
0

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering
Algorithm

Benjamin Welton, University of Wisconsin
Barton P. Miller, University of Wisconsin

Density-based clustering algorithms are a widely-used class of data mining techniques that can find irreg-
ularly shaped clusters and cluster data without prior knowledge of the number of clusters the data con-
tains. DBSCAN is the most well-known density-based clustering algorithm. We introduce our extension of
DBSCAN, called Mr. Scan, which uses a hybrid/hybrid parallel implementation that combines the MRNet
tree-based distribution network with GPU-equipped nodes. Mr. Scan avoids the problems encountered in
other parallel versions of DBSCAN, such as scalability limits, reduction in output quality at large scales,
and the inability to effectively process dense regions of data. Mr. Scan uses effective data partitioning and
a new merging technique to allow data sets to be broken into independently processable partitions without
the reduction in quality or large amount of node-to-node communication seen in other parallel versions of
DBSCAN. The dense box algorithm designed as part of Mr. Scan allows for dense regions to be detected and
clustered without the need to individually compare all points in these regions to one another. Mr. Scan was
tested on both a geolocated Twitter dataset and image data obtained from the Sloan Digital Sky Survey.
In testing Mr. Scan we performed end-to-end benchmarks measuring complete application run time from
reading raw unordered input point data from the file system to writing the final clustered output to the file
system. The use of end-to-end benchmarking gives a clear picture of the performance that can be expected
from Mr. Scan in real world use cases. At its largest scale, Mr. Scan clustered 6.5 billion points from the
Twitter dataset on 8,192 GPU nodes on Cray Titan in 7.5 minutes.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems
- Distributed Applications; I.5.3 [Pattern Recognition]: Clustering

General Terms: Density Based Clustering, Distributed Systems, General Purpose Graphics Processors

Additional Key Words and Phrases: DBSCAN, MRNet, GPU, CUDA

ACM Reference Format:
Benjamin Welton and Barton P. Miller, 2015. Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based
Clustering Algorithm. ACM 0, 0, Article 0 (0), 22 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Modern leadership class supercomputers tie together a diverse collection of resources,
such as CPUs, GPUs, and high speed interconnects. To get maximum performance on
leadership class machines, an application must efficiently use (and balance the use of)
these resources. In this paper, we present Mr. Scan [Welton et al. 2013] [Welton and
Miller 2014] a new extreme scale density based clustering algorithm that uses a hy-
brid/hybrid model to effectively utilize all the resources available on leadership class
machines. The term hybrid computing has been used when a program incorporates
multiple types of resources. A well know example of hybrid computing is the combi-
nation of distributed computing across nodes with multi-threading within a node, as
exemplified by combining MPI [Lusk et al. 1996] with OpenMP [Dagum and Menon
1998] or combining MapReduce [Dean and Ghemawat 2008] with pthreads [Mueller
1993]. Another type of hybrid computing combines a general purpose CPU and one or
more GPUs. We describe a computation as hybrid/hybrid when it combines communi-
cation, CPU, and GPU resources, with the goal to achieve efficiency at leadership-class
computing scales. With the hybrid/hybrid architecture of Mr. Scan we are able to scale
to multi-billion point datasets and to a large number of GPU nodes (8192 at our maxi-
mum tested scale).

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:2 B. Welton et al.

Clustering is the act of classifying data points, where data points that are consid-
ered similar are contained in the same cluster and dissimilar points are in different
clusters. Clustering helps researchers and data analysts gain insight into their data,
e.g., identifying and tracking objects such as gamma-ray bursts in sky observation
data [Davidoff and Wozniak 2003], monitoring the growth and decline of forests in the
United States [Mills et al. 2011] and identifying performance bottlenecks in large-scale
parallel applications [Gamblin et al. 2010]. We focus on a type of clustering algorithm
called density-based clustering, which classifies points into clusters based on the den-
sity of the region surrounding the point. Density-based clustering detects the number
of clusters in a dataset without prior knowledge and is able to find clusters with non-
convex shapes.

Datasets such as the Sloan Digital Sky Survey [sds 2013] and geo-located tweets
from Twitter [twi 2013] are useful to cluster but are too large (i.e., billions of data
points) to be practically computed on a small or medium-sized parallel computer (100’s
to 1000’s of nodes) by any non-trivial clustering algorithm. Clustering extremely large
datasets requires the largest-scale parallel systems that are in use today. However,
there are few distributed density-based clustering algorithms designed to run on these
large-scale systems. Existing distributed density-based algorithms typically reduce the
quality of the output when compared to the single-node version, or they do not scale to
the sizes needed for these datasets.

Mr. Scan is our extension of the DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) clustering algorithm [Ester et al. 1996]. DBSCAN is the
most widely cited density-based clustering algorithm and has been shown to be well-
suited for data analysis in many fields, e.g., the analysis of laser ablated mate-
rial [Sonntag et al. 2011] and tracking population movement by use of geotagged pho-
tographs [Kisilevich et al. 2010]. The benefits DBSCAN has over other clustering al-
gorithms are that it has the ability to find irregularly shaped clusters, it distinguishes
data points that are considered noise (i.e., points in low density regions) from clusters,
and it is able to cluster data where the number of clusters in the dataset is not known
in advance. These features come at a cost, since the computational complexity of DB-
SCAN is O(n2) where n is the number of points in the input dataset. This complexity
is a result of the calculation of a n x n matrix containing the distances between all
points. This matrix can be replaced with a spatial tree index which reduces the cost of
distance calculations leading to an average case complexity of O(n log n).

Mr. Scan is the first implementation of DBSCAN that can scale efficiently to multi-
billion data points and the first distributed DBSCAN algorithm that incorporates the
use of GPUs. It uses a programming paradigm that organizes processes into a multi-
level tree with an arbitrary topology. In this multi-level tree paradigm, DBSCAN cal-
culations are done on the GPU leaf nodes and these results are combined on non-
leaf nodes. Mr. Scan is also the first clustering algorithm to use this programming
paradigm to our knowledge.

The Mr. Scan algorithm is designed to solve the end-to-end problem. The end-to-end
problem is defined as the total time to go from raw unordered input on disk to final
clustered output written to the file system. The usage of the end-to-end metric for mea-
suring performance provides a complete view of performance and more closely relates
to performance in real world usage of density based clustering algorithms. Using the
end-to-end metric as a performance measure, we show that the multi-level tree design
of Mr. Scan can cluster 6.5 billion points using 8,192 GPU nodes with a total time of
7.5 minutes.

The ability to cluster billions of data points with DBSCAN can only be realized if
the key obstacles to scaling DBSCAN are overcome: load balancing, cluster merging,
and distributing data advantageously. The running time of DBSCAN increases as a

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:3

function of the spatial density of input data points, which causes a load imbalance
when compute nodes contain regions of varying density. We modify DBSCAN to find
the most dense regions and infer their membership in a cluster without evaluating
the points inside these dense regions. Results from DBSCAN compute nodes must be
merged accurately without requiring the entirety of each cluster. We resolve this by
requiring a small, bounded number of representative points per cluster to perform a
merge. Finally, data must be distributed in a manner that balances DBSCAN’s cluster-
ing operation and the overhead of merging clusters. We achieve this with a heuristic
that spatially decomposes the data into partitions to balance the merge overhead. Each
partition contains roughly equal point counts to aid in balancing DBSCAN clustering
time.

In Section 2 we describe the DBSCAN algorithm and discuss other methods that
attempt to parallelize DBSCAN and other related work. Section 3 introduces the Mr.
Scan algorithm and describe how it overcomes DBSCAN’s scaling obstacles. Section 4
describes the experiments used to benchmark Mr. Scan using data from the microblog-
ging service Twitter and the Sloan Digital Sky Survey. Section 5 presents and dis-
cusses the scaling results of both datasets. Finally, Section 6 presents our concluding
thoughts.

2. BACKGROUND AND RELATED WORK
Due to DBSCAN’s popularity among density-based clustering algorithms, optimization
and parallelization of the algorithm has been widely studied [Ali et al. 2010]. We first
explain the DBSCAN algorithm in detail, then present previous parallelization efforts
that are most significant to the parallelization style of Mr. Scan along with the most
scalable algorithms.

2.1. The DBSCAN Clustering Algorithm
DBSCAN clusters data points by density. Its notion of density comes from its two
parameters known as Eps and MinPts. DBSCAN operates by finding the Eps-
neighborhood of each point. The Eps-neighborhood of a point p is the set of points
that are located within Eps distance of p. The point p is considered a core point if there
are at least MinPts points in its Eps-neighborhood. All other points are classified as
non-core points. Non-core points can have two distinctions: a border point or a noise
point. A border point is a non-core point that contains at least one core point in its
Eps-neighborhood, whereas a noise point does not.

A cluster is formed by the set of core and border points reachable from a particular
core point. Once an unvisited core point is found, it is considered a new cluster along
with its Eps-neighborhood. This cluster is expanded by finding the Eps-neighborhood
of each point classified in the cluster until all points that are reachable from the first
core point are found. For this reason, DBSCAN’s clustering results can vary slightly
if the order in which Eps-neighborhoods are discovered is changed. Figure 1 shows an
example of the DBSCAN clustering process.

The performance of the DBSCAN algorithm varies greatly based on the presence
(or lack thereof) of a spatial index. DBSCAN without a spatial index is O(n2) in time
complexity. This is due to not limiting the amount of points compared by the distance
function. Without a spatial index all points in the dataset must be compared with each
other to determine which points are core. A spatial index however reduces the number
of points which must be compared by limiting the search to a smaller subset of points
that are in the region of the point being queried. The average case complexity improves
to O(n log n) by use of a spatial index (e.g., R*-tree or KD-tree).

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:4 B. Welton et al.

Fig. 1: DBSCAN clustering example showing classification of core and non-core points
in a dataset.

2.2. Past Optimizations of DBSCAN
DBSCAN has been parallelized by multiple past projects. One of the first was PDB-
SCAN [Xu et al. 1999]. This algorithm used a distributed R*-tree to partition the
dataset among many compute nodes. Distributed R*-trees partition data but they
replicate the entire index on each node. If a neighborhood query included an area of
the dataset that resides on different node, the node that started the query must send
a message to obtain the data. This algorithm showed linear speedup up to 8 nodes, but
the amount of messages sent grew super-linearly in most cases, which hampered its
scalability. Another algorithm, DBDC [Januzaj et al. 2004], assumes that the dataset
to cluster is already distributed among the compute nodes. DBDC pioneered the idea of
using many slave nodes to cluster a portion of the dataset and merging the final result
at a master node, and also the idea of sending a smaller number of points to repre-
sent the locally found clusters to increase scalability. This technique scaled linearly
up to 30 nodes, but the manner in which representative points were picked decreased
the quality of the clustering output when compared to traditional DBSCAN, and the
assumption of already distributed data further degraded quality.

There have been two Map/Reduce implementations of DBSCAN, MR-DBSCAN [He
et al. 2011] and DBSCAN-MR [Dai and Lin 2012]. MR-DBSCAN was able to cluster 1.9
billion points of 2D taxi-cab traces in approximately 5,800 seconds. However, the au-
thors preprocessed the data prior to running DBSCAN to reduce the negative effects
of high-density regions and did not account for this preprocessing time in their re-
sults (they did not measure end-to-end time). Also, the parameters for MR-DBSCAN’s
runs were chosen solely for speed and not for quality of the data analysis [He 2013].
Aside from these issues, neither of the Map/Reduce implementations showed near-
linear speedup nor the ability to scale weakly and only demonstrated their algorithms
on up to 12 multi-core nodes.

Recently, a distributed heuristic based approach for approximating DBSCAN has
been developed called Paridcle [Patwary et al. 2014]. Paridcle uses a density based
sampling approach to dramatically improve performance by limiting the number of
points that need to be processed by DBSCAN. Unlike previous DBSCAN implementa-

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:5

tions that attempted a density based sampling approach, Paridcle is able to maintain a
high quality for output by carefully constructing the sample for which to perform DB-
SCAN on. The authors show that Paridcle is capable of near linear speed up, showing a
performance of 3917x while using 4096 cores. While Paridcle shows good performance,
the usage of an approximate DBSCAN algorithm differs from the parallel DBSCAN
approach of Mr. Scan where no quality reducing approximations are used.

Several algorithms attempted to improve the single-core performance of DBSCAN.
TI-DBSCAN [Kryszkiewicz and Lasek 2010] uses the triangle inequality. The input
dataset is sorted to determine a point’s Eps-Neighborhood, which is similar to the way
our GPU implementation of the algorithm uses its KD-tree. Another version of DB-
SCAN [Kryszkiewicz and Skonieczny 2005] attempts to remove core points early from
the DBSCAN calculation. This idea is similar to Mr. Scan’s dense box optimization,
but their method appears that it would change the result of DBSCAN significantly,
even though the authors do not comment on this effect in the paper. In comparison,
Mr. Scan’s dense region calculation has an extremely small impact on quality when
compared to traditional DBSCAN.

2.3. The Multicast Reduction Network
The Multicast Reduction Network (MRNet) [Roth et al. 2003] is a communication
framework for creating scalable applications by providing a tree based overlay net-
work abstraction to the layout of processes in a distributed application. A tree based
overlay network is ideal for scaling because it limits the amount of work any single
process must perform. If the workload increases to a point where a process would be
overloaded (compute or I/O bound), child nodes can be added to spread the workload
among more processes (and nodes). In order for a tree based network to achieve this
property the amount of data processed by each node must be identical. This means the
output produced by each process in the tree should be equal to or less than the amount
of data received. Achieving this goal is accomplished by having processes preform re-
duction operations (such as summation, discard, and other operations) on data as it
passes through the node.

The MRNet framework handles the creation of the processes in the tree and the
communication infrastructure between the processes. User defined reduction/aggre-
gation and multicast filters can be supplied (in the form of shared library objects) to
MRNet for use in the tree to reduce data as it moves up to the root. Users of MR-
Net can specify the exact topology of the tree and the placement of processes on nodes
via a topology file. The MRNet framework has been used extensively to build highly
scaleable tools [Schulz et al. 2005] [Arnold et al. 2007] [Ahn et al. 2009] and is used by
Mr. Scan to achieve good scalability on leadership class machines.

3. THE MR. SCAN ALGORITHM
Mr. Scan is a hybrid/hybrid implementation of the DBSCAN algorithm with four
phases: partition, cluster, merge, and sweep. Mr. Scan starts with a single input file on
a parallel file system and writes as output a file of the points included in a cluster and
their cluster IDs as output. The input points are contained in a single binary or text
file. Each input point has a unique ID number, coordinates, and an optional weight
that can be used for analysis of the clustered output. Figure 2 gives an overview of
the Mr. Scan algorithm. All four phases of the Mr. Scan algorithm take place using
the same tree layout of processes and the layout of the tree (number of leaf nodes and
fanout) is user definable.

In the partition phase, the input file is read by the leaf nodes of the partitioner. The
partitioner is responsible for creating one partition per clustering process (one parti-
tion per leaf node) from a given input file. The input file can contain billions of points

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:6 B. Welton et al.

Fig. 2: Overview of the Mr. Scan algorithm

and reach sizes up to 300 GB, so the partitioner is distributed using MRNet [Roth
et al. 2003] to parallelize this step. Each worker process of the partitioner moves the
completed partitions (via message passing) to the node responsible for processing that
partition. The cluster phase begins after all leaf nodes have received the completed
partitions they are responsible for processing. Each Mr. Scan leaf process clusters its
assigned partition using our GPU version of DBSCAN and picks a small, constant set
of points to represent each cluster. The representative points are sent to the interme-
diate processes to start the merge phase where the clusters are progressively merged
by each level of intermediate processes until they reach the root. The root performs
the final merge and assigns a global ID to each cluster. Mr. Scan then starts the sweep
phase, and sends the global cluster IDs down the tree, where each point is identified
with its correct global cluster ID and written to the output file in parallel by the leaf
processes.

In this section, we describe the design of each of Mr. Scan’s phases, and how they
solve the three challenges in scaling DBSCAN: load imbalance, distributed merge, and
data distribution.

3.1. Partitioner
In addition to the basic goal of dividing an input dataset into n partitions given n leaf
processes, we have three main goals for the design of Mr. Scan’s partitioner. First and
most important, the partitioner must produce partitions capable of yielding a correct
DBSCAN result when clustered and merged. Second, the output partitions must have
roughly equal computational costs when being clustered. The partitioner does not need
to produce perfectly balanced partitions, since the dense box optimization described in
Section 3.2.3 plays a large role in controlling load balance. However, the partitioner
does hold some responsibility for controlling the load balance during the cluster phase.
Third, the partitioner must perform well enough to avoid becoming a significant por-
tion of Mr. Scan’s overall time, especially as the size of the input dataset grows. This
means as few operations as possible should be I/O bound, and leads to the design de-
cision of distributing the partitioner among many nodes. We will discuss how we meet
these three goals below.

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:7

3.1.1. Correctness. We define a correct partitioning as a set of partitions that merge
to form a global clustering that is equivalent to executing non-parallel DBSCAN on
the entire input dataset. It is impossible for this definition to be satisfied when the
partitions each contain a disjoint subset of the input dataset, because any point whose
Eps-neighborhood includes points in a different partition than its own would return an
incomplete Eps-neighborhood [Xu et al. 1999] [He et al. 2011] [Dai and Lin 2012]. To
address this, we add a shadow region to each partition. The shadow region is the set of
points not already included in the partition that lie Eps distance from the partition’s
boundary. A shadow point is a point that lies in a shadow region with respect to a
partition, and a partition point is a point already included in the partition. When the
shadow region is added to a partition, each partition point’s Eps-neighborhood contains
only partition points or shadow points, and thus is complete within the partition.

3.1.2. Partitioning Algorithm. The second goal of the partitioner is to control load balance
in the cluster phase by creating computationally equivalent partitions. Therefore, we
must have a way to estimate a partition’s computational cost to DBSCAN. Mr. Scan
uses the partition’s point count for this estimation. We have established in Section 1
that DBSCAN’s performance is largely dependent on the spatial density of points and
not pure point count, so point count is not an ideal measure for an unmodified DB-
SCAN implementation. We use point count instead of density because our modified
DBSCAN’s performance is positively impacted by density, so point count is a more
accurate measure in this case.

A DBSCAN partitioning algorithm must output DBSCAN partitions that are not
only correct, but profitable. We denote a partition as profitable if it meets two con-
straints. The first is that the longest distance across the partition must be greater
than Eps. If the distance is less than Eps, the Eps-neighborhood of each point is guar-
anteed to include each point in the partition, and there is no need to invoke DBSCAN.
The second constraint is that each partition must contain at least MinPts points. Oth-
erwise, we would already know that every point is a noise point, and DBSCAN is not
needed.

We fulfill the first constraint in our algorithm by constructing the input dataset as
a grid where each cell of the grid is the same size. The minimum size of each grid cell
must be Eps x Eps to ensure that each partition’s longest distance (i.e. the diagonal)
across is greater than Eps. With this restriction, the shadow region for each partition
becomes the set of grid neighbors not already in the partition. The optimal selection
of grid cell size is Eps x Eps for load balancing purposes. However extremely sparse
datasets containing a large number of grid cells can use a larger grid cell size to reduce
partition computation and memory requirements without reducing quality.

The partitioning algorithm starts by setting the target size of the partitions, which
is an equal share of the input points. Since our partitioning algorithm forms parti-
tions from regular grid cells that contain varying amounts of points, it is generally not
possible to form partitions that are even roughly similar in their point counts when
partitioning non-uniform data. Large grid cells do not pose a problem for load balanc-
ing in Mr. Scan because of our dense box optimization described in Section 3.2.3.

For simplicity, we describe the algorithm for forming partitions assuming that the
input dataset’s grid is 2D, however it can be extended to an arbitrary dimension. We
iterate over all cells in the input grid first along the y axis, and then along the x axis.
Partitions are formed sequentially through this iteration. Grid cells are added to a
partition until the addition of the cell would cause the partition to exceed the initial
target size. The only time that a grid cell will be added to a partition to make it exceed
the target size is if the partition is the final partition formed or the partition does
not yet contain any grid cells. Given the existence of grid cells that are larger than the

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:8 B. Welton et al.

target size, we must ensure that DBSCAN’s second partitioning constraint is met: that
every partition is greater than MinPts points. To meet this constraint, we keep track
of the running difference of each partition’s size from the target size. If this difference
is positive, we form partitions proportionately smaller until the difference is neutral
or negative again, keeping the minimum partition size set to MinPts. Once we finish
partitioning grid cells, we add the correct shadow region to the partition, as shown in
Figure 3b.

It is common in practice for the last partition to be much larger than most of the
other partitions, because as the original partitions are formed, they are kept below
the target size. The collective point difference of all partitions from the target size is
then left for the final partition, resulting in the need for a rebalancing phase of the
partitioning algorithm. Figure 3a demonstrates this, as the populous Eastern United
States is included entirely in the last partition formed. Furthermore, the addition of
the shadow regions increases the total number of points in the partitioned dataset,
and also is likely to negatively affect whatever equality was established by the first
iteration through the grid cells. Because of the increase in total points, we update the
target size to the final target size, which is the mean of the point counts of all the
partitions including shadow regions. Then, starting at the last partition formed we
remove a grid cell, update the shadow region, and repeat until a specified threshold
size is reached. The threshold is set to 1.075 × finaltargetsize because it worked well
in practice on our datasets. The removed grid cells are then added to the second-last
partition formed, as in Figure 3c. This process is repeated for each partition, working
sequentially backward through the partitions until we reach the first.

(a) Partition boundaries before rebalancing. (b) Last two partitions after adding shadow
regions

(c) The first step of rebalancing. We remove
grid cells from the last partition formed until
a threshold is reached and update its shadow
region. The removed cells are added to the
second-last partition, which gets rebalanced
the same way.

(d) Partitions after rebalancing finishes
(shadow regions not shown).

Fig. 3: Mr. Scan’s partition algorithm

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:9

3.1.3. Distributed Partitioner. The distributed partitioner is implemented using MRNet
and uses the same MRNet tree as all other phases. The partitioner is the first phase
that is run after the MRNet tree is formed. Completed parititons formed by the pari-
tioner are directly passed to the leaf nodes responsible for performing DBSCAN on
those parititions. In the original implementation of Mr. Scan the distributed pariti-
toner was a separate MRNet process which wrote completed partitions back to the file
system to be read by a separate clustering process. The usage of a separate process for
partitioning and clustering was originally done for simplicity of implementation but
with enormous performance costs.

The strategy for distributing the partitioner is based on the fact that the algorithm
for forming partitions does not use information about each individual point. The only
information needed is a grid of Eps x Eps cells and the point count for each cell. There-
fore, the partitioner is able to distribute the entire input dataset across the memory
of the leaf processes and only send a point count of each non-empty Eps x Eps cell to
the root. The root then serially executes the algorithm described in Section 3.1.2 to de-
termine the boundaries of each partition and broadcasts the boundaries to the leaves.
The leaves then pass the completed partition via message passing to the leaf node that
will be responsible for clustering that partition. The leaf responsible for that partition
is determined by matching the MRNet rank (a unique identifier) assigned to each leaf
node to the paritition number given to each partition by the root process.

3.2. Clustering Phase
The clustering phase runs in parallel on each leaf node, executing a highly multi-
threaded implementation of DBSCAN that executes on a GPU. The GPU algorithm de-
veloped for Mr. Scan is an extension of the CUDA-DClust algorithm [Böhm et al. 2009],
adding two key modifications to increase scalability both at the clustering and merge
steps. The main contribution of these extensions is a reduction of run-time variability
caused by differing point density. We start with an overview of the CUDA-DClust algo-
rithm in Section 3.2.1. Our two extensions to CUDA-DClust, improving the host-GPU
interaction and Dense Box point elimination, are described in Sections 3.2.2 and 3.2.3.

3.2.1. The CUDA-DClust algorithm. The design of the CUDA-DClust algorithm is con-
ceptually similar to the DBSCAN implementation described in Section 2.1. Clustering
in CUDA-DClust differs from DBSCAN in that multiple DBSCAN operations to take
place on the dataset simultaneously. The number of DBSCAN operations running con-
currently is determined by the number of GPU blocks. A GPU block is the CUDA term
for the logical grouping of threads running on a multiprocessor. Figure 4 shows CUDA-
DClust at the GPU block-level.

Fig. 4: CUDA-DClust GPU blocks expanding seed points.

Each GPU block is assigned a single seed point, which is a point that has not yet
been expanded. The DBSCAN algorithm is then run on this point to expand the cluster

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:10 B. Welton et al.

and find neighboring points. CUDA-DClust uses a modified KD-tree to help DBSCAN
determine possible neighbor points. The difference between a standard KD-tree and
the CUDA-DClust modified KD-tree is that a leaf represents a region of points instead
of a single point. The use of a KD-tree reduces the cost of point expansion by limiting
the number of neighbors that need to be checked to the points in the same region of the
point being expanded. Other indexing structures, such as the R*-tree typically used in
a CPU implementation of DBSCAN, cannot be used on the GPU due to the overhead
of traversing a tree of arbitrary depth.

After expansion, if the point is determined to be a core point, it is marked as be-
ing a member of a cluster and all of its neighbors are added to the block’s queue for
expansion on subsequent DBSCAN iterations. Otherwise the point is marked as noise.

Fig. 5: Collision between two concurrently running blocks.

After all blocks have completed the expansion of their respective seed points, control
is transferred back to the CPU. The CPU then copies the current state for each block
from the GPU, checks for collisions between blocks, and re-seeds the blocks that have
an empty point queue with a new unprocessed point. A collision occurs between two
blocks when one block attempts to expand a point that has already been expanded by
another block or if the point is already in the queue to be expanded by another block.
Figure 5 shows an example of this collision where two blocks share a point after an
expansion. These collisions indicate that the clusters being expanded in two different
GPU blocks are actually the same cluster. Collisions between blocks must be tracked
and corrected by merging the clusters expanded by all blocks that collide.

3.2.2. Limiting Host to GPU interaction. Synchronous memory transfers between CPU and
GPU are costly operations which should be kept to a minimum. CUDA-DClust has the
negative property of performing at least two memory operations between the host and
GPU after every DBSCAN iteration. This results in a total of 2× (Points/BlockCount)
copy operations between the host and GPU. Since leaf nodes in Mr. Scan may have
widely varying point counts due to differing shadow area densities, nodes that have
high point counts can take much longer to cluster. We modified CUDA-DClust so that
there is only a single round trip memory operation regardless of point and block count
(copying raw input to the GPU and retrieving the clustered result from the GPU).

In our new clustering algorithm, there are now two passes over the point data. Pass
one classifies all the core points in the dataset and uses a method similar to CUDA-
DClust to expand points. One difference is that points are not placed into a block’s
queue if the number of neighbor points is greater than MinPts, and expansion during
this phase stops as soon as MinPts is reached. Instead of requiring a synchronous
memory copy after every input seed point is expanded, the next input seed point for
DBSCAN is determined by the parameters of the CUDA kernel call. This allows for

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:11

all kernel invocations needed to cluster the dataset to be issued in bulk without any
intervening memory copies.

The second pass expands the core points found in the first pass to generate the
clusters. The clusters are found by running the same operation as above on only the
core points in the dataset. When a point is expanded, all of that points neighbors are
marked as being members of the cluster. When a collision occurs between two ex-
panded clusters, the collision between these clusters is marked and rectified on the
CPU after all points in the dataset has been classified. When all points have been clas-
sified, the CPU merges clusters that have collided and the final clusters are revealed.

3.2.3. Dense Box Algorithm. The dense box algorithm allows for points in dense data
regions to be marked as members of a cluster without incurring the cost of expanding
each point individually. Dense regions of data are detected by using the sub-divided
point space generated by the modified KD-tree described in Section 3.2.1. All points in
a sub-division with dimension size less than or equal to Eps

2
√
2

by Eps

2
√
2

and pointcount ≥
MinPts will be marked as members of a cluster. The points that are marked as being
members of a cluster are not expanded when they are encountered by DBSCAN.

Since we are using an existing sub-division of the point space, there is little added
complexity for detecting and eliminating dense boxes. The worst case complexity of this
algorithm is O(l) where l is the number of sub-divisions. In return we see a reduction
in the complexity of DBSCAN. Worst case DBSCAN complexity drops from O(n2) to
O((n − p)2) where p is the number of points eliminated by dense box. Average case
run time for DBSCAN drops from O(nlog(n)) to O((n − p)log(n)). We see that as the
complexity of DBSCAN rises, the number of points p removed by dense box increases.

3.3. Merge Algorithm
Merging clusters generated by multiple nodes is needed to generate the final out-
put clustering. The merging process is not trivial because a single cluster may span
multiple nodes and these clusters only merge if they have a core point in common.
Mr. Scan’s merge algorithm detects and merges clusters with overlapping core points
quickly without requiring the presence of the entire clustered output. Using the entire
clustered output would exhaust computational and memory limits as the output grows
in size so we select a fixed number of points per grid cell (eight points) to represent the
cluster’s core points. The points selected to represent the core points are called rep-
resentative points and are described in Section 3.3.1. The representative points and
the set of non-core points of the cluster are used for merging in a method described in
Section 3.3.2.

3.3.1. Selection of Representative Points. The set of representative points is the minimum
set of core points from a single cluster that can correctly detect a merge inside a sin-
gle grid cell. Clusters that have overlapping core points need to have at least one core
point of overlap within the collective Eps-neighborhood that is formed by the set of
representative points of the grid cell. We have determined that eight points can repre-
sent the core points of a grid cell of arbitrary density. The eight selected representative
points are the points closest to the center of the sides of the grid cell and the corners
of the grid cell. Figure 6 shows that when two clusters have an overlapping core point
in a grid cell that at least one will be within the Eps-neighborhood of a representative
point.

3.3.2. Merging. The merge algorithm is run on all clusters with overlapping grid cells.
At this point in the algorithm, all clusters are composed of grid cells with each grid
cell containing a set of representative points and the set of non-core points. The merge

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:12 B. Welton et al.

Fig. 6: Any overlapping core point P must be within 1
2 × Eps of at least one corner

or side of the grid cell. We label this point Ref. This means that the representative
point for Ref must fall within a 1

2 × Eps-neighborhood of Ref. Since this entire region
(shown as the blue circle) is contained in the Eps-neighborhood of P this means that P
is always within Eps of a representative point.

operation is done on every pair of overlapping grid cells between two clusters. There
are three types of grid cell overlaps that the merge operation must be able to handle.

The first type, a core point overlap, is when both clusters marked the same point as
a core point (shown in Figure 7). Whenever a core point overlap occurs we know the
two clusters merge. This case is detected if any representative point from one cluster
falls within Eps of a representative point from the other cluster.

Fig. 7: Example of a core point overlap between clusters detected on different nodes.

The second type, a non-core/core overlap, is when one cluster detects a point as being
core and another cluster in the grid cell detects the same point as being non-core. This
case (shown in Figure 8) arises in Mr. Scan because shadow cells by definition do not
have a complete set of neighbor cells on a node. We have shown in Section 3.1.1 the

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:13

partitioner guarantees that all points within Eps of any point in the non-shadow region
will be included in the partition, however this is not true of shadow regions. Points
in shadow regions could have neighbors that are not visible to the node causing a
misclassification of the point. We take advantage of the fact that a non-shadow region
will always have the correct classification for points in its cell to detect and merge
clusters that have a non-core/core overlap. If we obtain the difference between the set
of non-core points found by the shadow region and the set of non-core points found by
the non-shadow region we get a set of points that is unique to the shadow region. If any
point in the resulting set is within Eps of any representative point in the non-shadow
region, the clusters merge.

Fig. 8: Example of the second type of merge where a core point detected by one node
is being detected as a non-core point in a neighboring node. This case is caused by a
shadow region not having all neighbor points available (furthest left and furthest right
grid cells shown).

The third type, a non-core/non-core overlap, is when two clusters do not merge but
have overlapping non-core points. We detect this case so that we can remove duplicate
non-core points from the output data. Since the non-core points are members of both
clusters we can remove the duplicate non-core points from either of the clusters. We
resolve this case by removing all duplicate non-core points from the shadow region.

When a cluster has been completed (all overlapping shadow regions have been
merged) the cluster and its representative points are left on the node that performed
the last merge. A summary of the cluster (point count and a cluster identifier) is used
in place of the representative points. The usage of a summary for completed clusters
reduces the amount of data moved to merging processes closer to the root of the tree.

3.4. Sweep Step
The purpose of the sweep step is to write the finalized clusters out to the file system.
The sweep step starts with the results of the completed merge operation. It first cal-
culates file offsets to be used by the leaf nodes to write out the points for each cluster.
Next a globally unique identifier is assigned to each cluster. This information is then
sent down the tree with each level of the tree reversing the merge operation. When

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:14 B. Welton et al.

a leaf node receives the unique identifier labeling information, it writes all points
present in those clusters out to the file system.

4. EXPERIMENT SETUP
We have two goals in evaluating Mr. Scan. The first goal is to test our ability to run
DBSCAN on datasets that are several billion points in size in a reasonable amount of
time. These datasets must represent real-world problems, and our experiments must
use DBSCAN parameters that are useful to the problem. Datasets of this size have not
been successfully clustered with any density-based clustering algorithm. The second
goal is to evaluate whether Mr. Scan exhibits good scaling properties. This is a difficult
proposition because memory limits make comparison to a single node implementation
impossible. We first evaluate weak scaling, where each leaf process is responsible for
roughly 800,000 points. We then evaluate strong scaling, comparing performance at
scale to the smallest Mr. Scan instantiation that memory limits allowed on our largest
dataset.

We tested Mr. Scan with a synthetically generated dataset derived from geo-located
tweets from Twitter and an image dataset obtained from the Sloan Digital Sky Survey.
All experiments were run on the Titan supercomputer located at Oak Ridge National
Laboratory. Titan is a Cray XK7 system with 18,688 compute nodes. Each compute
node has sixteen 2.2GHz AMD Opteron processors with 32 GB of memory, and an
NVIDIA Tesla K20 accelerator with 6 GB of memory. Titan is connected to a large
Lustre file system. When we ran our experiments, only 8,972 compute nodes were
available.

4.1. Twitter Experiment
Research that analyzes user activity on social media sites like Twitter and Facebook
is rapidly increasing in popularity. Twitter has been used to detect and predict flu
outbreaks [Lampos and Cristianini 2012], alcohol consumption [Culotta 2013], rain-
fall [Lampos and Cristianini 2012], overall mood of a nation [Lansdall-Welfare et al.
2012], political biases [Lampos 2012], and popular topics [Karandikar 2010]. The im-
portance of this research is evidenced by the United States Library of Congress archiv-
ing all Twitter tweets from 2006 to the present [Telegraph 2013]. Facebook is also
used for social science research [Wilson et al. 2012], and Flickr has been used to an-
alyze popular places in a city using photo location data [Kisilevich et al. 2010]. Many
of these research efforts lacked the ability to add location-based information to large
scale analyses, so Mr. Scan should make large scale analysis using location information
from social media more feasible.

To test Mr. Scan’s ability to cluster these datasets, we collected a set of 8,519,781
geo-located tweets from Twitter’s public API between August 11-21, 2012. We then
used the distribution of these tweets to generate random datasets of arbitrary size
for ease of experimentation. In our experiments, we used latitude and longitude as 2D
Cartesian Coordinates and fixed our Eps value at 0.1 degree to represent a fine-grained
analysis. We tested four different MinPts values: 4, 40, 400, and 4000 to represent a
wide range of output densities.

4.2. Sloan Digital Sky Survey Experiment
The Sloan Digital Sky Survey (Sky Survey) is an imaging survey that is used to map
and catalog astronomical objects using images obtained from terrestrial based tele-
scopes [sds 2013]. The images generated by the telescopes in the survey may contain
hundreds of new objects which need to be classified and cataloged. Since there are tens
of thousands of such images, an automated process is needed to detect these objects.
The DBSCAN algorithm has been used to automate the process of detecting, tracking,

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:15

and classifying objects obtained from terrestrial based telescopes [Davidoff and Woz-
niak 2003] [Patwary et al. 2012]. As data sizes in grow, automated cataloging (and
re-cataloging) of these datasets will be needed. Testing was done on the Baryon Os-
cillation Spectroscopic Survey γ frame photo object data released by SDSS in Data
Release 9 [bos 2013].

5. EVALUATION
We present results from the evaluation of Mr. Scan for both the Twitter and Sky Survey
datasets. In Section 5.1 both the weak and strong scaling results are presented for
the Twitter dataset. A breakdown of the running time for each portion of the Mr. Scan
algorithm is also provided and discussed. Section 5.2 contains the weak scaling results
for the sky survey dataset.

5.1. Twitter Experiment
We evaluated both the weak and strong scaling properties of Mr. Scan using our Twit-
ter datasets. We tested weak scaling by clustering a fixed number of points per leaf
node and increasing the data size proportionally to the number of leaf nodes. In evalu-
ating Mr. Scan, we performed testing with both a stand alone file system based parti-
tioner [Welton et al. 2013] and a direct message passing partitioner [Welton and Miller
2014]. The difference between these two partitioning methods is the stand alone parti-
tioner uses the file system to store the partitioned datasets before DBSCAN execution.
The Mr. Scan DBSCAN process would then read the partitioned dataset and perform
the clustering operation. The message passing partitioner cuts out the intermediate
file system storage opting to directly pass the completed partitions to the DBSCAN
clustering node. Table I describes the configurations of nodes and data sizes tested for
weak scaling. We tested strong scaling by clustering our largest dataset of 6.5 billion
points, starting at the number of leaf nodes that had sufficient memory to support their
partition size. We then increase the node count to the highest amount the machine al-
lowed. Finally, we evaluated the quality of Mr. Scan’s output compared to a single CPU
implementation of DBSCAN.

of # of MRNet # of # of
points internal processes leaves partition nodes (stand alone)

102,400,000 4 128 16
204,800,000 8 256 32
409,600,000 16 512 32

1,638,400,000 32 2048 64
3,276,800,000 64 4096 96
6,553,600,000 128 8192 128

Table I: Configurations used in weak scaling experiment with partitioning node count
for experiments with a stand alone partitioner

For all experiments, we use a fixed Eps value of 0.1 degree. MRNet uses trees with
one compute node per process because there is one GPU per compute node on Titan.
We use tree topologies that aim to decrease the amount of non-leaf processes in the al-
location. Each topology has at most three levels, and each intermediate process has at
most a 256-way fanout of child processes. In experiments where the stand alone parti-
tioner was used, number of nodes used for the partitioner for each run was determined
by selecting the best performing configuration from a prior experiment. In experiments
with a message passing partitioner, all DBSCAN nodes performed partitioning.

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:16 B. Welton et al.

5.1.1. Mr. Scan with Message Passing. We first present the end-to-end total time of all
Mr. Scan phases when using a message passing partitioner in Figure 9. The end-to-
end total time includes all portions of the algorithm from reading the raw unordered
data on the file system to writing the final clustered output. A breakdown the of the
performance of the partitioning phase, GPU DBSCAN operation, and the combined
runtime of the DBSCAN cluster/merge/sweep phases can be seen in Figures 10, 11,
and 12 respectively. The weak scaling benchmarks of Mr. Scan used four different
MinPts values. The MinPts values used in the benchmark are chosen to show the
impact on runtime the dense box algorithm described in Section 3.2.3. In addition, we
also present strong scaling numbers for Mr. Scan shown in Figure 13.

Fig. 9: Elapsed time of Mr. Scan with a message passing partitioner for the configura-
tions listed in Table I. Eps=0.1 and MinPts varies as indicated.

Mr. Scan is able to successfully cluster 6.5 billion points with 8192 GPU equipped
nodes. Figure 9 shows that this can accomplished between 453 and 576 seconds de-
pending on the MinPts parameter used. We see that Mr. Scan weak scales linearly
with a relatively gentle slope: as the data increases by 64x (from 102 million to 6.5 bil-
lion points) we see a total elapsed time growth of 9.8x. While we see reasonable scaling
properties from Mr. Scan, the growth in elapsed time in the weak scaling experiment
is less than the ideal of a flat scaling curve. There are three linear components of Mr.
Scan that contribute to the reduced performance in the weak scaling experiment. Par-
titioning, writing the cluster output, and a slight increase in MRNet startup costs at
larger node counts account for a vast majority of the increasing runtimes between node
counts.

Partitioning is a small contributor to the in linearly increasing runtimes in the weak
scaling experiment at our largest scale. Figure 10 shows the partitioning time for the
weak scaling experiments. The majority of the impact of larger data sizes on partition-
ing can be attributed to reading the file containing the points to be clustered from the
Lustre file system. At our largest scale of 8192 nodes, 28% of Mr. Scan’s total run time
was spent in the partitioning phase. 85% of the partitioning run time is reading the
dataset from Lustre. In cases where Mr. Scan is not run on live data (data already on
node), the cost of reading large files from the file system is unavoidable. While there
are methods, such as I/O forwarders [Ali et al. 2009], that can help reduce the slope of

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:17

Fig. 10: Partitioning time for Mr. Scan with the message passing partitioner at dif-
ferent MinPts parameters with a comparison to a older file system based approach to
partitioning

the linear curve associated with file reading there is no current method to eliminate
this linear growth at large scales.

Fig. 11: GPU DBSCAN time for Mr. Scan with the message based partitioner

The partitioning phase, while having some weaknesses, is much improved over our
original file system based version. The original file system partitioner used an inter-
mediate file to move data to DBSCAN compute nodes for processing. This intermediate
non-sequential write substantially increased run time for Mr. Scan and the partition-
ing phase in particular. The partitioning phase in the old approach comprised 68% of
total run time nearly doubling the run time of Mr. Scan. As a comparison to the mes-
sage passing partitioner, a representative result from the file system partitoner of Mr.
Scan is included in Figure 10 (the other file system partitoner results are similar to
the representative).

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:18 B. Welton et al.

The writing of completed clusters to the Lustre file system is the major cause of
Mr. Scan’s linear growth with the message passing partitioner. Cluster output is a
component of the cluster/merger/sweep phase shown in Figure 12. The time to write
cluster output quickly grows from 10% of the total run time of the cluster/merge/sweep
step at scales below 1.6 billion points to over 70% at scales above 1.6 billion points.
The reason for the rise in run time at scale is due to the larger number of points each
cluster contains with the larger datasets and the increasing number of nodes that
write results to the Lustre file system. This cost can be mitigated in cases where Mr.
Scan is passing the clustered output to another application that will run subsequently
on the same node.

Fig. 12: Runtime of the combined Cluster, Merge, and Sweep step phases of Mr. Scan
with the message based partitioner

The final linear property of Mr. Scan is the startup costs associated with increasing
node counts. The cost of application startup and initialization was one of the one of the
more surprising elements uncovered in our testing of Mr. Scan. Application start-up
consumed approximately 10% of the total run time of Mr. Scan at the largest scale
tested. The time consumed by start-up comes from two sources: a file system storm re-
sulting from all nodes attempting to simultaneously load Mr. Scans dynamically-linked
shared objects from the file system, and zeroing the GPU memory before execution of
a user binary. While static linking could solve the first problem, Cray machines (such
as Cray Titan where Mr. Scan was benchmarked) do not allow use of static linking for
some critical libraries such as MPI and CUDA. Later versions of the Cray operating
system than we had available to us (version 5.1) have methods that may reduce the
penalty of loading shared libraries. The initialization problem comes from the system
zeroing the GPU memory on the nodes in a user’s allocation when the application is
first launched. This security features is set by system administrators as a system-wide
policy, and is not modifiable by the users.

The strong scaling experiment consisted of running the 6.5 billion point dataset at
scales between 512 to 8192 nodes. Figure 13 shows the strong scaling results using the
MinPts parameter of 400. The performance of Mr. Scan improves at first but at node
counts greater than 2048 there is a reduction in performance. At 2048 nodes we see
an improvement of 57% when compared to the total run time at 512 nodes while at
8192 nodes we see an improvement of 54%. The reason for this drop off in performance

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:19

Fig. 13: Strong scaling of 6.5 billion points using the message based partitioner

is similar to the weak scaling experiments above and can be mostly attributed to file
system I/O time and start up costs.

5.1.2. Quality. We evaluated the quality of Mr. Scan’s output in comparison to DB-
SCAN on a single CPU. Quality is measured with a metric defined by the authors of
DBDC [Januzaj et al. 2004]. The metric assigns a quality score between 0 and 1 to each
point as |A∩B|

|A∪B| , where A is the cluster the point belongs to in DBSCAN’s output, and B
is the equivalent cluster from Mr. Scan’s output. If a point is misidentified as a noise
or non-noise point, it gets a quality score of 0. The final quality score is an average of
the points’ quality scores. Therefore, this metric is maximized when all clusters found
contain the exact same points in the output, and when all noise points are identical as
well. We were limited to 12.8 million points for this experiment by the memory of a sin-
gle compute node. We used ELKI 0.4.1 [Achtert et al. 2011] as our reference DBSCAN
implementation, which took over 35 hours to cluster the 12.8 million points. Figure 14
shows near-perfect quality at the scales we were able to test, as Mr. Scan did not get
lower than a .995 quality score.

Fig. 14: Quality measurement of Mr. Scan on the Twitter dataset

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:20 B. Welton et al.

5.2. Sky Survey Experiment
The sky survey experiment consisted of a weak scaling experiment with a maximum
point count of 1.6 billion points processed on 2048 nodes. This experiment was run
with a fixed Eps value of 0.00015 and a fixed MinPts of 5. Figure 15 shows the weak
scaling results for the sky survey experiment with the message passing and file system
based partitioners.

Fig. 15: Elapsed time of Mr. Scan for the sky survey dataset at 0.00015 Eps and 5
MinPts

The weak scaling behavior of the sky survey dataset resembles that of the Twitter
dataset. We see similar upward trends in time as the number of nodes increase in
both partitioning methods. The major reason for the increase in running time for the
file system based approach is identical to that of the Twitter the dataset (file I/O). The
introduction of a message passing partitioner resulted in a similar decline to those seen
with the Twitter dataset. However there is still an upward trend in run times, with the
major cause of this increase attributable to the GPU DBSCAN operation. Between our
smallest (102 million) and largest (1.6 billion) point scales tested, we saw an increase
in GPU DBSCAN run times by 2.85x (from 134 to 383 seconds). The reason for this rise
in run time is due to the sparseness of the dataset resulting in the dense box algorithm
not detecting any dense clusters and less than ideal partitions being generated with
higher point counts due to usage of a larger Eps value of 0.01 for partitioning. The sky
survey dataset spans hundreds of millions of Eps x Eps boxes making it impractical for
a single node to quickly build the partitions. A larger Eps value is used to reduce the
memory constraints on the head compute node of the Mr. Scan tree at a cost of creating
partitions that have unneccesarily high point counts. While a larger Eps value (0.01) is
used for partitioning, the original Eps value (0.00015) is used for the actual DBSCAN
clustering operation and for merging results to maintain high output quality.

6. CONCLUSION
Mr. Scan uses a hybrid/hybrid parallel implementation of DBSCAN to achieve scal-
ability. The hybrid/hybrid design used by Mr. Scan combines the MRNet tree-based
distribution network with hybrid CPU-GPU nodes. Using this hybrid/hybrid design,
Mr. Scan is able to successfully cluster multi-billion point datasets in a scaleable and

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:21

highly accurate fashion. The three core techniques responsible for Mr. Scan’s scalabil-
ity are partitioning, merging, and the dense box algorithm. Partitioning in Mr. Scan
allowed for the creation of independently processable partitions. Output cluster qual-
ity was maintained by the inclusion of shadow regions in each independent partition.
Merging the processed results from these independent partitions allows for accurate
and lightweight reconstruction of clusters. The use of shadow regions and only requir-
ing a subset of the dataset for detecting overlapping clusters resulted in a scalable and
accurate merge. The use of dense box allowed Mr. Scan to preprocess some of the heav-
iest computational portions of the dataset resulting in a major reduction in overall
runtime.

Using the above techniques we show that Mr. Scan is capable of clustering 6.5 bil-
lion points in 7.5 minutes, which is the largest known run of DBSCAN by point and
node count. On the current datasets, Mr. Scan appears to achieve maximum efficiency
at around 2,000 nodes. The limit suggests that the optimum per node point count is
higher than the one used for testing. This leads us to believe that as we scale up to
more nodes (and substantially larger point counts), we should be able to efficiently run
even larger datasets.

Acknowledgements
This work is supported in part by Department of Energy grant DE-SC0010474 and
National Science Foundation Cyber Infrastructure grant OCI-1234408.

REFERENCES
2013. SDSS - Baryon Oscillation Spectroscopic Survey. (April 2013). http://www.sdss3.org/surveys/boss.php.
2013. Sloan Digital Sky Survey. (April 2013). www.sdss.org.
2013. Twitter. (April 2013). https://twitter.com https://twitter.com.
Elke Achtert, Ahmed Hettab, Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. 2011. Spa-

tial Outlier Detection: Data, Algorithms, Visualizations. In Advances in Spatial and Temporal
Databases. Lecture Notes in Computer Science, Vol. 6849. Springer Berlin Heidelberg, 512–516.
DOI:http://dx.doi.org/10.1007/978-3-642-22922-0 41

Dong H. Ahn, Bronis R. de Supinski, Ignacio Laguna, Gregory L. Lee, Ben Liblit, Barton P. Miller, and
Martin Schulz. 2009. Scalable Temporal Order Analysis for Large Scale Debugging. In Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis (SC ’09). ACM, New
York, NY, USA, Article 44, 11 pages. DOI:http://dx.doi.org/10.1145/1654059.1654104

Nawab Ali, Philip H. Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert Latham, Robert B. Ross, Lee
Ward, and P. Sadayappan. 2009. Scalable I/O forwarding framework for high-performance computing
systems.. In CLUSTER (2010-03-08). IEEE, 1–10. http://dblp.uni-trier.de/db/conf/cluster/cluster2009.
html#AliCIKLLRWS09

T. Ali, S. Asghar, and N.A. Sajid. 2010. Critical Analysis of DBSCAN Variations. In International
Conference on Information and Emerging Technologies 2010 (ICIET 2010). Karachi, Pakistan.
DOI:http://dx.doi.org/10.1109/ICIET.2010.5625720

D.C. Arnold, D.H. Ahn, B.R. de Supinski, G.L. Lee, B.P. Miller, and M. Schulz. 2007. Stack Trace Analysis for
Large Scale Debugging. In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International. 1–10. DOI:http://dx.doi.org/10.1109/IPDPS.2007.370254

C. Böhm, R. Noll, C. Plant, and B. Wackersreuther. 2009. Density-Based Clustering us-
ing Graphics Processors. In Proceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM ’09). ACM, Hong Kong, China, Article 1646038, 10 pages.
DOI:http://dx.doi.org/10.1145/1645953.1646038

Aron Culotta. 2013. Lightweight Methods to Estimate Influenza Rates and Alcohol Sales Volume from Twit-
ter Messages. Language Resources and Evaluation 47, 1 (2013), 217–238.

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API for shared-memory pro-
gramming. Computational Science & Engineering, IEEE 5, 1 (1998), 46–55.

Bi-Ru Dai and I.-Chang Lin. 2012. Efficient Map/Reduce-Based DBSCAN Algorithm with Optimized Data
Partition. In IEEE 5th International Conference of Cloud Computing (IEEE CLOUD 2012). Honolulu,
HI, USA.

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

0:22 B. Welton et al.

S. Davidoff and P. Wozniak. 2003. RAPTOR-scan: Identifying and Tracking Objects Through Thousands of
Sky Images. In Gamma-Ray Bursts: 30 Years of Discovery: Gamma-Ray Symposium. Santa Fe, NM,
USA.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Com-
mun. ACM 51, 1, Article 1327492 (Jan. 2008), 7 pages. DOI:http://dx.doi.org/10.1145/1327452.1327492

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. In The Second International Conference on
Knowledge Discovery and Data Mining (KDD ’96). Portland, OR, USA.

Todd Gamblin, Bronis R. de Supinski, Martin Schulz, Robert J. Fowler, and Daniel A. Reed. 2010. Cluster-
ing Performance Data Efficiently at Massive Scales. In ACM/SIGARCH International Conference on
Supercomputing (ICS 2010). Epochal Tsukuba, Tsukuba, Japan.

Y. He. 2013. Personal communication. (19 March 2013).
Yaobin He, Haoyu Tan, Wuman Luo, Huajian Mao, Di Ma, Shengzhong Feng, and Jianping Fan. 2011. MR-

DBSCAN: An Efficient Parallel Density-Based Clustering Algorithm Using MapReduce. In The 17th
IEEE International Conference on Parallel and Distributed Systems (ICPADS ’11). Tainan, Taiwan.

Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. 2004. DBDC: Density Based Distributed Clustering.
In Int. Conf. on Extending Database Technology (EDBT ’04). Heraklion, Crete, Greece, 88–105.

A. Karandikar. 2010. Clustering Short Status Messages: A topic model based approach. Master’s thesis.
University of Maryland, Baltimore County.

Slava Kisilevich, Florian Mansmann, and Daniel A. Keim. 2010. P-DBSCAN: A Density Based Clustering
Algorithm for Exploration and Analysis of Attractive Areas Using Collections of Geo-Tagged Photos.
In 1st International Conference on Computing for Geospatial Research & Application (COM.Geo ’10).
Washington, DC, USA.

Marzena Kryszkiewicz and Piotr Lasek. 2010. TI-DBSCAN: Clustering with DBSCAN by Means of the
Triangle Inequality. In The Seventh International Conference of Rough Sets and Current Trends in
Computing (RSCTC 2010). Warsaw, Poland.

Marzena Kryszkiewicz and Lukasz Skonieczny. 2005. Faster Clustering with DBSCAN. In International
Conference on Intelligent Information Systems 2005: New Trends in Intelligent Information Processing
and Web Mining (IIPWM 2005). Gdansk, Poland, 605–614.

Vasileios Lampos. 2012. On Voting Intentions Inference from Twitter Content: A Case Study on UK 2010
General Election. ACM Computing Research Repository (CoRR) abs/1204.0423 (2012).

Vasileios Lampos and Nello Cristianini. 2012. Nowcasting Events from the Social Web with Statistical
Learning. ACM Transactions on Intelligent Systems and Technology (ACM TIST) 3, 4 (2012), 72.

Thomas Lansdall-Welfare, Vasileios Lampos, and Nello Cristianini. 2012. Effects of the Recession on Public
Mood in the UK. In 22nd International World Wide Web Conference (WWW ’12). Lyon, France, 1221–
1226.

Ewing Lusk, Nathan Doss, and Anthony Skjellum. 1996. A high-performance, portable implementation of
the MPI message passing interface standard. Parallel Comput. 22 (1996), 789–828.

R Mills, Forrest M. Hoffman, Jitendra Kumar, and William W. Hargrove. 2011. Cluster Analysis-Based Ap-
proaches for Geospatiotemporal Data Mining of Massive Data Sets for Identification of Forest Threats.
Procedia CS 4 (2011), 1612–1621.

Frank Mueller. 1993. A library implementation of POSIX threads under UNIX. In In Proceedings of the
USENIX Conference. 29–41.

Md. Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei keng Liao, Fredrik Manne, and Alok N. Choud-
hary. 2012. A New Scalable Parallel DBSCAN Algorithm using the Disjoint-Set Data Structure. In
ACM/IEEE Supercomputing Conference 2012 (SC 2012). Salt Lake City, UT, USA.

Md. Mostofa Ali Patwary, Nadathur Satish, Narayanan Sundaram, Fredrik Manne, Salman Habib, and
Pradeep Dubey. 2014. Pardicle: Parallel Approximate Density-based Clustering. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’14).
IEEE Press, Piscataway, NJ, USA, Article 2683655, 12 pages. DOI:http://dx.doi.org/10.1109/SC.2014.51

P. Roth, D. Arnold, and B. Miller. 2003. MRNet: A Software-Based Multicast/Reduction Network for Scalable
Tools. In ACM/IEEE Supercomputing Conference 2003 (SC 2003). Phoenix, Arizona.

Martin Schulz, Dong Ahn, Andrew Bernat, Bronis R. de Supinski, Steven Y. Ko, Gregory Lee, and Barry
Rountree. 2005. Scalable Dynamic Binary Instrumentation for Blue Gene/L. SIGARCH Comput. Archit.
News 33, 5, Article 1127581 (Dec. 2005), 6 pages. DOI:http://dx.doi.org/10.1145/1127577.1127581

S. Sonntag, C. T. Paredes, J. Roth, and H.-R. Trebin. 2011. Molecular Dynamics Simulations of Cluster
Distribution from Femtosecond Laser Ablation in Aluminum. Applied Physics A 104, 2 (2011), 559–565.

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

Mr. Scan: A Hybrid/Hybrid Extreme Scale Density Based Clustering Algorithm 0:23

Telegraph. 2013. Library of Congress Is Archiving All Of America’s Tweets. (January 2013).
http://www.businessinsider.com/library-of-congress-is-archiving-all-of-americas-tweets-2013-1.

Benjamin Welton and Barton P. Miller. 2014. The Anatomy of Mr. Scan: A Dissection of Performance of an
Extreme Scale GPU-based Clustering Algorithm. In Proceedings of the 5th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems (ScalA ’14). IEEE Press, Piscataway, NJ, USA, Article
2691150, 7 pages. DOI:http://dx.doi.org/10.1109/ScalA.2014.10

Benjamin Welton, Evan Samanas, and Barton P. Miller. 2013. Mr. Scan: Extreme Scale Density-based Clus-
tering Using a Tree-based Network of GPGPU Nodes. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (SC ’13). ACM, New York, NY, USA,
Article 84, 11 pages. DOI:http://dx.doi.org/10.1145/2503210.2503262

Robert E. Wilson, Samuel D. Gosling, and Lindsay T. Graham. 2012. A Review of Facebook
Research in the Social Sciences. Perspectives on Psychological Science 7, 3 (2012), 203–220.
DOI:http://dx.doi.org/10.1177/1745691612442904

Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. 1999. A Fast Parallel Clustering Algorithm for Large
Spatial Databases. Data Mining and Knowledge Discovery 3, 3 (1999), 263–290.

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 0.

