
Multi-Application Support in a Parallel Program Performance Tool
R. Bruce Irvin Barton P. Miller
rbi@cs.wisc.edu bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

Abstract
Program performance measurement tools have proven to be useful for tuning single, isolated applica-

tions. However, large-scale parallel machines and heterogeneous networks often do not allow isolated
execution, much less isolated measurement.To enable and encourage the study of parallel applications in
complex environments, we have dev eloped techniques to support multiple applications in our IPS-2 parallel
program measurement tool. The multi-application extensions include multi-application Critical Path analy-
sis, and integrated tables and visualizations that allow display and analysis of performance data from differ-
ent applications or multiple runs of a single application.We demonstrate the new multi-application support
with three examples. For each example, the multi-application support allowed quick analysis with concrete
visual and numeric comparisons.Given the conceptual simplicity of multi-application support and its use-
fulness, we believe any new performance tool that is to be used with applications that run in complex envi-
ronments should support this facility.

Keywords: Parallel Programming, Performance Monitoring, IPS-2

1. Intr oduction

During performance debugging, a programmer usually studies an isolated program. Isolation elimi-

nates much of the complicated background interference that can make program performance characteristics

irreproducible. However, programs are actually run in more complex environments. Large-scale parallel

systems are often timeshared among a workload of application programs; in heterogeneous distributed envi-

ronments, individual applications communicate with servers and contend with other clients for server

access. Schedulingand contention can significantly affect the performance of individual application pro-

grams, but a programmer often cannot determine whether a program’s performance is affected by such

interactions or to what extent.

We hav eimplemented a new mechanism for analyzing multiple application programs using the IPS-2

parallel program performance tools [.ips2.].To support multiple applications we have dev eloped new tech-

niques that extend our data presentation and analyses, and developed two new extensions to Critical Path

Analysis [.cpa.]. Intra-Application Critical Path isolates the performance of a single application while

© 1993 R. Bruce Irvin and Barton P. Miller

This work was supported in part by National Science Foundation grants ASC-9015462 and CCR-9100968,
Office of Naval Research grant N00014-89-J-1222, and grants from Sequent Computer Systems and Sun
Microsystems.



- 2 -

Inter-Application Critical Path allows the user to follow the critical path as it flows between applications.A

compelling use of the Inter-Application Critical Path is the measurement of a database server (in itself, a

parallel program) and several client applications.Inter-Application Critical Path allows the programmer to

profile those activities in the server that were caused by that client’s queries (more details of this technique

are given Sections 4.3.2 and 5.3).

Multi-application support in the IPS-2 system has enabled the study of application programs running

in complex environments, and has opened the door to a wide range of new measurement possibilities.This

paper discusses several uses of multi-application support, describes our implementation, and demonstrates

the new feature with three examples. Thefirst example explores the problem of imprecise clocks in mea-

surement systems, the second measures the effects of barrier synchronizations in timeshared workloads,

and the third examines the performance of a client/server database system. In addition to the examples pre-

sented in this paper, we hav eused the multi-application feature for studying such diverse problems as work-

load scheduling strategies, the effects of heavy system loads on programs, operating systems, and hardware,

the performance of programs on competing operating systems and hardware platforms, and the perfor-

mance effects of best case vs. worst case application input sets. The examples show that multi-application

support provides easy and intuitive access to performance results that would otherwise be difficult and

labor-intensive to obtain.

From our experiences with multiple application analysis in IPS-2, we conclude that program perfor-

mance tools should support complex test environments. Multi-applicationIPS-2 allows programmers to

run and analyze multiple programs simultaneously, enables comparison studies, and supports the study of

workloads. Programmersare able to combine the performance displays and metrics of multiple applica-

tions or multiple versions of the same application to directly compare performance results.Finally, perfor-

mance analysis techniques enable the study of interactions between cooperating programs or the contention

of competing programs.

Section 2 lists many uses of multi-application performance monitoring tools.Section 3 gives an

overview of the IPS-2 system and provides context for Section 4, which describes the changes to IPS-2 for

multiple application support. Section 5 demonstrates the use of multi-application IPS-2 with three exam-

ples, and Section 6 draws conclusions from our experiences.



- 3 -

2. Usesof Multiple Application Support

Although multi-application support is a simple feature, its importance becomes apparent when you

consider its many uses. We hav ebeen surprised at the wide range of performance problems for which this

feature has been used.This section describes the use of multi-application measurement for the analysis of

multiple cooperating applications, multiple competing applications, multiple versions of the same applica-

tion, and the operating system and networks underlying these applications.

IPS-2 with multiple application support allows users to study the performance of a group of applica-

tions running as a workload. Userscan study the aggregate behavior of a workload, the interactions among

the applications, or the performance of individual applications in the presence of other applications.The

user can also study the effect of the workload on various parts of the system. IPS-2 includes a simple, open

interface for the incorporation of external data from hardware, network, or operating system monitors

[.edcu.]. If the computing environment already includes such performance monitors then their output can

be directed into IPS-2 through the external data interface. Datagathered by external monitors may be used

in the same displays and analyses as data gathered with IPS-2 program tracing, and the user can correlate

system performance with workload performance.For example, procedure-level CPU metrics can be plotted

alongside bus utilization, paging rates, and network traffic.

If the applications in a workload communicate using messages, semaphores, or other methods, then

IPS-2 can be used to analyze individual applications and interactions between the applications.Critical

Path Analysis, which analyzes process interactions, may be applied to applications in isolation, to a single

application and the applications with which it interacts, or to an entire workload.

Playback of old measurement sessions is a standard feature in most performance tools.With multiple

application support, IPS-2 allows multiple old sessions to be replayed in the same session, or an old session

replay may be combined with a new active session. Thiscomparison feature has many uses including the

study of the evolution of a program through several versions, the changes in an application when running

on new hardware platforms or operating systems, the performance of a server under various client loads, or

the comparison of an algorithm running with best case vs. worst case input sets.

A user can also compare the measured performance of a program with simulations or analytical pre-

dictions. If an external simulation or analysis tool can produce IPS-2 style traces or use the external data

interface, then its results can be incorporated into a session for comparison.



- 4 -

3. Overview of IPS-2

IPS-2 is an interactive, trace-based, post mortem performance measurement system that operates in

parallel and heterogeneous distributed environments. Currently, IPS-2 is supported for Cray Y-MP, Sequent

Symmetry, Sun workstations and multiprocessors, DECstations, and heterogeneous networks of any of

these machines.IPS-2 has been successfully used for several performance studies of parallel and distrib-

uted applications.

We changed none of the basic structure of IPS-2 to support multiple applications in a single session.

However, we modified the user interface to handle the new multiple application model, we added a mode to

allow the comparison of old measurements with new measurements, and we extended Critical Path Analy-

sis to enable analysis of individual programs within larger workloads. Thissection provides an overview of

the basic structure of IPS-2 and provides context for readers who are not familiar with the system.

Figure 1 shows the system structure of IPS-2.IPS-2 consists of an instrumentation library that col-

lects traces from application programs, an external data collection interface that is used by external perfor-

mance monitors, Slave Analysts that collect and process trace data and external performance data, and a

Master Analyst that provides a graphical interface to the user. In addition, IPS-2 provides an open interface

for external visualization systems.To instrument applications for use with IPS-2, a user specifies an addi-

tional switch during program compilation. The compiler switch causes instrumentation code to be inserted

automatically into the program and causes an instrumentation library to be linked with the executable.

Structural Overview of the IPS-2 System

Figure 1.

After compilation is complete, an IPS-2 user runs the Master Analyst and describes what application

processes and external data collectors to run, where to run them, and what command lines to use to run

them. Ifusers wish to replay old traces, then they may give the process identifier in place of the command

line. After describing the processes, the user asks the Master to run the processes or replay the old traces.

The Master then starts Slave Analysts on all of the machines used by the application, and tells the Slaves

which processes to run and which old traces to replay. If a particular Slave must run processes, then it

waits for them to complete before processing traces.During trace processing, each Slave reduces the traces

to performance metrics and reports the metrics back to the Master for display.

The IPS-2 graphical representation of parallel and distributed application programs is a tree, and the

IPS-2 program tree is used both for describing the application to be run and for querying about performance

information. Thefour levels of the tree include the program, machine, process, and procedure levels.

Users select nodes in the tree to obtain performance information about a particular node. Figure 2 shows a



- 5 -

sample program tree before execution. Thetriangular node at the program level represents the entire appli-

cation. Therectangular node at the machine level represents a single machine. Elliptical and octagonal

nodes at the process level represent application processes and external data collectors respectively. Proce-

dures are represented with rectangular nodes, but they appear in the tree only after the application traces

have been processed.

Logical Program Tree

Figure 2.

IPS-2 provides several analysis techniques, each of which can be applied to any node or level of the

program tree.Critical path profiles display the elements (machines, processes, and procedures) that deter-

mine the elapsed time of a parallel or distributed program [.cpa.]. Metric tables display performance met-

rics for individual tree nodes, and profile tables display a metric for each node at a given lev el of the pro-

gram tree. NPT profiles display a process time metric that is normalized by the number of concurrently

executing processes [.quartz.].Gprof tables display process and procedure performance data in the style of

the Unix utility gprof [.gprof.]. IPS-2allows the user to define time periods, calledphases, and any of the

metrics and analyses may be constrained to any phase of execution.

The primary method of program visualization in IPS-2 is the time histogram, which plots perfor-

mance metrics over the duration of a program’s execution. Time histograms are used for displaying perfor-

mance curves, for defining program phases, and for guiding trace browsing displays, which provide a very

low lev el view of program events. Thesystem also provides a visualization interface, which allows external

graphical display tools to use IPS-2 performance data.

4. Modifications to IPS-2 for the Support of Multiple Applications

The support of multiple application programs in a performance tool is a simple idea.A tool need

only allow the user to open multiple views of performance information and incorporate data from a collec-

tion of measured applications. Users of traditional, single program tools can approximate this effect by

simply running multiple analysis sessions at the same time.

However, just as you cannot easily use a performance tool designed for single process programs to

analyze a parallel program, you cannot easily use a single program performance tool to analyze multiple

programs. Without specific support for multiple application programs, a tool cannot help the user make

direct comparisons between applications or understand the causes or effects of contention for shared

resources. Runningmultiple versions of a single program tool also increases demand for workstation

resources such as screen space and memory.



- 6 -

This section explains how we hav eenhanced the IPS-2 performance tools to support multiple appli-

cations. Themodifications include an expanded user interface, a comparison mode of operation, and exten-

sions to Critical Path Analysis.

4.1. Multiple Applications in the IPS-2 User Interface

We hav echanged the IPS-2 user interface to allow the user to create multiple program trees.Each

tree created by the user, called alogical tree, contains one application.Each logical tree is a distinct view

into the performance of a workload, and nodes may be selected to obtain performance information for the

corresponding application.

The IPS-2 Master automatically creates one additional tree, thephysical tree. Thephysical tree

duplicates all nodes in the logical trees and groups them according to their physical layout (all processes

from all applications that use a given machine are grouped under the same machine node). The physical

tree is used primarily for selecting performance information about the entire workload. For example, a pro-

cedure-level profile of I/O operations using the physical tree profiles all procedures in all of the trees

whereas the same analysis performed in a logical tree only profiles procedures in that logical view. The

physical tree is also used to isolate the performance of a particular machine. Figure 3 shows an example

physical tree.

Physical Tree

Figure 3.

4.2. ComparisonMode

Previous versions of IPS-2 have allowed two modes of operation: one that actively runs the applica-

tions and one that replays old traces.We hav eadded a new feature, calledcomparison mode, that allows

old traces to be replayed and compared with either new traces or other old traces. The IPS-2 user selects

comparison mode for one or more of the application trees, and then selects either active or replay mode for

the other trees.Any trace that is replayed in comparison mode will have its time base shifted to match the

time base of the active or replay mode programs.

Because most of the IPS-2 analyses depend on relative timestamps, the shift in time reference is

unnoticeable to the user. Howev er, the difference is apparent in time based visualization displays such as

time histograms (See section 5.1) where it appears as though the comparison mode applications ran at the

same time as the active and replay mode applications.



- 7 -

4.3. Multiple Application Critical Path Analysis

Critical Path is an analysis technique that guides the user to the sections of code in a parallel program

that caused the program to run slowly [.CPA.]. Interactionsbetween processes (e.g. messages, semaphores,

barriers, and locks) form a set of dependences between the processes. Critical path analysis constructs a

directed acyclic graph, called the Program Activity Graph or PAG, of these dependences (see Figure 4).

Each arc in the PAG is assigned a weight proportional to the amount of time consumed between the two

points on the arc.For CPU time arcs, the length of the arc is the process time consumed.For message arcs

it is the time required to send the message between processes.For unproductive time such as spin time at

barriers, the weight is zero. The longest time-weighted path through the PAG is the critical path.A Critical

Path Profile is a profile of the procedures, processes, and machines along the critical path. At each level in

the program tree, IPS-2 can profile the items that form the critical path by sorting the items by their cumu-

lative contributions to the critical path.

An application running as part of a workload is difficult to analyze with traditional critical path anal-

ysis because workload runtime is often dominated by other long running applications such as servers.

Therefore, we have extended critical path analysis to allow the user to concentrate analysis on any single

application within a workload of applications.Multi-application critical path allows us to shift our view

from one application to another while using measurements from a single run (see demonstration in Section

5.3).

This section describes how we hav eextended critical path analysis to support multiple application

programs in a single measurement session. In particular, we discuss Intra-Application Critical Path, which

allows the user to examine the critical path of one application in isolation, and Inter-Application Critical

Path, which allows the user to examine a single application and its interactions with other programs.A

third type of critical path analysis, Global Critical Path, computes the critical path of all of the application

programs combined. The Global Critical Path is simply the Intra-Application Critical Path for the Physical

Tree, and it will not be discussed further in this section.

Sample PAG showing three types of critical path

Figure 4.

4.3.1. Intra-Application Critical Path

The Intra-Application Critical Path is the longest time-weighted path through the PAG of a single

application. All inter-process dependence arcs in the application’s PAG are used in calculating the critical

path, but dependence arcs that lead to or from other applications are not considered.In this way, a single

application can be analyzed in isolation even if it was run with other applications. Figure 4 shows a PAG of



- 8 -

three programs. The Intra-Application Critical Path of Program A crosses process boundaries, but never

crosses the application boundary.

Our implementation takes advantage of the isolation characteristics of the Intra-Application Critical

Path. Sinceonly one application is examined, we only construct the part of the overall PAG that includes

the selected application. If the entire PAG has already been built for Inter-Application or Global Critical

Path, then Intra-Application Critical Path simply ignores existing inter-application arcs.

4.3.2. Inter-Application Critical Path

The Inter-Application Critical Path is the longest time weighted path that begins and ends in a partic-

ular application.PA G arcs that lead to other applications may be includedonly if they lead to PAG arcs

that return to the selected application.The Inter-Application Critical Path allows the user to determine if

other applications have limited the performance of the selected application.For example, in a client/server

programming model, the Inter-Application Critical Path of the client will indicate elements in both the

client and the server that limit the performance of the client. If the server is on the client’s Inter-Applica-

tion Critical Path, then we can study the procedures in the server that executed on the client’s behalf.

Our implementation of Inter-Application Critical Path is a modified version of the original critical

path algorithm.In the original algorithm, each PAG node other than the initial and terminal nodes consists

of either one or two inbound arcs and one or two outbound arcs. The initial node may have sev eral out-

bound arcs and the terminal node may have sev eral inbound arcs. The algorithm starts a forward pass from

the initial node by sending a zero path length message to each of its outbound successors.Whenever a PAG

node has received path length messages from each of its predecessors, it records the longest such path

length, and then sends new path lengths to each of its successors. Each path length sent to a successor is

the sum of the longest inbound path length and the arc length from the current node to the successor. This

forward diffusionpass continues until the terminal node has received messages from each of its predeces-

sors. Afterthe forward pass is complete, each PAG node has recorded the length of the longest path to

itself from the initial node and the predecessor that is the immediate neighbor along that path. The critical

path is the longest path from the initial node to the terminal node.The actual nodes and arcs of the critical

path are found by traversing from the terminal node backward through the PAG, always taking the prede-

cessor arc with the greatest total path length.

The algorithm for the Inter-Application Critical Path starts two types of diffusion from the initial

node: a primary diffusion which starts in the application of interest and a secondary diffusion which starts

in all other applications. The primary diffusion reaches all nodes and arcs of the PAG that are on a path



- 9 -

from the root node of the application of interest.The secondary diffusion reaches all remaining nodes and

arcs and is included only to insure that the distributed critical path algorithm completes.Therefore, all arcs

reached by the secondary diffusion are marked with zero length, and the primary diffusion always domi-

nates the secondary diffusion when the two meet. Even though the primary diffusion may reach exit nodes

of processes that are not in the application of interest, the backward traversal from the terminal node will

only begin with an exit node from a process in the application of interest. In all other respects, the back-

ward traversal is the same as in the original critical path algorithm.

Figure 4 shows the Inter-Application Critical Path of program C.We can see that part of program B

is on program C’s critical path, but that program A is not.

5. Experience

This section presents three examples that demonstrate the multi-application features of IPS-2.Sec-

tion 5.1 presents a comparison mode analysis of a single application that was measured with process time

clocks of varying precision, Section 5.2 presents an analysis of a shared-memory system workload, and

Section 5.3 presents an analysis of clients and servers in a client/server data storage manager. We hav e

included actual IPS-2 displays used during the analysis of the applications so that the reader can see some

of the actual performance displays provided by the tool.

5.1. TheEffect of Clock Precision on Performance Analysis

Precise measurement of time is crucial to the success of event-based performance analysis. If time

measurements are not precise, then several events may have identical timestamps and event analysis can

only approximate the relative costs of the activities that caused the events. If such approximations are ade-

quate, then there is no reason to require systems to support high resolution clocks, but if we find that impre-

cise clocks yield errors in our analysis then we must find ways to improve our measurements. This exam-

ple uses comparison mode to show how imprecise clocks affect time histogram displays and critical path

analysis.

Providing precise clocksshould notbe a problem since computers are generally synchronous devices

controlled by system clocks running at very high frequencies [.mach.].The system clock defines the high-

est frequency at which events can occur, and therefore it should be possible to provide a register that is

incremented each time the system clock ticks.However, most systems do not provide such high resolution

clocks, and they almost never use precise clocks for process time measurements (virtual time for a process



- 10 -

that only advances while the process is running). Process time clocks typically advance at frequencies that

are three or more orders of magnitude slower than the system clock.

Sequent Symmetry systems support microsecond precision clocks for wall time measurements, but

only 10 millisecond precision clocks for process time measurements.We hav eenhanced our Sequent Sym-

metry’s Dynix Operating System kernel to use microsecond precision counters for process time measure-

ments. To study the effect of this enhancement on IPS-2 analyses, we used the new multi-application com-

parison mode to analyze measurements of a shared memory database join application.We compared mea-

surements made before and after the change to the process clock by displaying time histogram curves in a

single display and by making numerical comparisons between critical path tables.

Figure 5 displays a comparison mode time histogram display of total CPU time for each run of the

application. Thisdisplay provides a concrete visual illustration of the effects of clock precision.Imprecise

clocks introduce roundoff noise into the curves that make detailed features of the curves difficult to identify.

The gross features of the two curves are roughly the same, and if gross features are sufficient for analysis,

then imprecise clocks may be adequate.However, if the details are important then precise clocks are

required. Otherwise,we cannot determine whether a feature appears because of a program behavior or

because of measurement error.

Comparison Mode Time Histogram Display

Figure 5.

Imprecise clocks also affect analysis methods such as critical path that are designed specifically for

parallel programs. Figures 6 and 7 show procedure-level intra-application critical path profiles for the

shared memory join application, one for each run of the application.For the run with the millisecond

clock, the critical path profile shows procedurepartition as the most important procedure, while the

critical path profile for the run with the microsecond clock lists procedureeffect_join at the top and

procedurepartition as second. The qualitative results in this comparison study are reproducible, so we

can conclude that the clock resolution is the source of the different results.†

This error in critical path analysis can occur when the process time clock advances at a frequency that

is less than the rate of application synchronization operations, such as spin locks.Each time the process

time clock advances, IPS-2 attributes the entire preceding time period to the currently active procedure.

Since the Sequent Dynix operating system is symmetric with independent kernels on each processor, the

process time counter on each processor is skewed in comparison to the other processors.However, if syn-

chronizations occur more frequently than process time updates, it is likely that critical path will find PAG

† In a different study, we verified that procedureeffect_join is actually more important to the runtime
of the application [.validation.].



- 11 -

dependences between processors so that all of the clock advances in all of the processors appear to be on

the critical path. The result is a critical path that is much longer than the actual runtime of the program.

Furthermore, since critical path finds the longest measured path, it is likely to find the most inaccurate path

through phases that have high rates of synchronization. Independent IPS-2 analysis (not shown) revealed

that partition executed during a time phase in which the application locked and unlocked approxi-

mately 4000 spin locks every second while the process time clock advanced at a rate of only 100 times per

second. Throughcareful manual analysis of the IPS-2 trace files, we were able to determine that the infre-

quently advancing process clock allowed the critical path algorithm to find a path through this phase that

inaccurately assigned too much weight topartition.

Researchers have long requested more precise clocks by making theoretic or anecdotal arguments.

With multi-application IPS-2 we have made the value of precise clocks clear with a direct, concrete com-

parison. Thistype of comparison can also be used for studying applications across hardware platforms,

operating systems, or input sets.

Figure 6. Figure 7.
Critical Path with 10 msec clock. Critical Path with 1 usec clock.

5.2. Scheduling,Synchronization Policies, and Workload Performance

This example, shows how multi-application IPS-2 can be used to study program workloads. We

examine a widely studied application [.thakkar.] that was previously tuned in isolation using IPS-2 [.edcu.].

The application, calledpsim, simulates an indirectk-ary, n-cube processor-memory interconnection net-

work. Over the course of a simulation several memory request packets are issued from each simulated cpu.

The packets travel over the request half of the network, are serviced by the memories, and then carry results

over the result half of the network back to the issuing cpu. The simulator computes the state of each net-

work device (processor, switch, or memory) in parallel for one clock cycle and then performs a barrier syn-

chronization before beginning the next clock cycle.

The psim program statically assigns processes to compute the states of network elements and

achieves nearly linear speedup for up to about 10 processors.The greatest cost of parallelization is the time

spent at barriers after each simulated clock cycle. Thisbarrier waiting cost is highest at the beginning of

the simulation when the first request packets are filling the simulated network and at the end when the last

result packets are draining from the network. Thesimulator uses spin locks to enforce mutual exclusion on

queues at each simulated device, but these locks are accessed by at most two processes and are held for



- 12 -

very short periods of time. Therefore, lock waiting is not a significant factor in the performance of psim.

The first column of the Metric Table in Figure 8 shows a summary of the performance of a single psim run-

ning in isolation.

To study the performance of psim outside of an isolated environment we used the new multi-applica-

tion facility of IPS-2 to run two four-process copies of the psim application concurrently on a four proces-

sor Sequent Symmetry. The second copy of the application was given the same input values as the first and

the two ran concurrently, competing for shared resources.Ideally, the elapsed times of the two competing

applications should be about twice as long as the elapsed time shown in the first column of Figure 8 while

the barrier wait time, CPU time, and spin times should remain the same as the times shown in the first col-

umn of the figure.

The second and third columns of the Metric Table in Figure 8 summarize the performance of the two

psims running concurrently. The columns show that the elapsed time of the two concurrent psims is more

than thirty times greater than the elapsed time for the run of one psim on the same machine.†

The increase in elapsed time is best explained by the difference in barrier synchronization between

the isolated psim and the two concurrent psims. The average time per barrier is approximately 40 times

greater when psim is run with other competing processes.The enormous increase is caused by the imple-

mentation of the barriers − each process spins until all other processes reach the barrier. In a workload

environment, there is only a small probability that all of the processes in a particular application are sched-

uled at the same time, and a process that is busy waiting will use its entire time quantum before releasing its

processor. Therefore, other processes remain blocked until the end of the time quantum before running.

A Multi-Application Metric Table

Figure 8.

The problems with this type ofalways-spinbarrier have been predicted with analysis and simulation

[.zahorjan.], and several solutions have been proposed to fix them. One solution is to use barriers that block

after only a small amount of spinning [.bershad.], and another is to co-schedule the processes of each appli-

cation [.leutenegger.]. We implemented the latter alternative and the results are summarized in the fourth

and fifth columns of the Metric Table in Figure 8.

The multi-application table shows that elapsed time of the competing applications is now approxi-

mately twice the elapsed time of a single application running alone.The table’s data also confirm the pre-

diction [.zahorjan.] that waiting time at spin locks is not significantly affected by competing processes.†

† The slowdown was so severe that we initially suspected a bug in the program or a crash of the system.

† Small changes in values for CPU time, Elapsed Time, Barrier time, and Spin Time due to variations in
machine load are not considered significant.



- 13 -

Our co-scheduler is a simple server that allows processes to register themselves with an application

identifier. The server then uses UNIX signals to schedule all processes with identical application identifiers

at regular intervals. Figure9 shows a Time Histogram display with CPU utilization curves of two psims

co-scheduled at intervals of one second. The alternating periods of high CPU utilization indicate that

excessive barrier synchronization is no longer a significant factor in the performance of the two concur-

rently running applications.

This example has confirmed analytical predictions about synchronization methods, workload sched-

uling in shared-memory environments. Moreimportantly, we hav eshown how multi-application perfor-

mance tools can be used to present side-by-side performance data from actual workloads and to test appli-

cations that have been tuned in isolation.

Two Psims Running With a Co-Scheduler

Figure 9.

5.3. Client/Server Database Storage Manager

Our third example demonstrates how multi-application critical path can be used to study clients and

servers in a distributed application.We use Intra-Application Critical Path to isolate particular clients in a

distributed database system and Inter-Application Critical Path to measure the extent to which the database

server affects the performance of clients. Multi-application IPS-2 allowed us to partition our analysis logi-

cally (clients vs. server) as well as physically.

The EXODUS Storage Manager supports the storage of persistent objects, files, and indices for use

by database systems [.exodus vldb,exodus addison.]. EXODUS uses a client/server model to allow simul-

taneous access to objects by multiple applications in a distributed environment. Theserver is the main

repository for objects and provides support for lock management, transaction logging, page allocation and

deallocation, and recovery/rollback. Theserver uses a single multi-threaded process to handle requests

from multiple clients and uses separate disk processes to perform asynchronous I/O.A client library that is

linked with each application communicates with the server, performs data and index manipulation, and

manages a memory buffer pool for the client application.Application programs are either written in the E

programming language [.persistence.] or call client library routines directly.

For our experiment, we used multi-application IPS-2 to analyze the EXODUS server and a set of

sample client applications.The client applications produce and consume objects in a database.We ran a

single producer and consumer pair concurrently until they had each handled 100 4-kilobyte data objects.

The server and the consumer ran on a single DECstation 3100, and the producer ran on a separate



- 14 -

DECstation 3100 (see Figure 3).The server used several threads and spawned 2 disk processes, one for the

transaction log volume, and one for the data volume used by the client applications.

Figure 10. Figure 11.
Critical Path of Server Gprof Profile of Top Server Thread

Figure 12. Figure 13.
Critical Path of Producer Client Critical Path of Consumer Client

We beg an our analysis by examining the overall performance of the EXODUS server. The process-

level Intra-Application Critical Path profile in Figure 10 shows the cumulative time that each thread con-

tributed to the isolated critical path of the server. The profile indicates that threadsm_server[2] was

responsible for over 30% of the server’s critical path with the remainder divided among the other threads,

each accounting for a small percent.

After the critical path profile identifiedsm_server[2] as an important thread, we refined our anal-

ysis to the procedure level. IPS-2gprof profiles organize the procedures of a particular process or thread

into a hierarchical dynamic call graph format.We used IPS-2 gprof to analyzesm_server[2] from the

main procedure down to the procedures that accounted for most of the thread’s CPU time. IPS-2 gprof also

lists the total CPU time for a thread, and in this case, the thread’s total CPU time was equal to the thread’s

contribution to the Intra-Application Critical Path. Therefore,all of the thread’s CPU activity was on the

server’s critical path. Figure 11 shows the gprof entry foropenLogDisk, the descendant ofmain whose

CPU time (along with its descendants’ CPU time) accounted for over 80% of sm_server[2]’s CPU

time. TheopenLogDisk procedure is an initialization routine that normally accounts for only a small

amount of time, but since our experiment was run on a uninitialized EXODUS server, a significant amount

of processing is spent regenerating the transaction log. This cost is listed in Figure 11 as CPU time for the

procedureregenLog.

Given the initial understanding of the server’s performance, it is useful to understand the client activ-

ity that caused this performance.With multi-application IPS-2 we can shift our view to other parts of the

system. Inparticular, we can examine the client applications and their interactions with the server. Figure

12 shows a process-level Inter-Application Critical Path profile of the producer client. The profile shows

that the producer is responsible for only about one third of its own critical path, with the remainder distrib-

uted among the consumer client, server threads, and message delays.Even though the producer and con-

sumer do not communicate with each other directly, they still can appear on each other’s Inter-Application



- 15 -

Critical Path because server threads doing work on behalf of clients must wait for one another inside of the

server. The profile also lists the time spent forking the disk process that handled the client data volume.

It is interesting to see that message delays from the producer client to the server are responsible for a

noticeable portion of the producer’s Inter-Application Critical Path, but that message delays back to the

producer are not listed. The imbalance appears because a single server thread (sm_server[2]) handled

all message receives from the producer, while replies to the producer were performed by many threads.

Critical Path Analysis considers inter-thread queuing dependences while calculating the critical path, so if

one thread receives a request from a client and assigns another thread to service the request, the critical path

may follow this dependence. Therefore, the critical path time for message receives is concentrated in one

thread while the time for reply arcs is spread among several threads, and no single thread has enough to

reach the top of the profile.We verified this analysis with a machine level Inter-Application Critical Path

profile of the producer (not shown). Thecritical path profile at the machine level l ists message delays from

the producer’s machine to the server’s machine that are equal to the message delays from the server’s

machine to the producer’s machine.

The consumer client’s Inter-Application Critical Path profile, shown in Figure 13, was similar to that

of the producer. Again, the consumer itself was responsible for only about one third of its own critical path.

The profile also shows that message delays from the producer to the server were significant, indicating that

the consumer’s performance was limited by the performance of the producer. This is consistent with obser-

vations made during execution: even though the consumer started later than the producer, it eventually

caught up and waited for the producer to produce new data objects. The consumer’s critical path does not

include the fork of any disk processes because the consumer accessed the same data volume as the pro-

ducer, and only one disk process is forked per open volume.

Process-level analysis has given us a structured view of the relationships between the client applica-

tions and the server. To continue our study of the system we could refine our view of specific threads and

processes with procedure-level critical path and profile analyses.Procedure-level analyses identify specific

procedures to be tuned and have led to performance improvements during past studies [.edcu,validation.].

However, for the present study we were primarily interested in identifying which applications affected each

other, and process-level analysis was sufficient.

The EXODUS example demonstrates how a multi-application performance measurement tool can

isolate individual processes or sets of processes in a distributed system, and track problems as they flow

through different application programs.Analyses of this type are simply not possible without multi-appli-

cation support.



- 16 -

6. Summary

The support of multiple applications in a parallel program performance tool is a simple idea, and it

can significantly simplify many types of performance studies. Multi-application support can also provide

information that cannot be reasonably obtained by other means; for example, Inter-Application Critical

Path tracks the critical path as it flows across application boundaries.We hav eused multi-application sup-

port in a wide variety of situations, and have reported on three diverse uses.Given the conceptual simplic-

ity of multi-application support and its usefulness, we believe any new performance tool that is to be used

with applications that run in complex environments should provide this facility.

The most interesting changes to the IPS-2 tool were the two extensions to critical path analysis.

Intra-Application Critical Path allows the user to isolate the performance of a single application, and Inter-

Application Critical Path allows the user to study a single application and other applications that may have

limited its performance.

We hav ealso extended IPS-2 with logical and physical program views. Logicalviews isolate analy-

sis to particular applications while the physical view localizes analysis based on physical location.This

organization is well suited to the analyses supported in IPS-2 and other tools that encourage a hierarchical

top-down performance analysis methodology.

Our experiences with multi-application IPS-2 have allowed us to make sev eral observations of paral-

lel and distributed programs. In our first example, comparison mode allowed us to demonstrate that impre-

cise clocks can lead to noisy visualizations as well as misleading performance analyses.In our second

example, we used logical views to analyze two parallel programs competing for CPU resources. The study

showed that co-scheduling can have an enormous effect on the performance of competing parallel programs

that perform barrier synchronizations. In our third example, we used Intra-Application Critical Path Analy-

sis to isolate a server’s performance in a client/server database storage manager. We then used Inter-Appli-

cation Critical Path Analysis to demonstrate how client applications can affect each other and the server in

the database system.In each case, the ability to analyze multiple applications in a single session allowed us

to examine the applications in ways that were not previously possible.

When measuring programs in complex environments, there are other important keys to success

besides supporting multiple applications in a single measurement session.For example, the applications

measured in our studies used complex programming facilities such as signals, threads, shared file descrip-

tors, asynchronous I/O, dedicated I/O processes, and connectionless inter-process communication.Cor-

rectly handling such facilities is worth the effort if we can measure interesting applications and learn more

about the true nature of parallel and distributed program performance.



- 17 -

7. Acknowledgements

We thank Mike Zwilling and Nancy Hall for their help with the Exodus Storage Manager, Joann

Ordille for authoring the shared memory database join application, and Eugene Brooks for authoring the

psim simulator. We also thank Jon Cargille, Jeff Hollingsworth, Krishna Kunchithapadam, and Christopher

Maguire for their comments and suggestions on improving this paper.


