instructions when they execute and reveal the succeeding bytes to be un-
reachable, and we remove junk bytes corresponding to in-place encrypted
code bytes when those bytes are decrypted at run-time, revealing dynami-
cally unpacked code. These techniques limit parsed junk code to the extent
that it is highly unlikely to overwhelm a human analyst. Furthermore,
we have designed our instrumentation techniques to tolerate disassembly
errors. Even when our parse induces us to instrument junk bytes that
the program uses as data, this has no impact on the program’s behav-
ior because we use techniques that prevent the program from reading
from patched code and data (see Chapter 5 for a description of our safe
instrumentation techniques).



74

There are no static parsing techniques that achieve perfect exclusion
of junk code, but since our black-listing technique detects transitions into
junk code within an average of 17 bytes, this technique would serve as a
starting point for more accurate junk-detection by focusing heavyweight
techniques on the parsed bytes preceding any rare instructions.

3.2 Accurate Function Identification

As described in Section 2.2, there are two obfuscations that can make it
difficult to accurately detect the boundaries between functions in binary
code. First, replacing call and ret instructions with equivalent instruction
sequences creates the illusion of fewer functions than the program actually
contains. Second, call/ret instructions can be used out of context to
create the illusion of additional functions. The first of these obfuscations
was addressed by Lakhotia et al. [63], but we have not seen it occur with
any more regularity in obfuscated code than in optimized code. Analysis
tools built for optimized code also have to deal with missing call and ret
instructions because optimizing compilers implement tail calls with a jmp
<target> instruction instead of call <target> ; ret instruction pairs.
We chose to adopt the simple heuristic techniques by which analysis tools
for optimized code deal with missing call/ret instructions [16] because
tail-call optimizations are also common in obfuscated code, and these
heuristics work well in practice on the obfuscated binaries we have studied.
We therefore focus on providing solutions for the opposite and more
prevalent problems of superfluous uses of the call and ret instructions.

We define superfluous call instructions to be call instructions that are
used to transfer control to a target and do not use the return address
that the call pushes onto the stack to influence the target address of
subsequent return instructions. By this definition, a call targeting code
that pops the return address from the stack is superfluous if subsequent



75

mov edx,ecx jmp .trg mov esp, esp+4
pop edi ... ...
push eax .trg
pop esi pop edi
... ...

(a) (b) (c)

Figure 3.2: Code sequences taken from the targets of call instructions in
the ASProtect packer’s obfuscated code that remove the return address
from the stack. These calls are effectively being used as jmps, and the
return address is either thrown away or used as a base address for subse-
quent memory access operations.

ret instructions return to a location that is higher up on the call stack. In
Figure 3.2 we show examples of superfluous calls taken from the ASProtect
packer. We have found that the code at superfluous call targets usually
removes the return address from the stack within a few instructions, but
as seen in part (b), this does not always happen in the first basic block,
which often consists of a single jmp instruction. As shown in part (c), the
return address may be removed by a non-pop instruction.

We approach superfluous call-instruction identification by using look-
ahead parsing techniques at each call target. Look-ahead parsing techniques
allow our parser to perform exploratory parsing at call targets prior up-
dating our call- and control-flow-graph data structures by adding new
function and basic block objects for the code at the call target. To detect
the different uses of superfluous calls shown in Figure 3.2, we perform
lookahead parsing through the first multi-instruction basic block at each
call target. We apply symbolic evaluation over these instructions to iden-
tify whether the program removes the return address from the call stack.
Though this is not a rigorous solution to the problem of superfluous call
identification, it works well in practice for the obfuscated code we have
studied. Some error is acceptable in function-boundary identification as it



76

serves mostly to assist a human analyst in comprehending the program
and does not impact the correctness of most instrumenters and analysis
tools.

We define superfluous return instructions to be ret instructions that do
not transfer control flow to the fall-through address of call instructions
that invoke the ret’s function. We detect superflous ret instructions
through the call-stack tampering techniques that we presented in the
previous section; ret instructions always target call fall-through addresses
in the absence of stack tampering. Our call-stack tampering analysis
provides the only static techniques we are aware of that attempt to detect
ret targets; static analyses that are built for compiler-generated code do
not need to worry about non-standard uses of this instruction. The primary
benefit of applying static techniques to ret target prediction is that they
reveal addresses at which to seed further parsing, increasing our parser’s
code coverage. We still treat superfluous ret instructions as function exit
points and their targets as new function entries, since we have not seen
instances of code-sharing between the function containing a superfluous
ret instruction and the code at its target. Furthermore, we have observed
that most instances of superfluous ret instructions transfer control across
sections of the binary or across code buffers, often to the original entry
point of a packed program binary.



77

4 dynamic code discovery techniques

Having found and analyzed as much of the code as possible by traversing
the program’s statically analyzable control flow, we turn to dynamic anal-
ysis techniques to find code that is not statically analyzable, and to correct
any errors in our static analysis. Statically un-analyzable code includes
code that is originally present in the binary but is reachable only through
un-analyzable pointer-based address calculations or exception-based con-
trol flow, and code that was not initially present because it is dynamically
generated, sometimes in place of existing code. We analyze this code
at run-time through a collection of dynamic techniques that satisfy the
following two constraints. First, our dynamic techniques identify entry
points into un-analyzed code before it executes and expand our analysis by
seeding parsing at these entry points. Second, our techniques identify and
remove any dead code from the program’s control-flow graph (e.g., junk
code after a signal- or exception-raising instruction, or overwritten code).
Since our analysis of the program changes at run-time, these constraints
require that our data structures for the binary code be expandable and
contractable.

We introduce dynamic techniques that resolve the full breadth of preva-
lent obfuscations currently used by malware and develop new techniques
to remove dead and unreachable code from the analysis when it is over-
written. These techniques support our overall goal of providing analysis-
guided instrumentation on malware, by keeping our analysis up to date as
the program’s execution reveals new code and changes existing code. The
Bird instrumenter comes closest to our dynamic techniques in its use of dy-
namic instrumentation to discover missing code at indirect control transfer
targets, but they do not build an analysis representation that is available
to users of their tool, and they make several simplifying assumptions that
limit their instrumenter’s applicability to defensive malware code [79]. We



78

also build on the code overwrite detection and signal-handler discovery
techniques used by Diota [72], adapting these techniques for use on mal-
ware, and adding techniques to update our analysis in response to these
events.

We begin by describing the instrumentation techniques by which we
expand our analysis to cover statically hidden and dynamically unpacked
code. We then discuss our techniques for detecting and responding to code
overwrites. We conclude this chapter with a description of the dynamic
techniques that enable us to find and analyze exception-based control flow.

4.1 Instrumentation-Based Code Capture

During parsing, we mark all program locations that could transition from
analyzed code to un-analyzed code. We dynamically instrument these
program locations so that we will detect all transitions into un-analyzed
code before that code executes. Our dynamic capture instrumentation
monitors the execution of instructions that meet any one of the following
criteria:

1. Control transfer instructions that use registers or memory values to deter-
mine their targets. Indirect jump and call instructions are often used
by obfuscated programs to hide code from static analysis. The FSG
packer [47] is a good example, with one indirect function call for ev-
ery 16 bytes of bootstrap code. In the case of indirect call instructions,
when our parser cannot determine a call’s target address, it also can-
not know if the call will return, so it conservatively assumes that
it does not. We determine whether indirect control transfers leave
analyzed code by resolving their targets at run-time with dynamic
instrumentation. For indirect call instructions, resolving the call
target also allows us to parse after the call site if we can determine
that the called function returns.



79

2. Return instructions of possibly non-returning functions. Return instruc-
tions are designed to transfer execution from a called function to
the caller at the instruction immediately following the call site; un-
fortunately they can be misused by tampering with the call stack.
As detailed in Section 3.1, our parser is usually able to determine
the targets of the return instructions of called functions, in which
case we continue parsing after call sites to those functions. When
our parser’s analysis is inconclusive for a particular function, we
instrument its return instructions to determine their targets.

3. Control transfer instructions into invalid or uninitialized memory regions.
Control transfers to dynamically generated code can appear this way
because packed binaries often unpack code into uninitialized or
dynamically allocated memory regions (e.g., binaries created by the
UPX packer [85]). Our instrumentation of these control transfer
instructions executes immediately prior to the control transfer into
the region, by which time the region should contain valid code,
allowing us to analyze it before it executes.

4. Instructions that terminate a code sequence by reaching the end of initial-
ized memory. Some packer tools (e.g., Upack [40]) and custom-packed
malware (e.g., the Rustock rootkit [20]) transition into dynamically
generated code without executing a control transfer instruction. Most
binary executable formats allow code to be mapped into larger mem-
ory regions, resulting in the possibility of a valid code sequence that
runs all the way up to the end of initialized memory without a termi-
nating control transfer instruction. Packers that use this technique
unpack the remainder of the function body into the region’s unini-
tialized memory so that when the function is invoked, control flow
falls through into the unpacked code. We detect this scenario by in-
strumenting the last instruction of code sequences that end abruptly



80

without a final control transfer instruction. When this instruction
executes, we trigger analysis of the following instructions.

5. Rare instructions We terminate parsing after rare and privileged in-
structions that are uncommon in normal and obfuscated code, under
the presumption that our parse has veered into junk bytes (see Sec-
tion 3.1). Since it is possible that the rare instructions are legitimately
used by the program, we instrument immediately after all rare in-
structions so that if they do execute, we can trigger pre-execution
parsing of the subsequent instructions.

Our dynamic capture instrumentation supplies us with entry points into
un-analyzed code that submit to our code parser. Before extending our
analysis by parsing from these new entry points, we determine whether
the entry points represent un-analyzed functions or are extensions to
the body of previously analyzed functions. We treat call targets as new
functions, and treat branch targets as extensions to existing functions.
The targets of non-obfuscated return instructions always are immediately
preceded by an analyzed call instruction, in which case we parse the return
instruction’s target as an extension of the calling function. When a return
target is not immediately preceded by a call instruction, we conclude that
the call stack has been manipulated and parse the return instruction’s
target as a new function.

Our dynamic capture techniques are independent of the underlying
instrumentation mechanism, but cost issues arise from our choice to im-
plement these techniques in the Dyninst instrumentation library [16].
Dyninst controls programs from a separate process that contains the anal-
ysis and instrumentation engine. The cost problem arises because our
code-discovery instrumentation executes in the monitored process and
must context switch to the Dyninst process to determine whether a control-
transfer target corresponds to new or to previously analyzed code. For



81

transfers to previously analyzed target addresses, the Dyninst process
does not need to perform analysis updates, so it context switches back to
the instrumented process without performing any work. We eliminate
these two context switches for analyzed control transfer targets by caching
them in the address space of the instrumented process. We adjust our
dynamic capture instrumentation to look up control transfer targets in this
cache and make the context switch to Dyninst only for target addresses
that have not been seen before.

4.2 Response to Overwritten Code

Code overwrites cause problems for analysis by simultaneously invali-
dating portions of the control flow graph and introducing new code that
has yet to be analyzed. Most analysis tools cannot analyze overwritten
code because they assume the code to be static and do not update their
code representations as the program overwrites itself. We have developed
techniques to address code overwrites by using dynamic techniques to de-
tect the overwrites and to update our CFG representation of the program
before the overwritten code executes.

Our motivating goal of providing pre-execution analysis of overwritten
code grants us some flexibility in terms of when we update our CFG of
the program in response to an overwrite. The earliest possible response to
a code overwrite is immediately after the execution of the write instruc-
tion that modifies the program’s code, while the latest possible response
is to delay the update until just before the execution of an overwritten
instruction. To choose efficient detection and analysis-update approaches,
it is important to understand how code overwrites work in practice. As
shown in Table 2.1 of Section 2.3, malware employs several tactics to make
overwrite remediation a challenging problem. The primary challenges
we face in developing techniques to respond to code-overwrites are the



82

following:

1. Ranges of consecutively overwritten code bytes are nearly always
overwritten one byte at a time, usually in a loop, but sometimes by a
rep-prefixed mov instruction. In binaries created by prevalent packer
tools, these overwritten ranges vary in size from 1 byte to over 8
kilobytes. Since updating our control-flow graph of the program is
a resource-intensive operation, it is imperative that we batch CFG
updates for incremental overwrites.

2. Obfuscated code frequently writes to data on code pages. For exam-
ple, binaries packed by MEW do not overwrite any of their code but
perform eight writes to code pages for every byte of payload code
that they unpack. These writes cause false-positive code-overwrite
detections for a widely used detection mechanism that works by re-
moving write permissions from code pages and handling the access-
rights violations that occur when the program writes to those pages.
[53, 73, 74, 98].

3. Obfuscated code frequently writes to code and data on its own mem-
ory page. This practice makes it yet harder to respond to accurately
detect code overwrites by manipulating memory-page access rights.
Researchers have detected code overwrites by identifying code pages
to which the program writes and from which it subsequently exe-
cutes by toggling the write and NX bits for those pages so that the
write and subsequent execute events cause access violations that
their tools can handle [53, 74]. Unfortunately, binaries that write to
the page from which code is currently executing cause thousands of
false-positive code-overwrite detections.

The first problem we must solve in formulating an efficient response
to the code overwrite problem is how to detect code overwrites. PolyUn-
pack used an approach to detect binary unpacking that also works for



83

code overwrite detection, and works by single-stepping the program and
checking instructions immediately prior to their execution to see if they
have been modified [104]. This single-step approach has the benefit that
it delays our CFG updates until the last possible moment, but also the
downside that single-step execution is extremely slow. Alternatively, we
could detect code overwrites as soon as they occur by monitoring write
instructions; independently of how we implement this technique, it is in-
herently more efficient than PolyUnpack’s approach, as write instructions
constitute a small fraction of the overall number of executed instructions,
and PolyUnpack checks them all. The downside to write-based overwrite
detection is that it does not batch incremental code overwrites, but we can
use it as an efficient detection strategy and use additional techniques to
trigger the corresponding analysis update at a later time.

Our solution to code-overwrite detection adapts Diota’s write moni-
toring techniques for our purposes [72, 73]. Diota monitors writes to all
memory pages that are both writable and executable by removing write
permissions from those pages, thereby causing writes that might modify
code to raise an access-rights violation that Diota intercepts. As illustrated
in Figure 4.1a, we have adapted this mechanism to be more efficient on
packed binaries, which typically mark most of their memory as writable
and executable, by removing write permissions only from memory pages
that contain analyzed code.

The next challenge we face is identifying an appropriate time at which
to update our analysis. The naïve approach shown in Figure 4.1b fails to
handle incremental code overwrites efficiently because it updates the anal-
ysis each time a code byte is overwritten. Instead, we detect the first write
to a code page but allow subsequent writes, leveraging our pre-execution
analysis of the program to analyze the overwrite loop and delaying analy-
sis updates until the loop is done executing. This delayed-update approach
divides our response to code overwrites into two components that we now



84

(a) (b)

(c) (d)

Figure 4.1: Our approach to detecting code writes is shown in part (a). In
(b) we show a correct inefficient response to overwrites that updates the
CFG in response to each code write, triggering major processing. In (c)
and (d) we show our optimized code-write response techniques. In (c)
our optimized handler for access-rights violations instruments the write
loop at its exit points with callbacks to our CFG updater and restores write
permissions to the overwritten page. When writing completes in (d), the
instrumentation at a loop exit triggers a callback to our CFG updater.

describe in detail: a handler for the access-rights violation resulting from
the first write attempt, and a CFG update routine that we trigger before
the modified code has a chance to execute.



85

Response to the Initial Access-Rights Violation

When a write to a code page results in an access-rights violation, our first
task is to handle the exception. To handle the malware’s exceptions appro-
priately, we use the faulting instruction’s target address to disambiguate
between real access-rights violations and overwrite-detection violations.
Our overwrite-detection mechanism introduces write-permission viola-
tions that we handle ourselves; for real access-rights violations we apply
the techniques of Section 4.3 to analyze the malware program’s handler
and pass the signal or exception back to the malware. There are multiple
acceptable approaches by which to intercept these signals and exceptions,
our implementation of this technique is built on standard use of the de-
bugger interface; the operating system gives the debugger process a first
chance at handling all signals and exceptions. Instrumenters that live in
the same process as the monitored program intercept signals and excep-
tions by keeping their own handlers registered in front of any handlers
used by the monitored program [72].

Our overwrite-detection handler also decides when to trigger the rou-
tine by which we update our control flow graph in response to the over-
write. Correctness demands that we update our analysis before the modi-
fied code executes, but we can usually satisfy this constraint while batching
incremental code overwrites, by triggering the update after the program
is done overwriting its code. An apparently straightforward approach to
accomplishing this goal is to restore write permissions for the overwritten
page and remove execute permissions from the page, thereby causing
a signal to be raised when the program attempts to execute code from
the overwritten page (similar to the approach taken by OmniUnpack [74],
Justin [53], and Saffron [98]). Unfortunately, this approach requires mod-
ifications to the operating system, as Windows will not remove execute
permissions from a process’s memory pages if a debugger (Dyninst in our
case) is attached to it. Furthermore, this technique fails to detect the end



86

of incremental overwrites in the common scenario in which the program
overwrites code on the memory page from which it is currently executing.

As illustrated in Figures 4.1c and 4.1d, we are able to delay updating
the control flow graph until the end of overwriting by leveraging our pre-
execution analysis of the program to analyze the overwrite loop and delay
analysis updates until the loop is done executing. We detect the loop by
performing natural loop analysis on the function that contains the faulting
write instruction, and on the chain of calling functions that have frames on
the call stack. When there is more than one loop to choose from, we adopt
a heuristic that selects the largest loop in the currently executing function,
moving up the call stack to find a loop if the current function contains
none. The intuition behind this choice was to choose a loop that is big
enough to contain the entire overwrite loop, without selecting a loop that
is so large as to encompass the majority of the program’s code, at which
point the overwrite is likely to modify code pertaining to the loop. We
ensure that the CFG update routine will be invoked when the loop exits
by instrumenting its exit edges with callbacks to our CFG update routine.

To keep each of the loop’s subsequent writes to the code page from trig-
gering additional access rights violations, our overwrite handler restores
write permissions to the overwritten code page. We deal with overwritten
code ranges that span multiple code pages by maintaining a list of over-
written code pages for each loop. As the overwrite loop triggers additional
access violations by spilling over into additional code pages, we add new
pages to the list and restore write permissions to those pages. Our handler
must also save a pre-write copy of each overwritten memory page so that
when the write loop exits, the CFG update routine will be able to identify
the page’s overwritten instructions by comparing the overwritten page to
the pre-write copy of the page.

We must take extra precautions when a loop’s write instructions modify
code on any one of the loop’s own code pages, as restoring write permis-



87

sions to those pages allows the program to overwrite the loop’s code and
execute modified instructions before we have analyzed them. To safeguard
against this scenario, if the loop writes to one of its own code pages, we
add bounds-check instrumentation to all of the loop’s write operations so
that any write to the loop’s code will immediately trigger our CFG update
routine. This scenario is exceedingly rare, however. In most cases the write
loop terminates and instrumentation at one of the loop’s instrumented
exit edges causes the CFG update routine to be invoked.

Updating the Control Flow Graph

Our control-flow graph update routine performs a sequence of tasks that
we list below and then proceed to describe in detail:

1. It identifies overwritten and unreachable code.

2. It removes dead code from the analysis.

3. It triggers re-parsing of code in overwritten regions.

4. It calls back to the user tool, presenting the updated analysis.

5. It applies our dynamic capture instrumentation to new and modified
binary code.

6. It removes write permissions from the modified code pages and
resumes execution.

Dead-code identification. Our first task is to identify overwritten code
and code that has become unreachable because of the overwrite. Finding
the overwritten blocks is the first and easier of the two identification
problems. We begin by identifying changed bytes on the modified code
pages by comparing our pre-write copies of those pages to their current
contents. We identify overwritten basic blocks by checking for overlap



88

between these modified bytes and the blocks on the overwritten code
pages.

Correct program instrumentation does not require that we remove un-
reachable blocks from our analysis, but since our analysis may ultimately
be consumed by a human user, it is important to strip all dead code from
it so that the human user can focus on the relevant code. We detect dead
code by removing all blocks from the CFG that are only reachable from
overwritten code blocks, but in doing so there are two complicating fac-
tors to consider. First, some basic blocks are shared by multiple functions,
meaning that we can only remove a block if the overwrite makes it un-
reachable in the context of all functions to which it belongs. Second, some
obfuscated programs overwrite portions of the function that is currently
executing and portions of functions that have frames on the call stack.
This means that even when the entry point of one of these functions is
overwritten, making all of its subsequent blocks unreachable from the
function’s entry point, there is at least one additional entry point into the
functions from which the program will resume execution (more if recur-
sion causes the function to appear in multiple call-stack frames). Thus, we
remove a basic block from the control-flow graph only if it is unreachable
from overwritten blocks, from the active frame’s PC address, and from
the return address of all additional frames on the call stack). We recover
these stack frames using Dyninst’s stack-walking capabilities; this Dyninst
component is also available as the independent StackwalkerAPI library
[88], so this dependence does not limit our overwrite-response techniques
to being used by Dyninst.

As final step that we must perform before actually removing the dead
code, we prepare to re-parse the overwritten code regions by identifying
all live basic blocks (i.e., basic blocks that are not slated for deletion) that
have control-flow edges into overwritten basic blocks. The challenge in
identifying these live blocks is that the immediate predecessors of over-



89

written blocks may be slated for deletion because they are only reachable
from overwritten code. Thus, we identify live blocks by traversing source
edges in the CFG, starting from overwritten blocks and proceeding in a
breadth-first search that terminates at live blocks or when we detect that
we are in a loop that consists entirely of dead blocks.

Dead code removal. We remove dead code from the CFG and from our
internal data structures, a conceptually simple task, but one that requires
careful implementation so as not to leave any dangling pointers to deleted
data structures.

Re-parsing of overwritten code. We analyze the new code that has been
generated in the place of overwritten code by triggering parsing at the
CFG edges into modified code regions. We identify these control-flow
edges in our dead-code identification step, as described above.

User callback. We inform the analyst’s tool of the changes to the pro-
gram’s control flow graph, providing lists of new basic blocks and infor-
mation about the deleted blocks. This callback gives the tool a chance to
consume our updated analysis, to re-instrument modified functions, and
to add instrumentation to newly discovered functions.

Dynamic capture instrumentation of new code. Because code overwrites
add new code to the program, we must apply dynamic capture instru-
mentation to the new and modified code regions before resuming the
program’s execution.

Resuming the program’s executions. Having updated our analysis and
instrumentation of the program, we re-protect the overwritten code pages
by again removing write permissions from them. At this point we resume
the monitored program’s execution, with our dynamic analysis techniques
ready to resolve any further obfuscations that we might encounter.



90

4.3 Exception-Handler Analysis

Analysis-resistant programs often are obfuscated by signal- and exception-
based control flow. Static analyses cannot reliably determine which instruc-
tions will raise signals or exceptions, and have difficulty finding signal and
exception handlers because they are usually registered at run-time and
are often not unpacked until run-time. The ability to analyze and control
the execution of signal and exception handlers is important for obfuscated
binaries because many of them use these handlers to perform tasks that
have nothing to do with signal and exception handling; for example, their
handlers may unpack or overwrite existing code (e.g., PECompact [25]).

Signal and exception handlers can further obfuscate the program by
causing control flow redirections [31, 93]. When a signal or exception
is raised, the operating system provides the handler with context infor-
mation about the fault, including the value of the program counter. The
handler can cause the operating system to resume the program’s execution
at a different address by modifying this saved PC value. Figure 4.2 illus-
trates how the Yoda’s Protector packer [30] implements this technique to
obfuscate its control transfer to the packed program’s original entry point.
Yoda’s Protector raises an exception (step 1), causing the operating system
to invoke Yoda’s exception handler (step 2). The exception handler then
overwrites the saved PC value with the address of the program’s original
entry point (step 3), so that when the handler exits (step 4), the operating
system will resume the program’s execution at that address (step 5).

To find signal and exception handlers, we adopt the approach used
by interactive debuggers and dynamic instrumenters, that is, we inter-
cept signals and exceptions at run-time through the debugger interface
provided by the operating system [72]. As illustrated in Figure 4.2, the
operating system gives the debugger process a first chance at resolving
signals and exceptions. We use this mechanism to find the program’s
registered handlers at run-time, and subsequently analyze and instrument



91

them. We find handlers in Windows programs by traversing the stack of
structured exception handlers that are registered to the faulting thread.
Finding handlers is even easier in Unix-based systems because only one
signal handler can be registered to each signal type. We analyze the han-
dler as we would any other function, and mark the faulting instruction as
an invocation of the handler.

We guard against the possibility of a handler-based redirection of
control flow by instrumenting the handler at its exit points. After analyzing
the handler, but before the handler executes, we insert our exit-point
instrumentation and copy the saved value of the program counter register
(step 1b of Figure 4.2). We then inform the analyst’s tool of the signal
or exception and of the newly discovered handler code, allowing it to
insert instrumentation of its own. We then return control to the operating
system and invoke the monitored program’s exception handler. When
the handler has completed its execution, our exit-point instrumentation
triggers a callback to our process (steps 3a-3b of Figure 4.2), where we
check whether the handler has modified the saved PC value. If we detect a
change, we analyze the code at the new address, instrument it, and allow
the analyst to insert additional instrumentation.



92

1: A store to address 0 causes an access violation and the OS saves the fault’s
PC on the call stack.
1a: The OS informs the attached debugger process of the exception.
1b: We analyze the registered exception handler, instruments its exit points, and

returns to the OS.
2: The OS calls the program’s exception handler.
3: The exception handler overwrites the saved PC with the program’s original

entry point.
3a: The handler’s exit point instrumentation transfers control to Dyninst.
3b: Dyninst detects the modified PC value, analyzes the code at that address, and

resumes the handler’s execution.
4: The handler returns to the OS.
5: The OS resumes the program’s execution at the modified PC value, which

is the program’s original entry point.

Figure 4.2: The normal behavior of an exception-based control transfer
used by Yoda’s Protector is illustrated in steps 1-5. Steps 1a-1b and 3a-3b
illustrate our analysis of the control transfer through its attached debugger
process.



93

5 stealthy instrumentation

In our approach to statically and dynamically analyzing malware, we
use binary instrumentation to help monitor and control the execution of
malware program binaries. We must therefore instrument malware exe-
cutables in such a way that they cannot tell that we are instrumenting them.
There are two reasons why stealthy instrumentation of malware is a chal-
lenging problem. First, malware actively tries to detect instrumentation.
For example, malware programs may try to perform self-checksumming to
detect any modifications made to their code, and as discussed in Section 2.2,
many binary instrumenters rely on code patching techniques that overwrite
portions of the malware’s code [16, 65, 113, 114]. Self-checksumming tech-
niques detect the presence of code patches by comparing a pre-computed
checksum of the code to a checksum that is computed at run-time over the
program’s code bytes. Second, many instrumenters identify code based
on static analyses of the program binary [16, 33, 64, 65, 79, 113, 114], and
as discussed in Chapter 3, malware obfuscations make it extremely dif-
ficult to accurately disambiguate between code and data bytes; even our
conservative parsing techniques occasionally mis-identify junk bytes as
code. Thus, based on a static analysis that includes some non-code bytes,
these instrumenters may patch over data, resulting in unintended effects
to the program’s behavior. In this chapter, we present instrumentation
techniques that stealthily instrument malware binaries that are highly
defensive, even when our analysis mis-identifies data bytes as code.

Interestingly, optimizing compilers also generate code that is sensitive
to instrumentation. For example, optimizing compilers sometimes gener-
ate instructions that grab a constant from nearby code bytes that happen to
match a needed value, thereby obtaining some modest savings in overall
code size. If the instrumenter has patched over those code bytes, the sensi-
tive instructions will behave differently than in the original binary, and will



94

often affect the overall behavior of the program. Furthermore, compiler-
generated code that has been stripped of symbol information is difficult
to statically analyze with perfect exclusion of non-code bytes [102, 107].
Thus, the techniques we develop with an eye to safely instrumenting obfus-
cated malware are also beneficial to binary analysts outside of the forensic
malware analysis domain. Areas for which binary instrumentation is
a fundamental monitoring technology include program auditing [129],
precise behavior monitoring [91], debugging [36], attack detection [121],
and performance analysis [111].

Current binary instrumenters have two significant weaknesses. First,
they attempt to preserve the original binary’s visible behavior (that is, the
output produced for a given input) with ad-hoc instrumentation tech-
niques that do not take into account the full spectrum of current defensive
techniques by which malware can detect their instrumentation. Second,
in their efforts to preserve original visible behavior, instrumenters may
impose significant and unnecessary execution overhead by preserving
aspects of the original binary’s behavior that do not impact its visible
behavior. These two weaknesses have the same cause: the lack of a formal
model of how the techniques they use to insert instrumentation impact the
visible behavior of the original code. Instead, current binary instrumenters
rely on ad-hoc approximations of this impact [14, 16, 70, 73, 81].

In this chapter, we build on a formal specification of how inserting
instrumentation will affect the visible behavior of the instrumented bi-
nary. This specification allows our stealthy instrumentation algorithm to
precisely know which aspects of the original binary’s behavior it must
preserve to ensure that the instrumented binary’s visible behavior is com-
patible with that of original binary. More precisely, we leverage a dataflow
analysis that uses this specification to determine an overapproximation
of the impact of instrumenting a binary on its visible behavior; this anal-
ysis can be used to replace the ad-hoc approximations used by current



95

binary instrumenters. We demonstrate that these techniques allow us
to instrument programs stealthily by successfully instrumenting highly
defensive program binaries that attempt to detect any modifications of
their code. Furthermore, in our experiments, our techniques allowed us
to safely instrument non-defensive code with 46% lower overhead than
widely used binary instrumenters.

This chapter presents work that was done jointly with Andrew Bernat.
As part of this joint work, Bernat developed our formalization of visibly
compatible behavior, built up a taxonomy of the ways in which programs
can be sensitive to instrumentation, and was primarily responsible for
the aspects of our instrumentation algorithm that reduce the overhead of
our instrumentation techniques on non-defensive binary code [9, 11]. I
contributed the instrumentation techniques that guarantee correct behav-
ior in the face of deliberate attempts to detect the use of instrumentation
and the techniques that serve to make instrumentation transformations
safe even when non-code bytes are patched over because of errors in the
instrumenter’s analysis of the program’s code.

We have implemented the techniques described in this chapter in the
Dyninst binary analysis and instrumentation framework [16] and created
a sensitivity-resistant prototype, that we call SR-Dyninst. Our instrumenta-
tion techniques will replace Dyninst 7.0’s instrumentation infrastructure
in its next public release.

This chapter is organized as follows. In Section 5.1, we provide back-
ground on binary instrumentation and summarize Bernat’s contributions
to this work, including the formal definition of visibly compatible behavior
that our instrumentation algorithm strives to preserve. We present an
overview of our instrumentation algorithm in Section 5.2. In Section 5.3,
we describe the techniques by which we detect and compensate for mal-
ware’s deliberate attempts to recognize the side effects of instrumentation.
Finally, in Section 5.4 we present experimental results that highlight the



96

execution-time overhead of our stealthy instrumentation techniques.

5.1 Background

In this section, we begin by describing code relocation, the foundational code
transformation technique by which binary instrumenters add code to pro-
gram binaries. We then proceed to summarize portions of our joint work
on stealthy instrumentation that were contributed primarily by Andrew
Bernat [9, 11]. These include a taxonomy of the ways in which instru-
mented programs can be affected by code relocation and a formalization
of the properties of original program behavior that must be preserved in an
instrumented program. Finally, we describe how our instrumentation al-
gorithm leverages these concepts, and define the program representations
used by our algorithm.

Code relocation. To understand how inserting instrumentation can
affect the visible behavior of the binary, it is important to understand how
instrumenters modify program binaries. Binary code is usually sufficiently
compact that instrumenters cannot insert instrumentation code directly
into the original code. Instead, instrumentation tools create a copy of the
original code that they execute instead of the original. This code is copied
with a technique we call relocation that produces a new version of the code
that preserves the behavior of the original but contains sufficient space
to insert instrumentation. Current relocation methods can be described
as a combination of three basic operations: moving original code to new
locations, adding instrumentation code to the moved code, and patching
the original code’s location with control transfer instructions that will
re-route the program’s execution towards the instrumented code.

Taxonomy of sensitive instructions. Code relocation may affect the
behavior of instructions within the binary; we call such instructions sensi-
tive. We separate sensitive instructions into four classes. Three of these



97

categories represent instructions that are sensitive because their inputs
are affected by modification: program counter (PC) sensitivity, code as data
(CAD) sensitivity, and allocated vs. unallocated (AVU) sensitivity. The fourth
category, control flow (CF) sensitivity, represents instructions whose control
flow successors are moved. PC sensitive instructions access the program
counter and thus will perceive a different value when they are moved.
CAD sensitive instructions treat code as data, and thus will perceive dif-
ferent values if they read code bytes that have been patched by the in-
strumenter. Problems that result from instrumenting data bytes because
they were mistakenly included in the instrumenter’s static analysis can
be treated as CAD sensitivies, as the program treats these bytes as data,
but the instrumenter believes them to be code. AVU sensitive instructions
attempt to determine what memory is allocated by accessing unallocated
memory and thus may be affected when the instrumenter allocates new
memory to hold moved and added code. The notion of AVU-sensitivity
was first identified and developed as part of our joint work. Bernat wrote
a simple program that determines the shape of its address space by iden-
tifying allocated memory pages; this program detects the modifications
made by widely used instrumenters. CF sensitive instructions have had a
control flow successor moved and thus may transfer control to an incorrect
location. For each category of sensitivity we define how the inputs and
outputs of the sensitive instruction are changed by modification.

External versus internal sensitivity. Our ability to stealthily instru-
ment code with lower overhead than current instrumentation techniques
depends largely on our ability to distinguish between sensitive instructions
that are externally sensitive and those that are only internally sensitive.
An instruction is externally sensitive if it is sensitive to instrumentation
and its modified behavior will also cause the visible behavior of the bi-
nary to change. Instructions that are internally sensitive to instrumentation
produce different behavior that does not cause visible changes to the pro-



98

gram’s behavior. When current instrumenters identify an instruction they
believe to be externally sensitive, they compensate for its sensitivity by re-
placing it with code that emulates its original behavior. For example, an
instrumenter may emulate a moved call instruction by saving the original
return address on the call stack and then branching to the target of the
call. This approach imposes overhead that may become significant if the
emulation sequence is frequently executed. For example, emulating all
branches can impose almost 200% overhead [70], while doing so for all
memory accesses as well can impose 2,915% overhead [33]. Therefore, the
instrumenter should only add compensation code where necessary to pre-
serve visible behavior from the effects of externally sensitive instructions.
More precisely, overapproximating internally sensitive instructions as ex-
ternally sensitive imposes unnecessary overhead, as these instructions do
not change visible behavior.

Whether an instruction is externally or internally sensitive cannot be
derived from how the behavior of the instruction was affected by the code
change; it also depends on how this behavior affects the surrounding code.
For example, consider the effects of changing the location of a function
that contains a call instruction. A call instruction saves the address of
the subsequent instruction on the call stack; calls are sensitive to being
moved because a move will change this address. Similarly, the return
instructions in the callee are sensitive if they reference this address. If
the only instructions that use the stored return address are these return
instructions, then moving the call will not change the program’s control
flow (and its visible behavior will not change). In this case, both the call
and return instructions are internally sensitive. However, our studies of
malware and optimized code has shown that these return addresses are
often used for other purposes. For example, malware binaries often pop
return addresses off of the call stack and into general-purpose registers,
subsequently using the return address as a pointer to data. In these cases,



99

moving the call usually affects the program’s visible behavior, rendering
the call externally sensitive. We build dataflow analyses that disambiguate
between internally and externally sensitive instructions.

Output flow compatibility. We formalize our requirement that an
instrumented program preserve the original program’s behavior in terms
of denotational semantics [109]. Two programs have the same denota-
tional semantics if, for the same input, they produce the same output.
Requiring strict semantic equivalence would not allow instrumentation to
consume input or produce output; we address this limitation by assuming
instrumentation code has its own input and output spaces and defining
compatible visible behavior as denotational semantic equivalence over the
input and output spaces of only the original program.

Determining denotational semantic equivalence between two programs
is frequently an undecidable problem, but three characteristics of binary
instrumentation make it tractable. First, since relocation only moves and
adds but never deletes code there is a correspondence between each basic
block in the original binary and a basic block in the instrumented binary.
Second, we assume that executing added code will not change the behavior
of the original code because executing instrumentation has no cumulative
semantic effect on the surrounding code. Third, instrumentation does not
purposefully alter the control flow of the original code, so the execution
order of the instrumented binary will be equivalent to the original when
the new locations of moved code are taken into account.

We include these three requirements in our definition of output flow
compatibility. A formal definition of output flow compatibility is presented
in our joint research paper [11] and in Andrew Bernat’s Ph.D. disserta-
tion [9]. Conceptually, we require that the instrumented binary have the
same denotational semantics as the original binary over the original bi-
nary’s input and output spaces, and that the control flow graph of the
instrumented binary be equivalent to that of the original binary when the



100

inserted instrumentation code is disregarded.
Algorithm Overview. Our instrumentation algorithm builds on the

concepts of this section in the following fashion. Our instrumenter relo-
cates code to insert instrumentation. We then perform a dataflow analysis
that identifies externally sensitive instructions with no false negatives
(guaranteed) and with fewer false positives than current techniques. In
other words, this dataflow analysis identifies all instructions that we must
compensate for, while allowing us to execute most internally sensitive in-
structions natively, thereby reducing the instrumentation’s execution-time
overhead. We determine how a sensitive instruction affects the behavior
of the binary by using symbolic evaluation [29]; if the program’s visible
behavior may change, we conclude the instruction is externally sensitive.

We then describe the techniques by which we compensate for exter-
nally sensitive instructions. We can often achieve efficient compensation by
performing group transformations that replace a sequence of affected code
as a single unit rather than compensating separately for each individual
externally sensitive instruction, as current instrumenters do. This tech-
nique results in a 23% decrease in overhead when instrumenting position-
independent code (such as is frequently found in shared libraries).

Andrew Bernat was primarily responsible for concept and implementa-
tion of our internal-versus-external sensitivity analysis and group compen-
sation techniques. In practice, the primary benefits of these techniques are
their ability to inexpensively compensate for program-counter and control-
flow sensitivities. The code-as-data and the allocated-versus-unallocated
sensitivities that we focus on in this chapter turn out not to benefit ex-
tensively from these techniques because they depend on program slices
over binary code [23], a dataflow analysis technique that is notoriously
imprecise. For these reasons, in this chapter we elide the details of our
internal-versus-external sensitivity analysis and group compensation tech-
niques; these details are provided in our joint paper [11] and in Bernat’s



101

dissertation [9]).
Program representation. We represent a binary program in terms of

a process state, control flow graph (CFG), and data dependence graph
(DDG). We extend the conventional definition of a process state to include
input and output spaces; this extension allows us to represent an input
operation as a read from an abstract input location and an output operation
as a write to an abstract output location. We adhere to the conventional
definition of a CFG as used throughout this dissertation, viz., a collection
of basic blocks connected by control flow edges. We represent the data
flow of a program with a data dependence graph (DDG). The conven-
tional definition of a DDG over binaries [61] may overapproximate data
dependences between instructions that define multiple locations, as is
common in real instruction sets (Figure 5.1), so we provide more precise
dependence information by splitting such instructions into sets of single-
definition operations and using these operations as nodes in the DDG. We
show an example of our extended DDG in Figure 5.1.

5.2 Algorithm Overview

This section presents our algorithm for sensitivity-resistant binary in-
strumentation that stealthily instruments program binaries. To provide
context, we compare our algorithm to a generic algorithm representative
of existing binary instrumenters [14, 16, 70, 81]. These algorithms are com-
pared and contrasted in Figure 5.2. Both our sensitivity-resistant algorithm
and the generic algorithm are divided into three phases: preparation, code
relocation, and program compensation. The preparation phase selects
which code to relocate and allocates space for this code; this phase is the
same in both algorithms. The code relocation phase copies the selected
code, applies compensatory transformations to preserve its original be-
havior, and writes the transformed code into the program. The program



102

[Instruction nodes]

i0: pop r0

i1: pop r1

i2: add r0, r1, r2

i3: push r2

sp

sp

r0

sp

r1

r2

spMem[sp]

     Mem[sp]

[Operation

nodes]

i0:r0

i1:r1

i2:r2

i3: Mem[sp]

sp

sp

r0
r1

r2

spMem[sp]

i0:sp

i1:sp

i3:sp

sp
sp

sp

Mem[sp]

Figure 5.1: Data dependency graphs. Figure (a) illustrates the problems
of representing instructions as single nodes. In this graph it is possible for
paths to “cross” definitions; for example, there is a path from the definition
of r0 by i0 to the definition of the stack pointer sp by i3, when in the actual
program there is no such dependence. Our extended DDG, shown in
(b), makes the intra-instruction data dependencies explicit and excludes
erroneous paths. For clarity, we omit the condition register cc and the
program counter pc.



103

Generic Instrumentation Algorithm
1: Instrument(program, instCode, instPoint)
2: // Preparation Phase
3: codeToRelocate = SelectCode(program, instPoint)
4: newAddr = AllocateSpace(codeToRelocate+instCode)
5: // Code Relocation Phase
6: relocCode = RelocateCode(codeToRelocate)
7: program.Write(relocCode ∪ instCode, newAddr)
8: // Program Compensation Phase
9: TransferToInstrumentation(relocCode)

10: RelocateCode(codeToRelocate)
11: foreach insn in codeToRelocate
12: if IsPCorCFSensitive(insn)
13: relocCode.insert(Emulate(insn))
14: else relocCode.insert(insn)
15: return relocCode
16: TransferToInstrumentation(relocCode)
17: foreach insn in relocCode
18: branch = GetBranch(insn.origAddr, insn.relocAddr)
19: program.Write(insn.origAddr, branch)

Sensitivity Resistant Algorithm
1: Instrument(program, instCode, instPoint)
2: // Preparation Phase
3: codeToRelocate = SelectCode(program, instPoint)
4: newAddr = AllocateSpace(codeToRelocate+instCode)
5: // Code Relocation Phase
6: relocCode = SR_RelocateCode(codeToRelocate)
7: program.Write(relocCode ∪ instCode, newAddr)
8: // Program Compensation Phase
9: SR_TransformExistingCode(program)

10: SR_RelocateCode(codeToRelobcate)
11: foreach insn in codeToRelocate
12: if IsExternallySensitive(insn)
13: relocCode.insert(SelectEfficientCompensation(insn))
14: else relocCode.insert(insn)
15: return relocCode
16: SR_TransformExistingCode(program)
17: foreach insn in program
18: if IsExternallySensitive(insn)
19: program.Write(SelectEfficientCompensation(insn),insn.addr)

Figure 5.2: An overview of previous instrumentation techniques and our
contributions. We highlight portions of the generic algorithm that our
sensitivity-resistant algorithm replaces in red, and our new code in green.



104

compensation phase determines whether any non-selected instructions
must also be transformed and applies appropriate transformations.

Our work addresses two weaknesses in the generic algorithm. First, the
generic algorithm may fail to correctly identify and transform externally
sensitive instructions, thus failing to preserve the original visible behav-
ior. Second, this algorithm may apply compensation transformations to
instructions that are not externally sensitive, thus incurring unnecessary
run-time overhead. These weaknesses are due to the use of ad-hoc sensitiv-
ity identification techniques; we address them by using analysis to identify
which instructions are externally sensitive and by transforming only these
instructions. We proceed by describing each phase of the instrumentation
process, highlighting the changes we make the generic algorithm.

Preparation phase Instrumenting a sequence of code requires expand-
ing the sequence to create sufficient space to insert instrumentation. Since
this frequently can not be done in place, the code is instead relocated to
newly allocated memory. In its preparation phase, the instrumenter se-
lects which code will be relocated with a function SelectCode and allocates
memory with a function AllocateSpace:

SelectCode: This function identifies a region of code (e.g., a basic
block or function) to be relocated. This region must cover at least the
location being instrumented. There is no consensus among previous
instrumenters on the size of the region to relocate; some instrumenters
relocate a single instruction, while others relocate either a basic block, a
group of basic blocks, or a function. Our algorithm is compatible with any
of these choices of region size.

AllocateSpace: This function allocates space to contain the combina-
tion of relocated code and instrumentation (e.g., by expanding the binary
on disk or mapping additional memory at run-time). Previous instru-
menters have assumed that allocating memory has no effect on the behav-



105

ior of the program, which may not be the case if the program includes
AVU-sensitive instructions. Our algorithm addresses this possibility by
explicitly detecting AVU-sensitive instructions in its code relocation and
program compensation phases.

Code Relocation Phase This phase relocates the selected code to the
memory allocated during the preparation phase, creating a sequence that
should preserve the behavior of the original code. Previous instrumenters
use relocation techniques that identify and compensate for PC- and CF-
sensitive instructions, but these previous techniques do not consider CAD-
or AVU-sensitivity. Assuming there are no AVU-sensitive instructions
is not safe. The assumption that instructions are not CAD sensitive may
be safe if the instrumenter does not patch original code. Code patching
serves to redirect the program’s control flow from un-instrumented to
instrumented code; patch-free instrumenters instead redirect control flow
by instrumenting every control transfer in the program [14, 70, 81]. Since
this patch-free style of instrumentation imposes significant overhead for
even a single piece of inserted instrumentation, many instrumenters prefer
patch-based techniques, as they allow the overhead of instrumentation
to increase proportionately with the cost of instrumenting the program
[10]. Our analysis-driven algorithm allows all classes of instrumenters to
stealthily instrument programs by using analysis to identify all sensitive in-
structions, including CAD- and AVU-sensitive instructions. We represent
this change by replacing the generic algorithm’s call to its RelocateCode

function with a call to SR_RelocateCode (line 6).
RelocateCode: This function examines each selected instruction (line

11), determines which instructions are PC- and CF-sensitive (line 12), and
replaces them with code that emulates their original behavior (line 13). All
instructions that are not sensitive are copied without modification (line 14).
This function produces a code sequence that will have the same behavior as



106

the original when executed at the new address if all sensitive instructions
were properly identified. RelocateCode also creates the appropriate space
between relocated instructions to make room for instrumentation; this is
not shown. For clarity, we describe this function in terms of a single pass;
however, some instrumenters use a fix-point iteration to further optimize
the relocated code.

SR_RelocateCode: Our work improves RelocateCode with analysis
that identifies externally sensitive instructions; this analysis is represented
by IsExternallySensitive on line 12. In our SelectEfficientCompensation

function (line 13), we look for more efficient compensation transformations
than can be attained through separate emulation of each original instruc-
tion. Our implementations of these two functions for PC- and CF-sensitive
instructions are described in detail in Andrew Bernat’s dissertation [9]
and in our joint paper [11]. We describe our sensitivity analysis and com-
pensation techniques for CAD- and AVU-sensitive instructions in Section
5.3.

Program Compensation Phase This phase attempts to preserve the orig-
inal behavior of sensitive instructions that were not relocated, and there-
fore has no effect if all code is relocated [14, 70, 81]. Previous patch-
based instrumenters have used it to insert jumps to relocated code with
a TransferToInstrumentation function [16, 79]. This function does not
consider the possibility of CAD- or AVU-sensitive instructions in non-
relocated code. We address this by instead using SR_TransformExistingCode,
which uses our analysis to identify all externally sensitive instructions.

TransferToInstrumentation: This function patches original code
with branches to the corresponding locations of relocated code (lines
18 and 19). This approach ensures that CF sensitive instructions do not
affect the program’s behavior, but overwrites original code and thus may
trigger CAD sensitivity.



107

SR_TransformExistingCode: This function is similar in structure to
SR_RelocatedCode and shares many elements of its analysis. We examine
each instruction (line 17) to identify the externally sensitive ones (line 18).
We then apply an efficient compensatory transformation and write the
transformed code to the program (line 19). For clarity, our description of
this algorithm has assumed that the compensatory transformation does
not increase the size of the code or affect the sensitivity of additional
instructions. As these assumptions may not hold in practice, we use a
fix-point algorithm that adds any additional affected instructions and
converges when no additional code must be relocated.

5.3 CAD and AVU Detection and
Compensation

In this section, we focus on the following three aspects of program bina-
ries that make stealthy instrumentation difficult. The first is that binaries
may contain CAD-sensitive instructions that could detect patched code
bytes. Many defensive malware binaries employ CAD-sensitive code, and
optimizing compilers also generate CAD-sensitive instructions that grab
constants from nearby code bytes when these bytes happen to match a
needed value. Second, the program could contain AVU sensitive instruc-
tions could detect that we have allocated extra space in the program’s
address space. Third, there is a great deal of ambiguity between code
and non-code bytes in program binaries, making it extremely difficult for
instrumenters to identify code with perfect exclusion of junk bytes (see
Section 2.2). Thus, even if a non-defensive program contains no CAD-
sensitive instructions, the instrumenter may still cause changes to visible
behavior by patching data bytes that it believes to be code. Interestingly
however, since the instrumenter’s analysis believes these junk bytes to be
code, its analysis will also consider any instructions that read from these



108

bytes to be CAD sensitive. Thus, it becomes doubly important for us to
solve the problems of CAD-sensitivity detection and compensation, as
these techniques will also compensate for junk-code instrumentation.

CAD and AVU sensitivities are similar in that they both involve memory
access instructions; CAD instructions read from patched code bytes while
AVU instructions access memory addresses that should be un-allocated.
Thus, all load instructions are potentially CAD sensitive, while all memory
access instructions are potentially AVU sensitive. We use the same ap-
proach to detect whether memory access instructions are externally CAD
and AVU sensitive, and use similar approaches to compensate for these
types of program sensitivities. We proceed by discussing detection of CAD
and AVU sensitive instructions, and then discuss how we compensate for
these instructions.

External CAD and AVU Sensitivity Detection

To guarantee visibly-compatible program behavior, we must identify a set
of instructions that includes all instructions that are externally CAD and
AVU sensitive, and then compensate for the effects of instrumentation on
these instructions. We also want to achieve low instrumentation overhead,
and one way to accomplish this is to choose this set so that it includes few
instructions that are neither AVU nor CAD sensitive, and few instructions
that are internally CAD sensitive. We do not seek to exclude internally
sensitive AVU instructions, because all AVU instructions are externally
sensitive. Internally sensitive AVU instructions do not exist because AVU
instructions trigger an access violation in the original binary and our
instrumented code must trigger this same control-flow edge to satisfy our
definition of output-flow compatibility (see Section 5.1).

In this section, we begin by discussing the problem of disambiguating
between sensitive and non-sensitive memory access instructions. We then
discuss the task of disambiguating between instructions that are internally



109

versus externally CAD sensitive. We also discuss performance considera-
tions that argue in favor of emulating all memory access instructions in
the program, and then present our solution based on these considerations.

Identifying non-sensitive instructions. To identify non-sensitive mem-
ory access instructions, we must know the range of addresses at which
these instructions can read or write. If the target of a memory access
instruction does not correspond to patched code, it is a non-sensitive in-
struction, though this evaluation is subject to change along with changes
in our instrumentation and analysis of the program. Memory access in-
structions that read and write to the program’s call stack are not sensitive
except in the rare case that the malware has executable code on the call
stack. A similarly easy determination of sensitivity can be made for load
and store instructions that have fixed target addresses. Regrettably, for
many memory access instructions, determining whether they are sensi-
tive requires a sophisticated analysis; most load and store instructions
determine their targets at run-time based on register values and memory
contents. The value set analysis designed by Balakrishnan and Reps is a
natural fit for these instructions, as it is designed to bound the set of input
(and output) values that are consumed (and produced) by x86 instruc-
tions [5]. Regrettably, this type of analysis has limitations that make it
unsuitable for defensive malware code. Its most significant problems are
that it assumes a full static analysis of the program and does not account
for code overwrites. We could, of course, recompute value-set analysis
each time we discover new or overwritten code, but value-set analysis was
not designed for incremental updates and is extremely resource-intensive
to compute, even a single time. Thus, the need to recompute value-set
analysis at run-time in response to code changes would defeat the reason
for which we would want to use it, which is to reduce execution-time
overhead by not compensating for non-sensitive instructions.

Identifying internally CAD-sensitive instructions. A second way to



110

1: mov esi, ptr[0x40dc00]
2: ...
3: call esi

Figure 5.3: A code sequence used by the NPack packer. The target of the
call on line 3 depends on the the contents of memory read by the load
instruction at line 1. If instrumentation modifies this memory value, the
call may transfer to an invalid address, resulting in an access violation.

reduce compensation overhead is to not compensate for instructions that
are only internally CAD sensitive. Internally CAD-sensitive instructions
are loads that would not impact the program’s control-flow or output
values if they were to read a different value from memory than was read
by the original binary. To identify these instructions, we could apply the
same approach we use to identify externally sensitive PC instructions.
That is, we would identify a set S of potentially affected instructions by
performing a forward slice [23] from the load instruction. We would
then apply symbolic evaluation [29] to the instructions in S to determine
what impact the load’s modified value actually has on these instructions.
Unfortunately, we usually do not know the modified value, so symbolic
evaluation cannot tell whether the affected instructions in S will execute
without raising an access violation. For example, consider the sequence of
instructions shown in Figure 5.3. If instrumentation changes the memory
contents read by the instruction on line 1 to an unknown value, we will
not know whether the call instruction on line 3 will transfer control flow
to a valid address. This limitation sharply limits the number of internally
sensitive instructions that we could detect with this approach.

Benefits of compensating for all memory access instructions. Though
our CAD and AVU detection techniques are somewhat limited, they do tell
us that we do not need to compensate for memory access instructions that
target the call stack, unless the stack contains code. They also help us to



111

identify some load and store instructions that are safe to execute natively
because they do not target patched code locations. However, there are
significant benefits to compensating for all memory access instructions
that could target executable memory regions, whether or not they target
patched code in those regions. In particular, compensating for all such
instructions allows us to eliminate concerns about CAD and AVU sensitiv-
ities from our instrumentation algorithm’s SR_TransformExistingCode
function (lines 16-19 of Figure 5.2). This means that we do not need to
recompute our sensitivity analysis over the entire program each time we
discover new code in the program, remove dead code, or add an additional
piece of instrumentation. For defensive malware binaries, this benefit is
substantial, since we have to update our analysis and instrumentation
many times as the program executes. By eliminating CAD and AVU sen-
sitivity considerations from SR_TransformExistingCode, we make it far
more efficient, allowing this function to focus exclusively on external CF
sensitivities, which we can detect inexpensively (external PC sensitivities
are detected and compensated for in function SR_RelocateCode).

Our approach. Based on the above considerations, we choose to com-
pensate for potential CAD and AVU sensitivities in all memory access
instructions in the instrumented binary, with the exception of instructions
that access only the call-stack. However, the program binary itself typ-
ically constitutes only a small fraction of the code that is present in the
address space of a malware program. Since this additional code interacts
with our instrumented binary, it too may be sensitive to the instrumenter’s
modifications. Most of this additional code is in system libraries, but the
instrumented program also interacts with kernel code, either by trapping
directly into the kernel, or by reaching kernel code indirectly through
calls to system library functions. Though system library and kernel code
are not malicious or deliberately defensive, some malware binaries pass
pointers to their instrumented code regions as arguments to functions in



112

system-libraries and the kernel, making the system code CAD-sensitive
with respect to the malware binary.

We do not instrument kernel code, so we must draw a line beyond
which we compensate for CAD-sensitive code with an alternative mecha-
nism that presents an unpatched view of the binary to the uninstrumented
code. We choose to set this line at the boundary between the malware
binary and system libraries (provided that these have not been modified
by the malware) for the following two reasons. First, on the Windows
operating system, the exported functions of system libraries are well doc-
umented because they implement the Windows API interface; this allows
us to analyze system libraries and ignore calls to functions that do not take
pointers as parameters. Second, we exclude more code from instrumenta-
tion and its associated overhead by drawing the boundary at the system
library interface rather than at the kernel interface.

Compensation for CAD and AVU Sensitivity

We compensate for a memory access instruction that could be CAD or AVU
sensitive by ensuring that its behavior matches that of the original instruc-
tion. We begin by describing our instrumentation-based compensation
techniques for the simpler case of AVU-sensitive instructions, followed by
our more elaborate techniques that compensate for CAD-sensitivity. We
conclude with a discussion of compensation techniques that we apply at
transitions to library code that could be CAD sensitive.

AVU Compensation. In the original binary, an AVU-sensitive instruc-
tion triggers an access violation by accessing un-allocated memory. We
emulate this behavior in the following way. We track all memory that
our instrumenter adds to the program’s address space and insert instru-
mentation at memory access instructions to perform bounds-checking on
the instruction’s target address. If the address targets memory that was
allocated by the instrumenter, our instrumentation triggers an access vio-



113

lation by re-directing the memory access to address 0. We ensure that the
instrumented program’s exception handler sees the same data regarding
the AVU exception as the handler in the original binary, by intercepting
and instrumenting the handler based on the techniques of Section 4.3.

Instrumentation-based CAD compensation. Compensating for AVU
sensitivity is easier than compensating for CAD-sensitivity in that an AVU-
sensitive load should fail to read anything, while a CAD-sensitive load
should read the same value that was read by the original binary. Shadow
memory techniques [80] provide a straightforward solution to identifying
the correct value and ensuring that it is read by CAD-sensitive loads. In
particular, we maintain a copy of any code bytes that get modified by
the instrumenter and compensate for CAD-sensitive load instructions
by having them read from the unmodified shadow copy. To keep these
shadow copies up-to-date as the program changes, we must also modify
store instructions that write to shadowed memory regions so that they
write to the shadow copy.

In implementing a shadow memory approach, we must decide at which
granularity to maintain the shadow memory and consider the performance
implications of this choice. The first alternative we consider is to shadow
only those regions of the binary that are patched by the instrumenter. This
approach has two advantages. First, this approach shadows the smallest
possible amount of memory in the monitored application, and therefore
has the smallest space overhead of any shadow-memory approach. Sec-
ond, for malware binaries, this approach requires no additional CAD
compensation for the program’s store instructions, as we already detect
and monitor write instructions that could overwrite analyzed code (see
Section 4.2) and the patched memory we would be shadowing is a sub-
set of this code. We could therefore trivially keep the shadow memory
regions up to date after a code overwrite by copying overwritten code
bytes to shadow memory. Meanwhile, most non-defensive binaries do not



114

overwrite their code, so there would be no need for us to compensate for
store instructions in this case.

The alternative is to shadow the program’s code at a coarse granularity,
meaning that shadowed regions could include uninstrumented code and
non-code bytes. For non-defensive binaries and their shared libraries, each
binary typically contains its code in a single section, and we can shadow
each binary’s section as a whole. We usually cannot shadow defensive
binaries with a single block, because these programs often place code in
memory ranges that are separated by large gaps of unallocated memory.
However, our experience shows that most defensive malware binaries
place their code in only two to four ranges. The greatest disadvantage to
shadowing memory at a coarse granularity is that keeping this memory
up to date requires that we instrument all store instructions that could
target shadowed memory. However, this disadvantage is not all that
significant because we instrument these instructions anyway to detect and
compensate for possible AVU sensitivities, and part of the instrumentation
overhead would be shared between the two compensation techniques. On
the positive side, shadowing memory pages at a coarse granularity allows
our instrumentation of the program’s load and store instructions to be
highly efficient. In particular, this instrumentation can detect memory
accesses that target shadow memory with a single bounds-check for non-
defensive binaries and with only a only a few checks for malware binaries.
By contrast, for fine-grained shadowing, our instrumenter could easily
patch thousands of program locations, and shadowing each individually
patched region would require us to instrument each load with an expensive
check to determine whether its target address lies within any of these
shadowed regions.

Based on these considerations, we choose to shadow memory at a
coarse granularity. We examine the performance impact of our compen-
sation techniques with experimental results that we present in Section



115

5.4. These results show that the cost of our CAD and AVU compensation
techniques is outweighed by efficiency gains in PC and CF sensitivity
detection and compensation, resulting in instrumented execution times
that are faster than those of widely used instrumenters that compensate
for sensitive code with ad-hoc techniques.

CAD compensation for system-library and kernel code. When in-
strumenting defensive malware, we must compensate for CAD sensitivi-
ties in code that is external to the malware binary itself. These sensitivities
arise when the malware passes pointers to its patched code regions as
arguments to functions in system-library or kernel code. When the library
code reads from these addresses, the visible behavior of the instrumented
program could deviate from that of the original binary. We address this
problem by presenting an unpatched view of the malware program to
external library code that could be CAD sensitive. We temporarily recreate
the unpatched binary by copying changes in shadow memory to the origi-
nal program, with the effect of erasing the instrumenter’s code patches.
We call this technique patch hiding. We create this view when potentially
sensitive third-party code is invoked; when the invoked library function
returns to the malware, we restore our code patches and resume normal
execution. Patch hiding includes the following sequence of steps:

1. We instrument all control transfers that transition from the program
binary to system-library or kernel code. Many of these control trans-
fers are already being monitored by our dynamic capture instrumen-
tation (see Section 4.1), as most inter-library calls are implemented
with indirect control transfer instructions that grab their targets from
memory at run-time.

2. Our instrumentation looks up the call target in a table of common
library functions that do not take pointers as arguments. If the target
matches a function in this table, we skip the patch hiding step and
continue the program’s execution, otherwise we continue to step 3.



116

3. We perform patch hiding by overwriting the malware binary’s origi-
nal memory with its shadow memory. This technique updates the
original memory with any changes made to the program’s shadow
memory and overwrites all code patches we have made to the origi-
nal binary.

4. We instrument the library function’s return instructions so that they
will call back to the code routine of step 6. If the malware code
invokes kernel code directly (by executing a trap instruction), we
cannot instrument the return address of the invoked kernel function,
so we set a hardware breakpoint at the trap instruction’s fall-through
address. When the kernel function returns, this hardware breakpoint
will trigger, alerting our debugger process, which can then invoke
step 6.

5. We continue the program’s execution.

6. We re-instate our code patches and continue the program’s execution.

We do not perform patch hiding on non-defensive binaries, as it would
be uncharacteristic of such programs to perform the adversarial act of
asking a system library function to read from the non-defensive binary’s
code. On the other hand, we do compensate for CAD sensitivities in
the binary itself, because optimized code may read from code bytes and
because the instrumenter’s analysis of the code may include some junk
bytes.

5.4 Results

The goal of our analysis and instrumentation algorithm is to preserve
the semantics of the instrumented program while reducing the overhead
imposed by instrumentation. We evaluated the overhead of our instrumen-
tation algorithm by instrumenting Apache, MySQL, and the SPECint 2006



117

benchmarks, and comparing our algorithm’s performance to the Dyninst
7.0 and PIN binary instrumenters. These results show that our techniques
resulting in lower average overhead than Dyninst 7.0 and PIN, despite the
additional costs we incur to compensate for CAD and AVU sensitivities.
We present these experimenatl results in this section. We also performed
experiments to establish our algorithm’s ability to stealthily instrument
defensive programs; these experiments are presented in Chapter 6.

We implemented our stealthy instrumentation algorithm in the Dyninst
binary analysis and instrumentation toolkit, creating the SR-Dyninst re-
search prototype from Dyninst’s 7.0 version. SR-Dyninst identifies sensi-
tive instructions using information provided by the InstructionAPI com-
ponent of Dyninst, and builds a new symbolic evaluation and slicing
component to assist in our identification of externally sensitive instruc-
tions. This semantic evaluation component uses a semantic instruction
model provided by the ROSE compiler suite [97]. While our implementa-
tion and experiments were done in the context of Dyninst, the techniques
and software we built can be used to extend other instrumentation tools,
such as PIN, to have the same capabilities as those we added to Dyninst.

We wish to measure the change in instrumentation overhead due to our
stealthy instrumentation approach as compared to the overhead of Dyninst
7.0 and the widely used PIN instrumenter [70]. To do so, we measured
the execution overhead caused by executing moved and transformed code
instead of original code. So that our measurements would not include the
cost of any user-specified instrumentation code, we instrumented every
basic block in the program but added no user code.

For SR-Dyninst (and Dyninst 7.0) we instrumented each binary with
Dyninst’s static binary rewriter. PIN does not provide an equivalent static
rewriting capability, and thus our performance numbers for PIN include
their dynamic translation cost as well as the cost of executing transformed
program code. However, from their previously published results [70], this



118

0%

100%

200%

300%

400%

pe
rl

bz
ip gc

c
mcf

go
bm

k
hm

mer
sje

ng

lib
qu

an
tum h2

64
om

ne
t

ast
ar

xa
lan

ap
ach

e
mysq

l

av
era

ge

PIN (%) Dyninst (%) SR-Dyninst (insn) (%) SR-Dyninst (group) (%)

Figure 5.4: Performance of our approach compared to Dyninst 7.0 and PIN.
We show two sets of results for our approach. The first uses only instruc-
tion transformations, while the second includes group transformations
for thunks. The y-axis is execution time normalized to the unmodified
execution time.

dynamic translation cost is small for long-running benchmarks and thus
we do not believe it significantly impacts our results.

Our performance experiments were run on a set of binaries consisting
of the SPECint 2006 benchmark suite, Apache, and MySQL. Each of these
programs was built from source with default arguments. We instrumented
both the program binary and any libraries on which it dependeds. We ran
the SPECint suite using the reference data set inputs and tested Apache and
MySQL with their provided benchmarking tools. These experiments were
run on a 2.27 GHz Intel quad-core Xeon machine with 6GB of memory.

Our performance results are shown in Figure 5.4. The y-axis is the
execution time normalized to the uninstrumented run time (100%). SR-
Dyninst results in an average overhead of 36%, which is lower than both
Dyninst 7.0 (66%) and PIN (90%). Our instrumentation overhead num-
bers are due to two factors. First, our instrumentation algorithm natively
executes instructions that other instrumenters mistakenly deem to be PC-
or CF-sensitive. Second, our group transformation techniques allow us to
compensate for PC sensitivities in thunk functions with greater efficiency
than the individual-instruction transformations employed by other instru-



119

menters (details of these techniques are in Bernat’s dissertation [9] and
our joint paper [11]). This benefit is most apparent in the Apache (12% to
0.4%) and MySQL (66% to 51%) benchmarks, because they execute more
library code than the SPEC benchmarks, and thunk functions are most
common in position-independent library code. Overall, these performance
gains are so substantial that they hide the additional cost of compensating
for CAD and AVU sensitivities. There are only two benchmarks (hmmer
and h264) for which compensating for CAD and AVU sensitivities out-
weighs the efficiency gains of our other techniques. For these two binaries,
Dyninst 7.0 and PIN execute more efficiently than SR-Dyninst because
Dyninst 7.0 does not compensate for CAD or AVU sensitive code, while
PIN does not compensate for AVU sensitive code (as PIN does not modify
the original code, there will be no CAD sensitive instructions). However,
these minor efficiency gains come at a price: malware programs can detect
the instrumentation techniques used by PIN and Dyninst 7.0 by using
AVU- and CAD-sensitive code. As a final note of interest, Dyninst 7.0
failed to correctly run the omnetpp benchmark due to an incorrect han-
dling of exception-throwing code that was PC sensitive; our approach
transparently handled this problem.



120

6 malware analysis results

In this chapter, we evaluate our malware analysis and stealthy instru-
mentation techniques, both on real and representative synthetic malware
samples that are highly defensive. We begin by revisiting our study of
obfuscations used by the packer tools that are most frequently used to
obfuscate malware. We presented a discussion of these obfuscations in
Chapter 2, but since that chapter also serves as our summary of related
works, we omitted a discussion of how our analysis techniques fare against
those obfuscations. We present that discussion here, as this collection of
obfuscations provides a thorough test of the technical contributions of this
dissertation.

We then proceed to demonstrate our ability to analyze real-world mal-
ware binaries. Analysts at large security companies receive tens of thou-
sands of new malware samples each day [86] and must process them
efficiently and safely to determine which samples are of greatest interest.
We build a malware analysis factory that performs batch-processing of mal-
ware samples in an isolated environment, producing customizable reports
on the structure and behavior of malware samples. We describe the output
of this analysis factory, and show its analysis of the notorious Conficker A
binary as an illustrative example.

6.1 Analysis of Packed Binaries

In Chapter 2, we performed a broad examination of the obfuscation tech-
niques used by the packer tools that are most popular with malware
authors [18]. This study performs two useful purposes. First, our study
provides a snapshot of the obfuscation techniques that we have seen to
date. We hope that this study will guide future work in malware analysis
and de-obfuscation. Second, our study demonstrates the ability of our



121

analysis techniques to cope with the obfuscations that are most-often em-
ployed by malware. In this section, we discuss the ability of our techniques
to deal with each of these obfuscations in turn, in the same order that they
were presented in Section 2.2. In doing so, we refer to the statistics we
gathered to quantify the prevalence of these obfuscations, which are sum-
marized in Table 2.1 of Section 2.3. For more details on the methodology
we used to perform this study, we refer the reader to Section 2.1.

Code packing: A packed binary contains a payload of compressed or
encrypted code that it unpacks into its address space at run-time. At least
75% of all malware binaries are packed [12, 119], and every binary in this
study is packed. Furthermore, most of these binaries unpack in multiple
stages (see row A1 of Table 2.1). We discover packed code at run-time,
just before it executes, by using our dynamic capture instrumentation
techniques (see Section 4.1) and exception-monitoring techniques (see
Section 4.3) to monitor all potential transitions into un-analyzed code.
Our study of packed binaries amply demonstrates our ability to find and
analyze packed code, as we were able to analyze each packed payload
before it executes, even for binaries that unpack in multiple stages.

Code Overwriting: Many malware binaries overwrite existing code
with new code at run-time. For our analysis and instrumentation tool to
correctly respond to code overwrites, we must first detect overwrites, and
then respond by safely removing overwritten and unreachable code, and
re-parsing new code at entry points into overwritten regions.

As discussed in Section 4.2, efficiently detecting code overwrites is
challenging because malware binaries may overwrite large regions of code
in one-byte increments. Our efficient detection techniques are predicated
on our ability to batch analysis updates in response to incremental over-
writes by using our structural analysis of the code to detect write loops
and delaying our update until the loop exits, as long as it is safe to do so.
Our analysis of packed binaries demonstrates that this technique is safe; it



122

detects each of the 46 instances of code overwrites performed by these bina-
ries, and in each case, we update our analysis before the overwritten code
executes. Our ability to batch analysis updates also dramatically improves
the performance of our techniques. Before implementing overwrite batch-
ing, our initial prototype took over 3 hours to execute an instrumented
UPack binary; overwrite batching reduced this time to 28 seconds [103].

Safely removing overwritten and unreachable code from the program’s
control-flow graph after an overwrite is a challenging problem. In par-
ticular, we must carefully determine which code is truly safe to remove
after an overwrite, and do so using the techniques described in Section 4.2.
Our study of packed programs demonstrates that our techniques correctly
remove dead code in a wide variety of overwrite instances, including all 17
cases in which dead code removal becomes especially challenging because
of overwrites to a currently executing function (see row A4 of Table 2.1).

We analyze new code that replaces overwritten code, by applying
our code-parsing techniques at entry points into overwritten regions. By
correctly analyzing and instrumenting the code-overwrite techniques of
prevalent packer tools, we confirm that our parsing techniques successfully
analyzes the new code that is introduced by overwrites.

Non-returning calls: The call instruction’s intended purpose is to
jump to a function while pushing a return address onto the call stack, so
that the called function can use a return instruction to resume execution
at the instruction following the call. However, as shown in row B4 of
Table 2.1, all but two of prevalent packer tools use call instructions in
cases where control-flow does not return to the fall-through address of
the call. Our parsing techniques deal with the possibility of non-returning
calls by assuming that a call does not return unless a binary slice [23] of
its called function can conclusively demonstrate that it does (see Section
3.1). Our study of prevalent packer tools demonstrates the merits of our
conservative parsing techniques by correctly preventing us from parsing



123

at the fall-through edge of all 181 non-returning calls.
Call-stack tampering: Obfuscated binaries frequently tamper with

the call stack so that ret instructions transfer control to targets that are
not call fall-through addresses. To our knowledge, however, ours is the
only tool to apply static analysis techniques to ret target prediction (see
Section 3.1). When our static techniques cannot guarantee that a function
does not tamper with its call stack, we fall back on our dynamic capture
techniques to monitor the targets of the function’s ret instructions. In our
study of packed binaries, most instances of call-stack tampering involve
push <addr> ; ret sequences and are resolved by our static techniques,
though ASPack, ASProtect, and Yoda’s Protector contain more elaborate
instances of stack tampering (see row B3 of Table 2.1) that we also analyze
successfully with our static techniques.

Obfuscated control-transfer targets: Many packer tools use indirect
control transfers to obfuscate their control-flow targets, thereby hiding
them from static analysis. Our static techniques resolve standard uses of
indirect control transfers, such as indirect jumps that implement jump
tables and indirect calls that get their targets from the Import Address
Table. To resolve non-standard indirect control transfers, we we rely on
our dynamic capture instrumentation techniques (see Section 4.1). In our
study of packed binaries (and in general), our dynamic capture techniques
identify control-flow targets for indirect control transfers that execute.
The only indirect control transfers that remain unresolved by our hybrid
techniques are those that evade our static techniques by not conforming
to a standard usage pattern and that evade our dynamic techniques by
not executing. These unresolved indirect control transfers can result in
gaps in our control-flow graph’s coverage of the program.

Exception-based control transfers: Signal- and exception-handling
mechanisms allow for the creation of obfuscated control transfers whose
source instruction (the fault-raising instruction) and target address (the



124

signal or exception handler) are well-hidden from static analysis tech-
niques [93]. An additional difficulty is that the exception handler specifies
the address at which the system should resume the program’s execution,
and this constitutes yet another hidden control transfer. We detect sig-
nals and exceptions through the OS-provided debugger interface, and
instrument the malware’s handlers to detect the address at which they
direct the system to resume the program’s execution (see Section 4.3). Our
techniques respond correctly to each of the 10 exception-based control
transfers (row E1) employed by this collection of packed binaries, discover-
ing the exception-raising instruction, its exception handler, and the target
at which the system will resume the program’s execution.

Ambiguous code and data: Packed binary code frequently introduces
ambiguities between code and data, by allowing its control flow to fall
through into junk code, with no intervening control-transfer instructions.
We address this problem with two techniques: our parser’s junk-code
avoidance techniques reduce the amount of parsed junk bytes, while our
stealthy instrumentation techniques ensure that instrumenting analyzed
junk bytes will not impact the correctness of our instrumenter’s transfor-
mations.

Our code parser uses a cost-effective approach to detect when it has
transitioned into invalid code bytes; it stops disassembling when it en-
counters privileged and rarely used instructions that are usually indicative
of a bad parse (see Section 3.1). For the packed binaries of this study, our
technique allows us to stop parsing junk code within an average of 17
bytes after a transition into a junk region and within 93 bytes in the worst
case, whereas we would often parse several hundreds of junk bytes if not
for these junk-avoidance techniques. Since mistakenly parsed junk bytes
do not cause problems for our instrumentation techniques, the primary
goal of junk-code avoidance is to not overwhem the analyst with non-code
bytes in the CFG, and our junk-avoidance techniques make significant



125

progress in this regard. In theory, our technique can cause us to prema-
turely stop parsing at rare instructions that are actually executed by the
program. We prepare to compensate for such cases by applying dynamic
capture instrumentation to rare instructions so that we will parse after
them if the rare instruction executes. However, this precaution was not
needed for any of the packed binaries that we studied.

A second concern resulting from code and data ambiguities is that
when our parser mistakenly considers junk bytes to be code, our instru-
menter may patch over junk bytes that the program uses as data, causing
changes to the program’s visible behavior. As explained in Section 5.3,
since our instrumenter’s analysis believes these junk bytes to be code, its
analysis will also consider any instructions that read from these bytes to
be CAD sensitive. Thus, our CAD-sensitivity detection and compensation
techniques also compensate for junk-code instrumentation, as demon-
strated by our successful instrumentation of the five packed binaries that
introduce code and data ambiguities with control-flow that falls through
into non-code instructions (row C11).

Disassembler fuzz testing: Some obfuscated malware binaries fuzz-
test disassemblers and emulators with random and unusual instructions
(rows B6 and C11). The use of fuzz testing means that it is usually wiser
to leverage an existing, mature disassembler (e.g., XED [19], Ida Pro [52],
ParseAPI [87]) than to write one from scratch. Correctly interpreting
instruction semantics is an even more difficult task, but also one for which
mature tools are available (e.g., ROSE [97], Qemu [8], TSL [66]). Our
conservative parsing techniques are based on the Dyninst framework’s
ParseAPI component, and our symbolic evaluation techniques (which we
use to simplify binary slices) use ROSE to interpret instruction semantics.
Both of these tools are exceptionally well tested.

Obfuscated calls and returns: Binary packer tools frequently use call
and ret instructions where a jmp is more appropriate. These superfluous



126

call and ret instructions create the illusion of additional functions in the
program’s code. We address the problem of superfluous call instructions
by performing look-ahead parsing through the first multi-instruction basic
block at each call target, to determine whether the called code removes
the return address from the call stack (see Section 3.2). Though this is
not a rigorous solution to the problem, it works well in practice for the
packer tools we have studied. While we cannot know exactly how many
superfluous call instructions there are in these binaries, our lookahead
technique significantly simplifies our analysis of obfuscated binaries; we
identify 54 superfluous calls in the ASProtect packer alone, each of whose
targets would have been parsed as a new function.

Superfluous ret instructions do not transfer control flow back to the
fall-through address of a call instruction. We detect superflous ret in-
structions through our call-stack tampering techniques (see Section 3.1),
as ret instructions always target call fall-through addresses in the absence
of stack tampering.

Overlapping functions and basic blocks: Many malware binaries in-
terleave blocks that pertain to different functions, to make it difficult for
analysts to view a whole function at once, as most disassembly tools show
code in a small contiguous range. Ida Pro is a notable exception; it stat-
ically analyzes binary code to build a control-flow graph and can show
the function’s disassembly structured graphically by its intraprocedural
CFG [52]. Unfortunately, Ida Pro does not update its CFG as the program
executes, and therefore it does not produce CFG views for code that is hid-
den from static analysis (e.g., by means of code-packing, code-overwriting,
control-flow obfuscations, etc.). Our SR-Dyninst tool does update its CFG
of the program at run-time, but lacks a GUI for interactive perusal of the
disassembled code. A marriage of Ida Pro’s GUI and our techniques for
updating CFGs would allow for easy perusal of functions with interleaved
blocks, but no such tool exists at present.



127

Overlapping basic blocks occur when valid instructions start at differ-
ent offsets and share code bytes (see Figure 2.4). Some analysis tools do
not account for this possibility and therefore their data structures make
the assumption that zero or one basic blocks and instructions correspond
to any given code address [79, 123]. We design the data structures we
use in SR-Dyninst to account for the possibility that multiple blocks and
instructions can indeed map to any given address. Not only can we cor-
rectly analyze overlapping blocks, but SR-Dyninst correctly instruments
the 17 overlapping blocks used by the PolyEnE, ASProtect, and Yoda’s
Protector packers, and correctly instruments a pair of overlapping blocks
in the Conficker A binary.

Obfuscated constants: Malware authors use constant obfuscations to
make their code harder to understand, with the goal of slowing down
analysts that try to make sense of the program’s instructions. Though
our analysis and instrumentation techniques make no attempt to remove
constant obfuscations, they provide two techniques that allow analysts to
resolve these obfuscations. First, analysts can resolve constant obfusca-
tions with our binary slicing and symbolic evaluation techniques. Second,
analysts can resolve constant obfuscations with our instrumentation tech-
niques, which allow them to observe the values produced by obfuscated
instructions at run-time.

Calling-convention violations: Despite the differences between the
many calling conventions for the x86 platform [46], and the fact that ag-
gressively optimized binaries ignore many of these conventions, compiler-
generated code does adhere to some conventions that do not hold for
obfuscated code. These differences are relevant to our techniques because
they may induce binary instrumenters to modify binary code based on
the assumption that the original values of some registers do not need to
be preserved across function-call boundaries. In particular, to correctly
instrument the non-standard calling conventions used by obfuscated code,



128

we had to remove Dyninst 7.0’s assumption that caller functions do not
make branching decisions based on the values of status-register flags that
are set by a called function. Instead, SR-Dyninst only assumes that regis-
ters set in a callee function are unused by the caller only if this is proved
by binary slicing techniques [23]. This conservative approach allows us
to correctly instrument the four packed binaries of this study that read
status flags across function boundaries (row C9).

Do-nothing code: Some obfuscated programs incorporate code that
does no useful work, to dilute the interesting parts of the program with
semantic no-ops. Our analysis and instrumentation techniques do not
attempt to eliminate this code, but our structural analysis and instrumen-
tation techniques help users to focus on parts of the program that perform
behaviors they are interested in. For example, the user may use our struc-
tural analysis to identify and only monitor those functions that perform
network communications.

Stolen bytes: The stolen-bytes technique pioneered by ASProtect copies
the first block of a system-library function to another location and re-routes
the program’s control flow through this “stolen” block (see Figure 2.6).
This technique causes one of two problems for instrumenters that use
patch-based techniques, depending on whether the byte-stealing happens
before or after the instrumenter patches the system-library functions. If
the byte-stealing occurs first, the instrumenter’s code patches will have
no effect on the program’s execution, as the library function’s patched
first block will not execute. To detect all system-library calls, we instru-
ment all control transfers that could enter any part of a system-library
function. If, on the other hand, the code-patching occurs first, the packer’s
byte-stealing code will steal the patched code block instead of the original
code block. SR-Dyninst avoids this scenario by shadowing instrumented
system-library functions based on the CAD-compensation techniques of
Section 5.3. Thus, when the CAD-sensitive instructions in the packed



129

program steal bytes from system-library functions, they steal original code
bytes and not the patched code that Dyninst places at the function’s entry
points. We verify the correctness of these techniques by successfully instru-
menting the ASProtect binary and logging its invocations of system-library
functions.

Self-checksumming: Packers that employ self-checksumming binaries
take a checksum over the program’s code bytes and then recalculate that
checksum at run-time to detect modifications to portions of the program’s
code or data. Our instrumentation algorithm hides the modifications
it makes to the binary with the CAD-compensation techniques that we
described in detail in Section 5.3. We evaluated the efficiency of these
techniques by applying them to non-defensive binaries in in Section 5.4.
This study of packed binaries demonstrates that these techniques can
stealthily instrument defensive binaries by successfully instrumenting
ASProtect, Yoda’s Protector, and PECompact, each of which applies self-
checksumming to its code (rows D6, D7).

Anti-OEP finding: Finding the original entry point of a packed binary
is an important step towards creating unpacked versions of packed binaries
(see Section 2.2 for details on binary unpacking techniques). Malware
analysts are often interested in creating unpacked binaries because they
can then build structural analyses by applying static analysis tools to
these unpacked binaries. Our techniques create structural analyses of
packed binaries without needing to create an unpacked version. For this
reason, we make no attempt to identify the original entry point of packed
programs.

Payload-code modification: Some packed binaries modify the pay-
load code that they pack as a second means of defending against binary
unpacking techniques. In particular, they wish to prevent the analyst from
bypassing their defensive packer code, and do so by hooking the packed
payload code with control transfers that invoke packer code. We are un-



130

aware of any generally applicable techniques that automate a solution to
the problem of removing these payload-code modifications. Fortunately,
these techniques do not present a problem for our analysis and instrumen-
tation techniques, as we analyze packed binaries as a whole and have no
need to separate packer code from malicious payload code.

6.2 Malware Analysis Results

Analysts at large security companies receive tens of thousands of new
malware samples each day [86] and must process them efficiently and
safely to determine which samples are of greatest interest. We use SR-
Dyninst to create a customizable malware analysis factory that performs
efficient batch-processing of malware binaries in an isolated environment.
Our factory leverages our instrumentation and analysis techniques and
is therefore able to find and analyze code that is beyond the reach of
static or dynamic analysis alone. In its default configuration, our factory
processes a collection of malware binaries, and for each one it outputs
program CFGs that are annotated with code-coverage information, logs
of invoked Windows API calls, and a stackwalk at the program’s first
network communication.

Malware analysts can easily customize our factory to achieve their
desired analysis goals. Analyzing defensive malware binaries using SR-
Dyninst requires no more skill from the analyst than performing the same
task with Dyninst 7.0 on a conventional binary. In building analysis tools
for Dyninst, malware analysts can take advantage of Dyninst’s full analysis
and instrumentation capabilities, for example, its ability to walk the pro-
gram’s call stacks, analyze and instrument functions, loops, basic blocks,
and instructions, and much more.

To use Dyninst, the analyst writes a tool that links against the Dyninst
library. The default configuration of our malware analysis factory is based



131

on a user tool that we wrote ourselves and whose main task is to perform
code coverage over the malware binary. More precisely, our tool uses
Dyninst to instrument every basic block in the malware program, (both
statically present and dynamically unpacked blocks) and to remove the
instrumentation from a block once it has executed. Our tool halts the
malware at the point that it attempts its first network communication,
exits, or reaches a 30-minute timeout. At that time, our tool uses Dyninst
to walk the malware’s call stacks, and prints out the details of each stack
frame. Our tool also prints out Dyninst’s control-flow graph of the binary
in Graphviz format [41]. Each node in the CFG represents a basic block in
the binary and is labeled with its address, though our CFG also includes
nodes for the first blocks of invoked system library functions that it labels
with their function names. We also encode our code-coverage results into
this graph, by coloring basic blocks to distinguish between basic blocks
that executed and blocks that did not. Writing user tools for Dyninst
is quite simple; our tool specifies its code-coverage instrumentation in
only fifty lines, and most of the remainder of the program is dedicated to
producing our labeled CFG in Graphviz format.

We set up our malware analysis factory on an air-gapped system with
a 32-bit Intel-x86 processor running Windows XP with Service Pack 2,
inside of VMWare Server. In the host OS we wrote a script that processes a
user-specified list of malware executables one at a time. For each malware
binary in this list, our script hands a malware binary to our Windows VM,
which is configured to automaticaly start execution of the malware under
control of the SR-Dyninst instrumenter. When the malware sample either
terminates, attempts to communicate over the network, or times out, our
script stops the VM, extracts the output log from the VM’s virtual disk
file, and resets the VM to a stable checkpoint.

We analyzed 200 malware samples that were given to us by Offensive
Computing [27] in December 2009. Our tool detected code unpacking in



132

27% of the samples, code overwrites in 16%, and signal-based control flow
in 10%. 33% of the malicious code analyzed by our hybrid techniques
was not part of the dynamic execution trace and would not have been
found by dynamic analysis techniques. In addition to these statistics, for
each malware sample, our factory produced an annotated CFG of its basic
blocks, a log of the Windows API calls that it invoked, and a stackwalk at
the program’s first network communication.

As an example of the kinds of results produced by our factory, in Figure
6.1 and Table 6.1 we show two of its analysis products for the Conficker
A malware binary. In Figure 6.1a we show our annotated CFG of the
Conficker A binary in its entirety, while Figure 6.1b shows an excerpt of
that graph, highlighting the fact that SR-Dyninst has captured static and
dynamic code, both code in the executable and invocations of Windows
system-library functions, and both code that has executed and code that
has not executed but that may be of interest to the analyst. As seen in
Figure 6.1a, the 30% of the blocks that we analyzed with our hybrid analysis
techniques did not execute, and therefore would not have been detected
by a dynamic analysis of Conficker.

Figure 6.1 shows our traversal of Conficker’s call stacks at Conficker’s
first call to the select routine. The contextual information provided by
stackwalks is extremely helpful to a human analyst, as is well-attested by
users of interactive debugger tools such as GDB. As seen in this stack trace,
we are able to identify the stack frames of functions in Conficker for which
we lack symbol information, which is an important benefit of our analysis
capabilities. While existing stackwalking techniques are accurate only
for statically analyzable code [69], our hybrid analyses enable accurate
stackwalking of obfuscated malware by virtue of having analyzed all of
the code that could be executing at any given time.



133

statically 
analyzable 

code

expanded
in (b)

(a)

library func 

non-
executed 
block

executed 
block

(b)

Figure 6.1: Two views of Conficker A’s control flow graph. The CFG in
part (a) can be explored in an interactive viewer, as shown in the excerpt
from part (b). Conficker’s statically analyzable unpacker code is marked
in Figure (a), the rest of the code in the CFG is dynamically unpacked.
As seen in part (b), basic blocks that have executed are colored in red,
non-executed blocks are in grey, and system-library functions are labeled
in white rectangles.



134

Conficker’s communications thread
top pc=7c901231 DbgBreakPoint_7c901230 in ntdll.dll [Win DLL]

pc=10003c83 DYNbreakPoint_10003c70 in dyn_RT.dll [Instrument.]
pc=100016f7 DYNstopThread_10001670 in dyn_RT.dll [Instrument.]
pc=71ab2dc0 select_71ab2dc0 in WS2_32.dll [Win DLL]

base pc=41f134 nosym1f058_41f058 in cf.exe [Conficker]

Conficker’s main thread
top pc=7c90eb8f KiFastSystemCall_7c90eb8b in ntdll.dll [Win DLL]

pc=7c80d85c ZwDelayExecution_7c90d84a in ntdll.dll [Win DLL]
pc=7c8023ed SleepEx_7c80239c in kernel23.dll [Win DLL]
pc=7c802451 Sleep_7c802442 in kernel32.dll [Win DLL]
pc=41f20e nosym1f1cd_41f1cd in cf.exe [Conficker]
pc=41a640 nosym1a592_41a592 in cf.exe [Conficker]
pc=41a6eb nosym1a6d7_41a6d7 in cf.exe [Conficker]

base pc=4226b0 start_426f70 in cf.exe [Conficker]

Table 6.1: An SR-Dyninst stack walk taken when the Conficker A binary
executes Winsock’s select routine. We show the call stacks used by both
of Conficker’s threads. The stack walks includes frames from our instru-
mentation, select, and Conficker.



135

7 conclusion

State of the art analysis techniques for malware executables lag signifi-
cantly behind their counterparts for compiler-generated binaries. This
difference is due to the fact that 90% of malware executables actively re-
sist analysis [17]. In particular, most malware binaries obfuscate their
code to impede the static analyses by which binary analysis tools recover
structural information from binary code. Furthermore, many malware bi-
naries employ defenses like self-checksumming [3] to counter the dynamic
techniques by which analysis tools monitor and control the program’s
execution.

The work of this dissertation allows program-binary analysts to study
defensive malware with many of the same foundational techniques that
they have at their disposal when they study non-defensive binaries. In
particular, we provide techniques to build structural analyses of defensive
code, prior to its execution. We also provide stealthy instrumentation
techniques so that analysts can control malware execution based on that
structural analysis without triggering checks based on self-checksumming
or related techniques. We proceed by listing the primary contributions of
this work and then discussing promising directions for future research.

7.1 Contributions

This dissertation develops the following techniques to analyze defensive
malware binaries.

• We develop static techniques for heavily obfuscated code, thereby
building foundational control- and data-flow analyses such as control-
flow graphs and binary slices [23].



136

• We develop the following dynamic techniques to find and analyze
defensive malware code before it executes: dynamic capture instru-
mentation that discovers statically unreachable code, overwrite han-
dling techniques that detect and respond to code overwrites, and
handler-interception techniques that detect and intercept signal and
exception-based control flow. These dynamic techniques trigger
additional parsing at entry points into code that is statically unreach-
able.

• By developing a hybrid analysis algorithm that combines our static
and dynamic techniques, we find and analyze code that is beyond
the reach of either static or dynamic analysis alone, and do so before
this code executes.

• We provide a binary instrumentation technique that modifies the
malware’s code in accordance with the user’s expectations while
hiding its impact from the program. In particular, our stealthy in-
strumentation techniques prevent defensive malware from detecting
our changes to its code, and from detecting that we allocate extra
space for instrumentation code in the malware’s address space.

We demonstrate the utility of these contributions with the following re-
sults:

• We show that our hybrid techniques enable analysis-guided instru-
menters such as Dyninst and Vulcan [113] to operate on malware by
implementing our techniques in SR-Dyninst, which builds on the
code of Dyninst 7.0. By creating SR-Dyninst, we allow Dyninst users
to build tools that analyze defensive malware code in exactly the
same way that they analyze non-defensive binaries. We demonstrate
the efficacy of our tool both on real and representative synthetic
malware samples that are highly defensive.



137

• We built a customizable malware analysis factory on top of SR-
Dyninst [103]. Our factory performs batch-processing of malware
binaries in an isolated environment, producing customizable reports
on the structure and behavior of the malware. This factory allows
security companies to safely and efficiently process new malware
samples in an automated way. The reports produced by our tool
also help these companies determine which samples are of greatest
interest and provide detailed information to help them understand
these samples.

• We customized our malware analysis factory to study the most preva-
lent defensive techniques used by malware binaries. To determine
what those techniques are, we applied our factory to binaries created
by the packer toolkits that malware authors most often use to add
defensive techniques to their binaries [17]. Our factory produces
reports on the defensive techniques used by these binaries. Based
on these reports, we catalog these techniques and report on their
relative frequency and impact.

Some of our contributions to malware analysis and instrumentation
have applications to other types of binary code. In particular, our stealthy
instrumentation techniques are safer and more efficient than instrumenta-
tion techniques used by other prevalent instrumenters, such as PIN [70]
and Dyninst 7.0 [57]. Owing to these benefits of our stealthy instrumen-
tation techniques, our implementation of these techniques will replace
Dyninst 7.0’s instrumentation engine in the next Dyninst release. Another
technique that is directly applicable to non-defensive binary code is our
dynamic capture instrumentation, as non-defensive code may also contain
many indirect control transfers whose targets are not statically analyzable.
These instrumentation techniques would be similarly helpful in analyzing
programs that generate code at run-time, just in time for it to execute.



138

An example of such a program is the Java Virtual Machine (JVM), which
compiles java bytecode into machine-language code sequences at run-
time and then executes them. Our code-overwrite handling techniques
are also useful on this class of programs, as their dynamically generated
code sequences are typically stored in a cache and are overwritten by
new code once the cache is full. Finally, our exception-monitoring tech-
niques also allow us to dynamically resolve exception-based control flow
in non-defensive programs, and update our analysis in response to these
exceptions.

7.2 Future Directions

We see many opportunities to build on this work in ways that will fur-
ther aid efforts to analyze defensive malware. We present two of these
opportunities below.

• Building on the notion that our techniques are useful for broad
categories of programs, we intend to develop different modes of
analysis and instrumentation for different classes of program bi-
naries. At present, our SR-Dyninst implementation allows for two
modes of analysis and instrumentation. The “normal” mode per-
forms Dyninst’s one-time static analysis of the code and instruments
without performing CAD and AVU compensation. We have added
a “defensive” mode that incorporates all of the techniques outlined
in this dissertation. We intend to add an intermediate mode for con-
ventional binaries that uses our dynamic capture instrumentation to
resolve indirect control transfers at run-time, triggering additional
parsing at dynamically identified control flow targets. In addition
to these three modes, we want to develop techniques that will auto-
matically select the appropriate mode based on characteristics of the
program binary.



139

• Our current SR-Dyninst implementation uses the OS-provided de-
bugging interface to monitor program binaries; replacing this depen-
dence with virtual-machine-monitoring (VMM) techniques would
bring two significant advantages. First, we would be able to fully
analze malware that modifies the operating system with rootkit
components. The OS-provided debugger interface only allows us
monitor the user-space components of a program, but VMM tech-
niques sit outside of the guest operating system and monitor it was a
whole, and can therefore monitor rootkits. Second, the use of VMM
techniques would allow us to more fully hide our presence from
the monitored program. At present, a malware program’s rootkit
components can trivially detect our use of the debugger interface.
Furthermore, despite our best efforts to hide our use of the debugger
interface, there are far more ways for a program to detect a debug-
ger process [42] than there are ways to detect the presence of VMM
techniques [43], as these have a much smaller footprint in the guest
virtual machine.

• This work represents a step towards our larger goal of rewriting
defensive malware binaries into working non-defensive binaries
that can be readily analyzed and instrumented by normal binary
analysis tools. Our goal is similar to that of prior tools that have
attempted to create unpacked binaries, as described in Section 2.2.
However, the crucial difference between our techniques is that we
do not attempt to bypass packer metacode when we rewrite these
binaries. This difference means that defensive techniques that make
packer metacode difficult to bypass are irrelevant to our approach,
since we will include all of the packed binary’s code in our rewritten
version of the binary. Analysts have not adopted the approach that
we propose because the changes they would make to the program
binary could be detected by the packer’s metacode. However, our



140

stealthy instrumentation techniques will allow us to modify the
binary while hiding these modifications from its code.

The first step in rewriting a defensive malware binary is to build
up a detailed structural analysis of its code, and this dissertation
provides techniques that do so. The next step is to use this analysis
to rewrite the binary, for example, by writing dynamically unpacked
code into the binary, and adding symbol information to indicate the
locations of the program’s functions. Since the Dyninst 7.0 instru-
menter also includes the ability to rewrite program binaries, we can
naturally extend SR-Dyninst to take advantage of Dyninst’s rewriting
capabilities.



141

references

[1] Anckaert, Bertrand, Matias Madou, and Koen De Bosschere. 2007.
A model for self-modifying code. In Workshop on information hiding,
232–248. Alexandria, VA.

[2] Aspack Software: Aspack and Asprotect. http://www.aspack.com/.

[3] Aucsmith, David. 1996. Tamper resistant software: An implementa-
tion. In Workshop on information hiding, 317–333. Cambridge, U.K.

[4] Babic, Domagoj, Lorenzo Martignoni, Stephen McCamant, and
Dawn Song. 2011. Statically-Directed Dynamic Automated Test
Generation. In International symposium on software testing and analy-
sis (issta). Toronto, Canada.

[5] Balakrishnan, Gogul, and Thomas Reps. 2004. Analyzing memory
accesses in x86 executables. In Conference on compiler construction
(cc), 5–23. New York, NY.

[6] Barham, Paul, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003.
Xen and the art of virtualization. In Symposium on operating systems
principles. Bolton Landing, NY.

[7] Bayer, Ulrich, Andreas Moser, Christopher Kruegel, and Engin Kirda.
2006. Dynamic analysis of malicious code. Journal in Computer
Virology 2(1):66–77.

[8] Bellard, Fabrice. 2005. QEMU, a fast and portable dynamic translator.
In Usenix annual technical conference. Anaheim, CA.

[9] Bernat, Andrew R. 2012. Abstract, safe, timely, and efficient bi-
nary modification. Ph.D. thesis, Department of Computer Sciences,
University of Wisconsin.

http://www.aspack.com/


142

[10] Bernat, Andrew R., and Barton P. Miller. 2011. Anywhere, Any Time
Binary Instrumentation. In Workshop on program analysis for software
tools and engineering (paste). Szeged, Hungary.

[11] Bernat, Andrew R., Kevin A. Roundy, and Barton P. Miller. 2011. Ef-
ficient, Sensitivity Resistant Binary Instrumentation. In International
symposium on software testing and analysis (issta). Toronto, Canada.

[12] BitDefender. 2007. BitDefender anti-virus technology. White Paper.

[13] Böhne, Lutz, and Thorsten Holz. 2008. Pandora’s bochs: Automated
malware unpacking. Master’s thesis, University of Mannheim.

[14] Bruening, Derek. 2004. Efficient, transparent, and comprehensive
runtime code manipulation. Ph.D. thesis, Department of Electri-
cal Engineering and Computer Science, Massachusetts Institute of
Technology.

[15] Bruschi, Danilo, Lorenzo Martignoni, and Mattia Monga. 2007. Code
normalization for self-mutating malware. IEEE Security and Privacy
5(2).

[16] Buck, Bryan R., and Jeffrey K. Hollingsworth. 2000. An api for
runtime code patching. Journal of High Performance Computing Ap-
plications 14(4).

[17] Bustamante, Pedro. 2008. Malware prevalence. Panda Research web
article.

[18] ———. 2008. Packer (r)evolution. Panda Research web article.

[19] Charney, Mark. 2010. Xed2 user guide. http://www.cs.virginia.
edu/kim/publicity/pin/docs/36111/Xed/html/main.html.

http://www.cs.virginia.edu/kim/publicity/pin/docs/36111/Xed/html/main.html
http://www.cs.virginia.edu/kim/publicity/pin/docs/36111/Xed/html/main.html


143

[20] Chiang, Ken, and Levi Lloyd. 2007. A case study of the rustock
rootkit and spam bot. In First conference on hot topics in understanding
botnets. Cambridge, MA.

[21] Chow, Jim, Tal Garfinkel, and Peter M. Chen. 2008. Decoupling
dynamic program analysis from execution in virtual environments.
In Usenix annual technical conference. Boston, MA.

[22] Christodorescu, Mihai, Johannes Kinder, Somesh Jha, Stefan Katzen-
beisser, and Helmut Veith. 2005. Malware normalization. Tech. Rep.
1539, Computer Sciences Department, University of Wisconsin.

[23] Cifuentes, Cristina, and Antoine Fraboulet. 1997. Intraprocedural
static slicing of binary executables. In International conference on
software maintenance (icsm). Los Alamitos, CA.

[24] Cifuentes, Cristina, and Mike Van Emmerik. 1999. Recovery of jump
table case statements from binary code. In International workshop on
program comprehension (icpc). Pittsburgh, PA.

[25] Collake, Jeremy. PECompact executable compressor. http://www.
bitsum.com/pecompact.php.

[26] Collberg, Christian, Clark Thomborson, and Douglas Low. 1998.
Manufacturing cheap, resilient, and stealthy opaque constructs. In
Symposium on principles of programming languages (popl). San Diego,
CA.

[27] Computing, Offensive. 2009. http://www.offensivecomputing.
net.

[28] Coogan, Kevin, Saumya Debray, Tasneem Kaochar, and Gregg
Townsend. 2009. Automatic static unpacking of malware binaries.
In Working conference on reverse engineering. Antwerp, Belgium.

http://www.bitsum.com/pecompact.php
http://www.bitsum.com/pecompact.php
http://www.offensivecomputing.net
http://www.offensivecomputing.net


144

[29] Coward, P.D. 1988. Symbolic execution systems-a review. Software
Engineering Journal 3(6).

[30] Danehkar, Ashkbiz. Yoda’s protector. http://sourceforge.net/
projects/yodap/.

[31] ———. 2005. Inject your code into a portable executable file. http:
//www.codeproject.com/KB/system/inject2exe.aspx.

[32] Dark Paranoid. 1998. Engine of eternal encryption. Moon Bug 7.

[33] De Bus, Bruno, Dominique Chanet, Bjorn De Sutter, Ludo Van Put,
and Koen De Bosschere. 2004. The design and implementation of FIT:
a flexible instrumentation toolkit. In Workshop on program analysis
for software tools and engineering (paste).

[34] Debray, Saumya, and William Evans. 2002. Profile-guided code
compression. In Conference on programming language design and im-
plementation (pldi). Berlin, Germany.

[35] Debray, Saumya, and Jay Patel. 2010. Reverse engineering self-
modifying code: Unpacker extraction. In Working conference on re-
verse engineering. Boston, MA.

[36] Dimitrov, Martin, and Huiyang Zhou. 2009. Anomaly-based bug
prediction, isolation, and validation: an automated approach for
software debugging. In Conference on architectural support for pro-
gramming languages and operating systems (asplos). Washington, D.C.

[37] Dinaburg, Artem, Paul Royal, Monirul Sharif, and Wenke Lee. 2008.
Ether: Malware analysis via hardware virtualization extensions. In
Conference on computer and communications security. Alexandria, VA.

[38] Dunlap, George W., Samuel T. King, Sukru Cinar, Murtaza Bas-
rai, and Peter M. Chen. 2002. Revirt: Enabling intrusion analysis

http://sourceforge.net/projects/yodap/
http://sourceforge.net/projects/yodap/
http://www.codeproject.com/KB/system/inject2exe.aspx
http://www.codeproject.com/KB/system/inject2exe.aspx


145

through virtual-machine logging and replay. In Symposium on oper-
ating systems design and implementation. Boston, MA.

[39] Dux, Bradley, Anand Iyer, Saumya Debray, David Forrester, and
Stephen Kobourov. 2005. Visualizing the behavior of dynamically
modifiable code. In International workshop on program comprehension
(icpc). St. Louis, MO.

[40] Dwing. (Win)Upack. http://wex.cn/dwing/mycomp.htm.

[41] Ellson, John, Emden R. Gansner, Eleftherios Koutsofios, Stephen C.
North, and Gordon Woodhull. 2003. Graphviz and dynagraph -
static and dynamic graph drawing tools. In Graph drawing software.

[42] Falliere, Nicolas. 2007. Windows anti-debug reference. Infocus web
article.

[43] Ferrie, Peter. 2006. Attacks on virtual machine emulators. In Asso-
ciation of anti-virus asia researchers international conference. Auckland,
New Zealand.

[44] ———. 2008. Anti-unpacker tricks. In International caro workshop.
Amsterdam, The Netherlands.

[45] ———. 2008. Anti-unpacker tricks - part one. Virus Bulletin.

[46] Fog, Agner. 2011. Calling conventions for different c++ compilers
and operating systems. http://www.agner.org/optimize/.

[47] FSG: Fast Small Good Packer. 2005. http://www.xtreeme.prv.pl/.

[48] Giffin, Jonathon T., Mihai Christodorescu, and Louis Kruger. 2005.
Strengthening software self-checksumming via self-modifying code.
In Annual computer security applications conference (acsac). Tucson,
AZ.

http://wex.cn/dwing/mycomp.htm
http://www.agner.org/optimize/
http://www.xtreeme.prv.pl/


146

[49] GNU Project - Free Software Foundation. 2011. objdump, gnu man-
uals online. Version 2.22 http://sourceware.org/binutils/docs/
binutils/.

[50] Graf, Tobias. 2005. Generic unpacking - how to handle modified
or unknown PE compression engines? In Virus bulletin conference.
Dublin, Ireland.

[51] Guilfanov, Ilfak. 2005. Using the Universal PE Unpacker Plug-in in-
cluded in IDA Pro 4.9 to unpack compressed executables. Online tu-
torial. http://www.hex-rays.com/idapro/unpack_pe/unpacking.
pdf.

[52] ———. 2011. The IDA Pro disassembler and debugger. DataRescue.
Version 6.2 http://www.hex-rays.com/idapro/.

[53] Guo, Fanglu, Peter Ferrie, and Tzicker Chiueh. 2008. A study of
the packer problem and its solutions. In Symposium on recent ad-
vances in intrusion detection (raid). Cambridge, MA: Springer Berlin /
Heidelberg.

[54] Harris, Luane C., and Barton P. Miller. 2005. Practical analysis of
stripped binary code. SIGARCH Computer Architecture News 33(5).

[55] Hex-Rays Decompiler. 2011. http://hex-rays.com. Version 1.6.

[56] Hind, Michael, and Anthony Pioli. 2000. Which pointer analysis
should I use? In International symposium on software testing and anal-
ysis (issta). Portland, OR.

[57] Hollingsworth, Jeffrey K., Barton P. Miller, and Jon Cargille. 1994.
Dynamic program instrumentation for scalable performance tools.
In Scalable high performance computing conference. Knoxville, TN.

http://sourceware.org/binutils/docs/binutils/
http://sourceware.org/binutils/docs/binutils/
http://www.hex-rays.com/idapro/unpack_pe/unpacking.pdf
http://www.hex-rays.com/idapro/unpack_pe/unpacking.pdf
http://www.hex-rays.com/idapro/
http://hex-rays.com


147

[58] Hunt, Galen, and Doug Brubacher. 1999. Detours: Binary intercep-
tion of win32 functions. In Usenix windows nt symposium. Seattle,
WA.

[59] Institute, Ponemon. 2011. Second annual cost of cyber crime study.

[60] Kang, Ming G., Pongsin Poosankam, and Heng Yin. 2007. Renovo:
A hidden code extractor for packed executables. In Workshop on
recurring malcode. Alexandria, VA.

[61] Kiss, Akos, Jutid Jasz, Gabor Lehotai, and Tibor Gyimothy. 2003.
Interprocedural static slicing of binary executables. In Source code
analysis and manipulation. Amsterdam, The Netherlands.

[62] Kruegel, Christopher, William Robertson, Fredrik Valeur, and Gio-
vanni Vigna. 2004. Static disassembly of obfuscated binaries. In
Usenix security symposium. San Diego, CA.

[63] Lakhotia, Arun, Eric Uday Kumar, and M. Venable. 2005. A method
for detecting obfuscated calls in malicious binaries. Transactions on
Software Engineering 31(11).

[64] Larus, James R., and Eric Schnarr. 1995. Eel: machine-independent
executable editing. ACM SIGPLAN Notices 31(11).

[65] Laurenzano, M., M. Tikir, L. Carrington, and A. Snavely. 2010. PE-
BIL: Efficient static binary instrumentation for linux. In Ieee in-
ternational symposium on performance analysis of systems and software
(ispass). White Plains, NY, USA.

[66] Lim, Junghee, and Thomas Reps. 2008. A system for generating
static analyzers for machine instructions. In International conference
on compiler construction (cc). Budapest, Hungary.



148

[67] Lindholm, Tim, and Frank Yellin. 1999. Java virtual machine specifi-
cation. 2nd ed. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc.

[68] Linn, Cullen, and Saumya Debray. 2003. Obfuscation of executable
code to improve resistance to static disassembly. In Conference on
computer and communications security. Washington, D.C.

[69] Linn, Cullen, Saumya Debray, Gregory Andrews, and Benjamin
Schwarz. 2004. Stack analysis of x86 executables. Manuscript.

[70] Luk, Chi-Keung, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. 2005. PIN: Building customized program analysis
tools with dynamic instrumentation. In Conference on programming
language design and implementation (pldi). Chicago, IL.

[71] Madou, Matias, Bertrand Anckaert, Bjorn De Sutter, and Koen
De Bosschere. 2005. Hybrid static-dynamic attacks against software
protection mechanisms. In Acm workshop on digital rights management.
Alexandria, VA.

[72] Maebe, Jonas, and Koen De Bosschere. 2003. Instrumenting self-
modifying code. In Workshop on automated and algorithmic debugging.
Ghent, Belgium.

[73] Maebe, Jonas, Michiel Ronsse, and Koen De Bosschere. 2002. DIOTA:
Dynamic instrumentation, optimization and transformation of ap-
plications. In Workshop on binary translation held in conjunction with
the conference on parallel architectures and compilation techniques (pact).
Charlottesville, VA.

[74] Martignoni, Lorenzo, Mihai Christodorescu, and Somesh Jha. 2007.
Omniunpack: Fast, generic, and safe unpacking of malware. In



149

Annual computer security applications conference (acsac). Miami Beach,
FL.

[75] Miller, Barton P., Lars Fredriksen, and Bryan So. 1990. An empirical
study of the reliability of unix utilities. Communications of the ACM
33(12).

[76] Moser, Andreas, Christopher Kruegel, and Engin Kirda. 2007. Ex-
ploring multiple execution paths for malware analysis. In Symposium
on security and privacy. Oakland, CA.

[77] ———. 2007. Limits of static analysis for malware detection. In
Annual computer security applications conference (acsac). Miami Beach,
FL.

[78] Muth, Robert, and Saumya Debray. 2000. On the complexity of
flow-sensitive dataflow analyses. In Symposium on principles of pro-
gramming languages (popl). Boston, MA.

[79] Nanda, Susanta, Wei Li, Lap-Cung Lam, and Tzi cker Chiueh. 2006.
BIRD: Binary interpretation using runtime disassembly. In Sympo-
sium on code generation and optimization (cgo). New York, NY.

[80] Nethercote, Nicholas, and Julian Seward. 2007. How to shadow
every byte of memory used by a program. In Conference on virtual
execution environments (vee). San Diego, CA.

[81] ———. 2007. Valgrind: a framework for heavyweight dynamic bi-
nary instrumentation. In Conference on programming language design
and implementation (pldi). San Diego, CA.

[82] Nguyen, Anh M., Nabil Schear, HeeDong Jung, Apeksha Godiyal,
Sam T. King, and Hai Nguyen. 2009. Mavmm: A lightweight and
purpose-built vmm for malware analysis. In Annual computer secu-
rity applications conference (acsac). Honolulu, HI.



150

[83] Norton. 2010. Cybercrime report: The human impact.

[84] ———. 2011. Cybercrime report.

[85] Oberhumer, Markus F.X.J., Laszlo Molnar, and John F. Reiser.
2012. UPX: the Ultimate Packer for eXecutables. http://upx.
sourceforge.net/.

[86] Panda Security. 2011. Annual report Pandalabs 2010.

[87] Paradyn Tools Project. 2011. ParseAPI programmer’s guide. Version
7.0.1 http://www.paradyn.org/html/manuals.html.

[88] ———. 2011. StackwalkerAPI programmer’s guide. Version 2.0
http://www.paradyn.org/html/manuals.html.

[89] Payne, Bryan D. 2011. LibVMI http://vmitools.sandia.gov/. Ver-
sion 0.6.

[90] Payne, Bryan D., Martim Carbone, and Wenke Lee. 2007. Secure and
flexible monitoring of virtual machines. In Annual computer security
applications conference (ACSAC 2007). Miami Beach, FL.

[91] Peiser, Sean, Matt Bishop, Sidney Karin, and Keith Marzullo. 2007.
Analysis of computer intrusions using sequences of function calls.
IEEE Trans. Dependable Secur. Comput. 4(2):137–150.

[92] Perriot, Frederic, and Peter Ferrie. 2004. Principles and practise of
x-raying. In Virus bulletin conference. Chicago, IL.

[93] Popov, Igor, Saumya Debray, and Gregory Andrews. 2007. Binary
obfuscation using signals. In Usenix security symposium. Boston, MA.

[94] Porras, Phillip, Hassen Saidi, and Vinod Yegneswaran. 2007. A
multi-perspective analysis of the storm (peacomm) worm. Tech.
Rep., SRI International.

http://upx.sourceforge.net/
http://upx.sourceforge.net/
http://www.paradyn.org/html/manuals.html
http://www.paradyn.org/html/manuals.html
http://vmitools.sandia.gov/


151

[95] ———. 2009. A foray into conficker’s logic and rendezvous points.
Tech. Rep., SRI International.

[96] Prakash, Chandra. 2007. Design of x86 emulator for generic unpack-
ing. In Assocation of anti-virus asia researchers international conference.
Seoul, South Korea.

[97] Quinlan, Dan. 2000. Rose: Compiler support for object-oriented
frameworks. In Conference on parallel compilers (cpc2000). Aussois,
France.

[98] Quist, Danny, and Valsmith. 2007. Covert debugging: Cirvumvent-
ing software armoring techniques. In Blackhat usa. Las Vegas, NV.

[99] Quist, Danny A., and Lorie M. Liebrock. 2009. Visualizing compiled
executables for malware analysis. In Workshop on visualization for
cyber security. Atlantic City, NJ.

[100] Rosenblum, Nathan E., Gregory Cooksey, and Barton P. Miller. 2008.
Virtual machine-provided context sensitive page mappings. In Con-
ference on virtual execution environments (vee). Seattle, WA.

[101] Rosenblum, Nathan E., Barton P. Miller, and Xiaojin Zhu. 2010. Ex-
tracting compiler provenance from program binaries. In Workshop
on program analysis for software tools and engineering (paste). Toronto,
Canada.

[102] Rosenblum, Nathan E., Xiaojin Zhu, Barton P. Miller, and Karen
Hunt. 2008. Learning to analyze binary computer code. In Conference
on artificial intelligence (aaai). Chicago, IL.

[103] Roundy, Kevin A., and Barton P. Miller. 2010. Hybrid analysis and
control of malware. In Symposium on recent advances in intrusion
detection (raid). Ottawa, Canada.



152

[104] Royal, Paul, Mitch Halpin, David Dagon, Robert Edmonds, and
Wenke Lee. 2006. PolyUnpack: Automating the hidden-code ex-
traction of unpack-executing malware. In Annual computer security
applications conference (acsac). Miami Beach, FL.

[105] Russinovich, Mark, and Bryce Cogswell. 1997. Windows NT system
call hooking. Dr. Dobb’s Journal 22(1).

[106] Rutkowska, Joanna, and Alexander Tereshkin. 2007. IsGameOver(),
anyone? In Blackhat usa. Las Vegas, NV.

[107] Schwarz, Benjamin, Saumya Debray, and Gregory Andrews. 2002.
Disassembly of executable code revisited. In Working conference on
reverse engineering. Richmond, VA.

[108] Schwarz, Benjamin, Saumya Debray, Gregory Andrews, and
Matthew Legendre. 2001. PLTO: A link-time optimizer for the Intel
IA-32 architecture. In 2001 workshop on binary rewriting. Barcelona,
Spain.

[109] Scott, Dana, and Christopher Strachey. 1971. Toward a mathematical
semantics for computer languages. Programming Research Group
Technical Monograph PRG-6, Oxford Univ. Computing Lab.

[110] Sharif, Monirul, Andrea Lanzi, Jonathon Giffin, and Wenke Lee.
2008. Impeding malware analysis using conditional code obfusca-
tion. In Network and distributed system security symposium (ndss). San
Diego, CA.

[111] Shende, S., and A. D. Malony. 2006. The tau parallel performance sys-
tem. International Journal of High Performance Computing Applications
20(2):287–311.



153

[112] Sites, Richard L., Anton Chernoff, Matthew B. Kirk, Maurice P.
Marks, and Scott G. Robinson. 1993. Binary translation. Communi-
cations of the ACM 36(2).

[113] Srivastava, Amitabh, Andrew Edwards, and Hoi Vo. 2001. Vulcan:
Binary transformation in a distributed environment. Tech. Rep.
MSR-TR-2001-50, Microsoft Research.

[114] Srivastava, Amitabh, and Alan Eustace. 1994. ATOM: a system
for building customized program analysis tools. In Conference on
programming language design and implementation (pldi). Orlando, FL.

[115] Stepan, Adrian E. 2005. Defeating polymorphism: beyond emulation.
In Virus bulletin conference. Dublin, Ireland.

[116] Stewart, Joe. 2007. Unpacking with ollybone. Online tutorial. http:
//www.joestewart.org/ollybone/tutorial.html.

[117] Szappanos, Gabor. 2007. Exepacker blacklisting. Virus Bulletin.

[118] Theiling, Henrik. 2000. Extracting safe and precise control flow from
binaries. In Conference on real-time computing systems and applications.
Cheju Island, South Korea.

[119] Trilling, Steve. 2008. Project green bay–calling a blitz on packers.
CIO Digest: Strategies and Analysis from Symantec.

[120] Troger, Jens, and Cristina Cifuentes. 2002. Analysis of virtual method
invocation for binary translation. In Working conference on reverse
engineering. Richmond, VA.

[121] Tucek, Joseph, James Newsome, Shan Lu, Chengdu Huang, Spiros
Xanthos, David Brumley, Yuanyuan Zhou, and Dawn Song. 2007.
Sweeper: A lightweight end-to-end system for defending against
fast worms. In EuroSys. Lisbon, Portugal.

http://www.joestewart.org/ollybone/tutorial.html
http://www.joestewart.org/ollybone/tutorial.html


154

[122] Van Emmerik, Mike, and Trent Waddington. 2004. Using a decom-
piler for real-world source recovery. In Working conference on reverse
engineering (wcre). Delft, The Netherlands.

[123] Vigna, Giovanni. 2007. Static disassembly and code analysis. In Mal-
ware detection, vol. 35 of Advances in Information Security. Springer.

[124] Willems, Carsten, Thorsten Holz, and Felix Freiling. 2007. Toward
automated dynamic malware analysis using CWSandbox. In Sym-
posium on security and privacy. Oakland, CA.

[125] Wurster, Glenn, P. C. Van Oorschot, and Anil Somayaji. 2005. A
generic attack on checksumming-based software tamper resistance.
In Symposium on security and privacy. Oakland, CA.

[126] Yason, Mark Vincent. 2007. The art of unpacking. In Blackhat usa.
Las Vegas, NV.

[127] Yegneswaran, Vinod, Hassen Saidi, and Phillip Porras. 2008. Eureka:
A framework for enabling static analysis on malware. Tech. Rep.
SRI-CSL-08-01, SRI International.

[128] Yuschuk, Oleh. 2000. OllyDbg. Version 1.10 http://www.ollydbg.
de.

[129] Zhou, Jingyou, and Giovanni Vigna. 2004. Detecting attacks that
exploit application-logic errors through application-level auditing.
In Annual computer security applications conference (acsac). Tucson, AZ,
USA.

http://www.ollydbg.de
http://www.ollydbg.de

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background and Challenges
	Techniques
	Contributions
	Results

	Background and Related Work
	Methodology
	The Obfuscation Techniques
	Obfuscation Statistics
	Summary

	Static Analysis
	Accurate Code Parsing
	Accurate Function Identification

	Dynamic Code Discovery Techniques
	Instrumentation-Based Code Capture
	Response to Overwritten Code
	Exception-Handler Analysis

	Stealthy Instrumentation
	Background
	Algorithm Overview
	CAD and AVU Detection and Compensation
	Results

	Malware Analysis Results
	Analysis of Packed Binaries
	Malware Analysis Results

	Conclusion
	Contributions
	Future Directions

	References

