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abstract

From mobile computing to the largest leadership-class supercomputers,
many-core accelerators are relied upon to provide the computational ca-
pabilities necessary to make today’s applications possible. Machine learn-
ing, image processing, n-body simulations, and a host of other applica-
tions are increasingly reliant on the computational capability provided
by many-core accelerators to achieve the performance necessary to target
real-world problems. For modern applications, especially those running
on leadership-class supercomputers where the number of GPUs can out-
number traditional CPUs three to one, effective exploitation of many-core
compute resources is a must to achieve high efficiency. Effectively exploit-
ing the additional parallelism provided by many-core accelerators requires
developers identify where accelerator parallelization would provide bene-
fit and ensure efficient interaction between the CPU and accelerator. While
these issues appear straightforward and well understood, we have found
that significant untapped performance opportunities still exist even in
well-studied, heavily optimized, real world applications created by experi-
enced developers. By addressing hidden performance opportunities, we
were able to reduce execution time by up to 87% for the applications we
have tested.

In this dissertation, we develop a new performance measurement and
modeling technique called the feed-forward measurement model (FFM)
that exposes previously hidden performance opportunities and delivers
actionable feedback to developers on the potential benefit if the problem
were corrected. We first explore a set of real-world applications to iden-
tify hidden performance opportunities common among them, developing
techniques that tools can implement to detect their presence. FFM refines
and expands these detection techniques by including a model that can
estimate the performance benefit of fixing these problems. We have cre-



x

ated a performance tool called Diogenes that implements FFM to test its
effectiveness on real world applications. The result was the discovery of
problems that, when fixed, reduced execution time by up 17% in appli-
cations we tested. Last, we expanded FFM to give guidance on how to
remedy the problems it identified and the ability to automatically apply
remedies to the program. By automatically correcting problems, FFM was
able to reduce execution time of tested applications by up to 43%.
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1 introduction

As many-core accelerators have become standard on high performance
computing platforms, developers have had to adapt their applications to
exploit the additional parallelism afforded by many-core architectures.
The adaptation process begins with the identification of code suitable for
parallelization, the writing of an efficient many-core parallelization of that
code, handling the interaction between the CPU and many-core device,
and ends with the integration of the new many-core component into
existing CPU code. Developers often further optimize their applications
by iterating over this process many times.

When viewed in isolation, each stage of the adaptation process ap-
pears straightforward and well understood. However, when adapting and
tuning real-world applications, the identification of performance oppor-
tunities within each stage becomes increasingly difficult. The sheer size
and complexity of real-world code bases, which can number in the hun-
dreds of thousands of lines of code or more, makes manual identification
of performance opportunities increasingly difficult. For instance, a syn-
chronization can be hidden from source code analysis when it is hidden
behind many levels of indirection or located in a closed-source binary. The
code bases of real-world applications are also frequently changing the
result of these changes can make once efficient interactions identified by
previous optimization passes of the application inefficient. The reliance
of developers on many-core accelerated libraries to add functionally to
their applications increases the difficulty of optimization further. These
libraries are efficient internally but when combined with other many-core
accelerated codes create a undesirable interaction patterns between the
CPU and the accelerator. Real-world applications also typically support
many different many-core accelerator types (such as OpenMP, CUDA, and
Phi). Assumptions made by application developers on usage of these
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accelerator types can lead to bad behavior when they are not true (such as
the developer assuming that multiple modes of acceleration will not be
used together). The end result of the increased complexity makes seeming
straight forward performance opportunities difficult to identify in practice
by skilled developers.

Developers turn to performance tools to help unlock the hidden per-
formance opportunities present in their programs. Developers typically
use a performance tool such as HPCToolkit [56], TAU [52, 82], and NVProf
[66] to help identify potentially problematic behavior. However, the help
existing tools provide is limited by gaps in the performance data that they
collect, including:

1. Performance data is not recorded for all GPU operations. Not all
occurances of GPU operations, such as synchronizations, have perfor-
mance data collected for them. This leaves the tool and the developer
unaware of the occurrence of these operations during program exe-
cution.

2. Incomplete performance data is recorded for some GPU operations.
Only a partial record of operations are recorded for GPU opera-
tions that during the course of their execution perform other GPU
operations.

3. For the information that is collected, its often at an insufficient gran-
ularity to make a determination if an operation that appears to be
problematic can actually be improved.

These gaps are caused by vendor supplied interfaces (on which all
current tools depend) that provide incomplete information about the op-
erations taking place. In addition, these interfaces are too coarse-grained
because providing the level of detail needed to detect problematic opera-
tions is considered to be too costly.
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When existing tools can identify and properly record the behavior of
a GPU operation, the information they provide to the developer is often
not directly actionable. Existing tools describe the resource consumption
at points in the program, but not the benefit that could be obtained if those
points were made more efficient. The assumption is that points of high
resource consumption correlate to the points with the highest obtainable
benefit. However, as early work on critical path analysis [99] showed,
resource consumption was not always a good predictor of the obtainable
benefit. When a point of high resource consumption is identified by a
tool, a detailed manual analysis of the operation is still required to de-
termine if the operation is problematic. The result is that programmers
spend time identifying problematic operations that produce limited bene-
fit when they are fixed, while missing others that might provide significant
improvements to performance.

The developers work is not complete after they have identified a prob-
lem. After discovering a problem, the developer must determine how
to remedy the problem. This process typically requires another round
of manual analysis to determine the underlying cause of the problem.
Problems can be caused by a single operation or may be a component of a
larger construct that exhibits a problem spanning over many operations.
If a larger construct exhibiting a problem is present, the developer could
select a remedy that would fix the larger problem seeing improved benefit
over fixing a single operation. The lack of guidance on what remedy to
select can result in the developer missing the presence of larger problems
resulting in the selection of the wrong remedy, lowering performance
benefit or impacting program correctness.

Finally, after a developer has identified the correct remedy for a prob-
lematic operation, the developer is still responsible for applying the rem-
edy to the program. Applying the remedy manually to the source code
of an application can require significant effort from a developer. In some
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cases, the problem may be in a closed source application where the devel-
oper does not have access to the source code to fix the problem. In practice,
a developer tends to fix only the easiest of the most problematic operations
discovered, leaving harder to fix problems with significant performance
benefit untouched.

1.1 Techniques and Contributions

The key contribution in this dissertation is a performance data collection
and analysis technique called the Feed-Forward Measurement Model (FFM).
The primary focus of FFM was to create a technique capable of delivering
actionable feedback for problematic operations in programs. FFM is able
to automatically identify problematic operations, provide an estimate of
benefit if the problem were corrected, provide remedies for the problems
identified, and automatically apply remedies for common problems seen
in applications.

We start our discussion on FFM by first describing the hidden perfor-
mance opportunities that we manually detected in GPU applications and
their effect on application performance. We give an overview of the FFM
model, the hidden performance problems that FFM targets, and FFM’s
multi-stage/multi-run approach to data collection and analysis. We then
go into detail on the performance model used in FFM to identify what
operations are problematic and to generate an estimate of expected benefit
if the problems were corrected. We end our description of the FFM model
by describing two extensions to the FFM model to allow for the automatic
identification of remedies to problematic operations and the automatic
application of remedies to binary codes. We then describe the construction
and challenges that we faced when creating Diogenes the performance tool
that implements the FFM model.
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1.1.1 Exposing hidden performance opportunities in
GPU applications

We investigated performance problems that are often missed in real-world
parallel applications [91]. We identified four prominent performance
problems in a set of five real world scientific applications that, when
manually corrected, resulted in a reduction of execution time by up to
87%. These four issues were: unnecessary synchronizations between the
CPU and GPU, duplicate memory transfers between the CPU and GPU,
unnecessary Just-In-Time compilation of GPU code, and missed GPU
parallelization opportunities.

We focus our efforts on building techniques that target unnecessary
synchronizations and duplicate memory transfers. These problems were
the two most prominent in terms of performance impact and occurrence
in the GPU applications we have tested. In Chapter 3, we discuss the four
hidden performance opportunities, their effect on application performance,
why they were hidden from other performance measurement techniques,
and techniques that could be used to identify their presence in applications.

1.1.2 The Feed-Forward Measurement Model

The Feed-Forward Measurement Model (FFM) is a technique that pairs a
multi-stage/multi-run approach to performance measurement with a new
performance model that identifies problematic operations and generates
an expected benefit for fixing the problematic operations [92]. The multi-
stage/multi-run approach to performance measurement allows for the
capture of previously uncollectable measurement data, giving the perfor-
mance model the measurements necessary to discover hidden performance
problems.

The principal idea behind FFM’s multi-stage/multi-run approach for
collecting performance measurements is that the insertion of instrumen-
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tation into an application and the performance data that is collected is
guided by the application’s behavior. The application’s behavior during
execution guides FFM to potentially problematic GPU operations, includ-
ing those that are hidden from existing tools with a reliance on vendor
supplied interfaces.

We present an overview of the FFM technique in Chapter 4.

1.1.3 The Performance Model of FFM

Generating an estimate of expected benefit with reasonable accuracy re-
quires that we understand the effect a correction to a problematic operation
will have on total application execution time. The actual benefit obtained
from correcting a problematic operation is impacted by the duration of the
problematic operation corrected and the effect the correction has on the
operations that remain. We created a performance model capable of mod-
eling the behavior of the correction applied to fix problematic operations.
The model takes into account how the applied fix alters the behavior of the
remaining unchanged operations in the program. By modeling the effect
that the correction has on the unchanged operations, we can determine the
overall effect that a correction would have on total application execution
time.

We describe the performance model of FFM, the output generation of
FFM, and our experiments with with the Diogenes implementation of the
performance model in real-world applications in Chapter 5.

1.1.4 Automatic Remedy Identification

Automatic remedy identification is an extension to the FFM model that
gives guidence on the type of problem present at a point in the program
and how to correct that problem [93]. This feature gives FFM the ability
to identify if a problem was caused by single operation or if it is a com-
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ponent of a larger construct that exhibited a problem that FFM identified.
An example of a larger construct is a frequently occurring unnecessary
synchronization caused by a memory free operation (such as cudaFree)
that could indicate that a larger memory management problem is present.
If larger constructs exhibiting this problem could be identified, it would
result in the elimination of memory allocation and free operations, signifi-
cantly increasing the potential performance benefit.

FFM was extended with capability of identifying two common larger
constructs seen within an applications that exhibit a problem: unnecessary
synchronizations caused by memory management issues and unnecessary
synchronizations caused by synchronous memory transfers. For each of
these problems, we identify the remedy that should be employed to fix
the problem, including the non-synchronizing operations that need to be
changed.

We describe the extensions made to FFM to support automatic remedy
identification and our experiments with remedy identification in Chap-
ter 6.

1.1.5 Automatic Correction of Problematic
Synchronizations

Fixing problems identified by FFM can require a significant restructuring
of application code or the modification of closed-source binaries. De-
velopers sometimes are left with a tough choice of leaving these issues
unresolved or potentially spending significant effort refactoring their code.
If they choose to address the issues, the benefit they get may not have
been worth the effort they place into fixing the problem. The high cost
of developer time to fix problematic operations in combination with the
potential risk of limited performance benefit results in the choice being
made to not address these issues.
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We extended the FFM model to automatically apply corrections to
the two common larger constructs exhibiting synchronization problems
identified by automated remedy identification. The automated correction
modifies the binary at application startup to remove problematic behavior,
allowing for remedies to be applied to applications even if the problem
appears in a closed-source binaries such as libraries provided by the GPU
vendor.

We describe the extensions to the FFM model to support automatic
correction and our experiments with automatic correction in Chapter 7.

1.1.6 Diogenes: A Tool that Implements FFM

We have implemented the FFM model in a tool we call Diogenes. Through
the use of the FFM model, Diogenes is able to identify operations that are
unreported by existing performance tools (including vendor supplied tools
such as NVProf [66] and CUPTI [65]) and provides actionable feedback
on what problematic operations are correctable. Note that for evaluation
purposes, we built Diogenes specifically to identify problematic synchro-
nization and memory transfer operations. Diogenes is not a replacement
for a general purpose profiling tool but a supplement that aids in the iden-
tification of these problematic operations. We use Diogenes to evaluate
the effectiveness of FFM on real world applications. Diogenes was tested
on a set of four real world scientific applications to identify and correct
problems, reducing their execution time by up to 43% automatically.
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2 related work

The techniques used in FFM touch on topics in four areas of research:
performance measurement tools, profile-guided/feedback-driven opti-
mization, and autotuners. We describe the contributions from previous
work in these areas, the benefits and limitations of these contributions,
and how FFM differs to solve limitations seen in existing techniques.

2.1 Performance Measurement Tools

We benefit from a long history of research in the area of performance mea-
surement tools. Performance measurement tools have been created to help
tune applications to run on a variety of platforms. Tools such as Gprof [37],
OProfile [24], AMD uProf [2], and Intel VTune [10] focus on providing per-
formance measurement and analysis to applications running on a single
machine. The initial work on single machine performance measurement
tools led to the development of techniques capable of profiling parallel
applications. Parallel performance measurement tools such as Faust [38],
HPCToolkit [56], Jumpshot [98], KOJAK [58], Paradyn [57], Paraver [74],
Periscope [35], Quartz [5], Scalasca [34], ScoreP [47], and Vampir [46], ex-
tended single machine performance measurement techniques to provide
scalable methods to collect measurement data from many processes and
developed new analysis techniques capable of processing this data.

With the introduction of GPU accelerated applications, new perfor-
mance measurement techniques were needed to support problems spe-
cific to these applications. Existing tools were modified and new tools
created to detect GPU idleness [26, 47, 53, 54, 66], CPU idleness waiting
on GPU completion [26, 47, 54, 66], warp occupancy [26, 54, 66], GPU
cache behavior [54, 66], on-device synchronization issues [26, 66], missed
parallelization opportunities [6, 9, 15, 44, 61, 68], and workload balance
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between accelerators on the same node [22].
The performance tools developed to support GPU applications share

a common structure with their parallel and single machine performance
measurement tool ancestors in that they typically operate with a single
stage of instrumentation performed on a single run of the application to
collect measurement data. An analysis is then performed on the collected
data to produce output for a developer to view. Where GPU performance
tools differ from their ancestors is their reliance on vendor-supplied black
box performance measurement collection frameworks for data collection.
The measurements that can be collected, their completeness, and their
accuracy often are controlled by the GPU vendor.

While this common structure has helped to produce tools that can help
to find performance issues in applications, there are problems that are
hard to detect even with such tools. In this section, we describe the benefits
and limitations that a single stage instrumentation structure imposes on
tools, how the reliance on vendor-supplied black box performance mea-
surement collection frameworks can result in the incomplete collection of
measurement data, and an overview of notable analysis methods used by
GPU performance measurement tools.

2.1.1 Single Stage Instrumentation

Most existing tools are structured such that the instrumentation inserted
and the type of performance data collected is static for a single run of the
program. The instrumentation is set before execution and is not adjustable
during execution.

The instrumentation that a single-stage/single-run performance mea-
surement tools inserts can be fixed by the tool maker [6, 9, 15, 16, 37, 44, 61,
68] or adjustable by the user [2, 10, 26, 46, 47, 53, 54, 56]. Fixed instrumen-
tation tools have the inherent limit that they cannot adjust the performance
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data they collect; users who need additional performance data must rerun
the application with another tool to collect that data.

Adjustable performance measurements tools allow the user some con-
trol over the performance data collected. The user can control the types of
measurements that are taken and in some cases the locations measurement
instrumentation is inserted. However, user adjustable tools cannot collect
measurements on everything at the same time and thus the user must
still choose what to collect. A user is forced to guess what measurements
might be useful, run the program to collect those measurements, and
likely rerun the program to collect new measurements. Getting effective
feedback from single-stage/single-run tools requires the user to manually
manage multiple stages of instrumentation taken over multiple runs from
different performance tools.

The notable exceptions to the single stage tool structure are Para-
dyn [57], NVProf [66], and the Nvidia Visual Profiler [66] (NVVP). Paradyn
adds and removes instrumentation during a single run of an application.
This dynamic approach allows Paradyn to focus the collection of additional
detail on only the most resource consuming operations. As the application
executes, the operations consuming more resources are instrumented at
increasing levels of detail. However, an operation that is impactful can
be missed if the operation completes before Paradyn determines that the
operation is important.

NVProf uses selective multi-run instrumentation when collecting per-
formance counter information from the GPU. NVProf will rerun a GPU
kernel within an application multiple times to record the values of dif-
ferent performance counters. The rerun of a GPU kernel is required due
to hardware limits on the number of performance counters that can be
recorded in a single execution.

NVVP extends the functionality of NVProf to combine multiple single-
stage/single-run instrumentation approaches into a tool with a graphical
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interface where the user can select from different analyses, one such analy-
sis is dependency analysis (described in Section 2.1.3). NVVP automatically
launches the application once per analysis, to collect the data needed to
perform that analysis. The output of each analysis is aggregated into a
graphical interface that allows the user to browse the output produced
by each analysis. The main advantage of this approach is that it lessens
the need for the user to manually manage multiple runs of the program
to collect data for some problem types. However, NVVP is still limited to
a single-run to collect the data needed for a single analysis. If data from
multiple runs is necessary, the user must manually collect and manage
that additional data.

2.1.2 Black Box Performance Measurement Collection
Frameworks

The use of accelerators such as GPUs by applications has changed the ways
that performance tools collect measurement data. Accelerator vendors
attempt to limit details about their physical hardware and software subsys-
tems, instead providing developers an abstracted framework when using
their platforms. Without detailed hardware and software information, per-
formance tools must rely on closed-source vendor-supplied frameworks
for performance data collection. With closed-source collection frameworks,
tools have no means to check if the performance data collected is accurate
and complete. For example we see black box performance data collection
interfaces for Nvidia GPUs [65], Google TPUs [36], and Intel GPUs [10].
However, AMD’s performance collection frameworks and GPU driver are
both open source [3].

For Nvidia GPUs, GPU profiling and tracing tools rely on the CUPTI
performance data collection framework [65]. CUPTI reports when a call is
made to the vendor-supplied library (libcuda) that interfaces with the GPU
driver and to collect performance counter data from the GPU. During the
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course of our research, we have discovered that CUPTI does not account
for all CPU/GPU synchronization operations or calls made to libcuda.

For all but four functions in libcuda that perform CPU/GPU syn-
chronization operations, CUPTI does not provide information on the
CPU/GPU synchronization operations that take place. The unreported
operations include implicit and conditional synchronization operations.
Implicit synchronization occurs as a side effect to another operation such
as a memory transfer (e.g, cuMemcpy). Conditional synchronization occurs
when certain arguments are supplied to a GPU API call. For example,
cuMemcpyAsync performs an unreported synchronization when a device-
to-host memory transfer is performed to a CPU memory address not
allocated via cuMemAllocHost. These behaviors are not documented in
some cases and are not reported by CUPTI. In addition, the operations
that perform synchronizations may be subject to change based on driver
version.

Out of approximately 450 API functions, we found that CUPTI only
generates synchronization timing information for the explicit synchro-
nization operations cuStreamSynchronize and cuCtxSynchronize. The
vendor claims that there are two additional synchronization operations
involving CUDA events that are reported but did not provide further
detail.

In certain circumstances, CUPTI does not provide information on calls
made to libcuda and the operations they performed. Libcuda contains a
significant proprietary non-public interface that is used by Nvidia-created
libraries like cuBLAS. This interface can perform all the operations avail-
able to the public interface, but these operations are not tracked by CUPTI.
The extent to which these proprietary components are used and how their
behaviors effect application performance is still being explored. Finally,
CUPTI might omit calls to libcuda’s public API if they are called from
other Nvidia-created libraries.
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The result of having these untracked libcuda calls is that the tools built
using CUPTI provide incomplete performance data to the user. While
we hope that these problems will be fixed in future versions of CUPTI, it
proved insufficient for our needs. We developed techniques to instrument
the internal functions of the GPU user space driver using binary instru-
mentation to capture when operations such as synchronization take place,
allowing us to capture and time the synchronization delay of implicit,
conditional, and non-public API synchronizations.

CUDAAdvisor [81] is one of the few existing tools that does not rely
on vendor-supplied frameworks for GPU performance data collection.
CUDAAdvisor is an LLVM-based runtime profiler that performs fine
grained memory and control flow analysis of GPU kernels, detecting
performance issues such as inefficient GPU kernel memory access patterns
and branching behavior. Memory, arithmetic, and control flow operations
performed on the GPU are traced by CUDAAdvisor. An application GPU
kernel is modified at compile time by an LLVM plugin to insert instru-
mentation directly into the GPU kernel. The collected GPU trace data is
associated with memory allocations and transfers performed by the CPU,
allowing a data flow graph to be constructed to show which GPU kernels
are accessing the same underlying data. Using the data flow graph,
CUDAAdvisor can detect potentially problematic memory access behav-
iors such as differences in GPU kernel memory access patterns accessing
the same underlying data. Vendor-supplied instrumentation frameworks
were insufficient because they could not collect the fine-grained GPU trace
data necessary to perform the analysis. Our research targets a different set
of problems than those of CUDAAdvisor, though we also rely on binary
modification for instrumentation. Note that we focus on the collection of
fine-grained details of operations performed on the CPU instead of the
GPU.
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2.1.3 Analysis Methods

Early work in GPU performance measurement tools focused on the col-
lection of performance counters from the GPU and the collection of basic
statistical information about the functions called in GPU vendor-supplied
libraries. This information often is presented to the developer by adapting
existing techniques. For example, the flat profile and call graph presenta-
tions pioneered in the CPU performance tool Gprof [37] are the two most
common among GPU performance tools. The flat profile presents statisti-
cal information by aggregating the measurements taken from individual
executions of a CPU function or GPU kernel. A call graph profile annotates
the graph with measurements taken during execution. These basic analy-
sis techniques were used in tools to detect GPU idleness [26, 47, 53, 54, 66],
CPU idleness waiting on GPU completion [26, 47, 54, 66], low warp oc-
cupancy [26, 54, 66], inefficient GPU cache behavior [54, 66], workload
balance between accelerators on the same node [22], and on-device syn-
chronization issues [26, 66].

Blame analysis was created to build on these early GPU analysis tech-
niques by correlating the idleness of a processor with the operations that
were responsible for the idleness occuring. Blame analysis groups the
computation being delayed with the operations on which the computa-
tion is waiting. First introduced in HPCToolkit [16] and later adopted
by other tools [80] including NVProf (as dependency analysis) [66], blame
analysis treats the idleness of a processor as a symptom. The cause is
then identified as being the behavior that resulted in that idleness. The
fundamental idea is that by exposing the computations that are delaying a
processor, a developer may be able to identify ways to improve those com-
putations or eliminate the dependencies between them to reduce idleness.
For example, if the CPU is waiting for the GPU to complete processing of
a kernel, the blame for the time spent waiting is placed on the GPU kernel
that caused the delay. If the kernel could be made more efficient or the
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dependence causing the CPU to wait could be removed, idleness could
be reduced. If paired with critical path analysis [99], blame analysis can
point the developer in a direction that may help them find issues with the
potential to improve performance. Blame analysis techniques rely on GPU
vendor-supplied measurement data to detect when a processor becomes
idle. Note that blame analysis does not give guidance as to how to correct
the issues that may be present and does not provide an estimate of the
benefit if the issue were fixed.

2.2 Profile-Guided/Feedback-Driven
Optimization

Profile-guided optimization (PGO), sometimes referred to as Feedback-
driven optimization (FDO), is a compiler code optimization technique
that uses profile data to assist the compiler and the linker in generating
an optimized binary. PGO approaches compile and run the application
using a representative input data set to collect profile data. Profile data
is then used by the compiler or linker to apply transformations during
code generation to improve the performance of the application. PGO
techniques target problems such as reducing cache miss rates [21, 55,
70, 73], loop restructuring [25], and identifying functions where inlining
would improve performance [11, 18, 25]. More recently, PGO techniques
have expanded their reach beyond performance issues and have been used
to identify issues in other areas such as application security [41] and I/O
performance [87].

PGOs require a profiling run of the application to collect the data
needed by the compiler or linker to apply transformations. The informa-
tion collected typically takes the form of statistical information such as
basic block execution and function call counts as well as the values of
hardware counters. While there are two ways PGOs collect profile data,
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instrumentation and sampling, the data they collect is often used to solve
the same problem. For example, PGOs that reduce instruction cache miss
rates have been have created using both instrumentation [17, 25, 55, 73, 79]
and sampling [20, 21, 25, 51, 69, 70].

Where instrumentation- and sampling-based approaches differ is in
how the profile data is collected. Instrumentation approaches insert in-
strumentation into the application to collect profile data while sampling
approaches probe the application at regular intervals recording hardware
counters and other information about the applications state. Sampling has
lower overhead than instrumentation for profile data collection but trade
this off against lower accuracy. PGOs using only sampling obtained 60% -
78% of the performance benefit seen from instrumentation based coun-
terparts [20, 21]. This gap is caused by the approximate nature of sample
based profiles [22]. While the lower benefit is not ideal, the lower overhead
of sampling allows profiles to be collected in production environments as
shown by AutoFDO [21].

PGOs identify and correct simple problems introduced during code
generation by the compiler. These corrections have been limited to prob-
lems where the fix is a simple transformation, such as reordering basic
blocks. Complex problems introduced by developers that require transfor-
mations changing the operations performed by the program, such as those
FFM targets, are outside the scope of what a PGO has been able to identify.
The single-stage/single-run profile component of PGOs is also limited by
the problems described with single-stage instrumentation described in
Section 2.1.1.

2.3 Autotuning

Autotuning is the process of identifying efficient input and configura-
tion parameters for an application. Given a programmer defined search
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space, the program is automatically run with different combinations of
parameters to identify the ones that attempt to optimize a given criteria.
Commonly, the end goal for a developer is to find the parameters that re-
sult in the largest reduction in execution time. Autotuning techniques have
been applied to identify the best choice for parameters such as program op-
tions [13, 97, 101], system configurations [13, 59], compiler settings [8, 85],
and algorithm configurations [7, 27] to use to increase performance.

Effective use of autotuning techniques require that a developer define
the parameters that influence performance. The parameters that influence
performance are often unique to the application being tuned, requiring
application specific alterations to the autotuning program to allow for
searching the parameter space. For large search spaces, a pruning method
must also be devised that limits the number of potential parameter com-
binations to reduce the number of times the application must be run to
a feasible amount. This process can miss out on potential optimizations
if the developer incorrectly identifies parameters that influence perfor-
mance, incorrectly prunes the search space, or makes a mistake in the
construction of the autotuner. FFM does not need extensive manual setup
nor application specific alterations to function.
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3 hidden performance opportunities in gpu
applications

Our interest in GPU performance problems stems from the challenges we
encountered when creating the GPU-based extreme scale density-based
clustering algorithm Mr. Scan [89, 90, 94]. Mr. Scan was the first imple-
mentation of the clustering algorithm DBSCAN [29] capable of processing
multi-billion point datasets and the first capable of scaling to 8,192 GPU-
equipped nodes. All other parallel DBSCAN implementations up until
the release of Mr. Scan only demonstrated the ability to cluster up to 100
million points.

One of the most significant challenges we faced in the construction
of Mr. Scan was efficient handling of interactions between the GPU and
CPU. Months of work were spent improving the efficiency of interactions,
such as synchronization operations and memory transfers, to obtain the
performance necessary to process billions of points. A frustrating aspect
was that tools provided limited assistance in identifying these problems,
forcing us to perform significant manual analysis to uncover these hidden
problems. The performance issues we identified in Mr. Scan caused us to
wonder if what we experienced was unique to our application or if these
problems were shared among other GPU applications.

As a result, we performed an in-depth study to identify hidden per-
formance opportunities in highly optimized real-world applications. The
hidden performance opportunities we identified take the form of missed
many-core parallelization opportunities and inefficiencies in handling
interactions with the accelerator, such as duplicate memory copies and
unnecessary synchronization. These issues were identified with a combi-
nation of source code review and manual instrumentation to gain details
about the runtime of functions within the applications and memory struc-
ture; manual corrections were inserted when an issue was identified. In
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Original
App Name Execution Reduction in Problems
(Version) Organization Description Time (Min:Sec) Execution time Found

Hoomd-Blue [4] Univ of Michigan MDS 08:36 37% SYN
(v1.1.1)
Qbox [39] UC Davis MDS 38:54 85% DD, SYN
(v1.63.5)
QBall [28] LLNL MDS 67:55 87% DD, SYN
(Apr 24 2017)
LAMMPs [75] Sandia MDS 03:34 18% MP
(Mar 31 2017)
cuIBM [49] Boston Univ CFD 31:42 27% SYN, JT
(Sep 21 2016)
MDS: Molecular Dynamics Simulation, CFD: Computation Fluid Dynamics, MP: Unobvious Missed Parallelization

SYN: Synchronization, JT: Just-In-Time GPU Compilation

Table 3.1: Applications improved by adding parallelism and correcting
inefficient behavior

our initial experiments with the real-world GPU applications run on Oak
Ridge National Laboratory’s Cray Titan supercomputer (Table 7.1), we
found that the exploitation of these performance opportunities reduces
application execution time between 19-87%.

We needed to use a manual process to identify these problems because
current performance tools did not provide information that was precise
enough to detect the presence of these problems nor accurate enough to
explain the cause. Some missing features of existing profilers and tracers
included not examining the contents of memory transfers, not associating
synchronization operations with the data that they protected, and not
examining the actual memory-access pattern of a loop at run time to
determine its vectorizability. As a result, a tool such as Nvprof [66] could
identify (in some cases) time consuming data transfers, synchronization
operations, and loops but did not provide information such as whether
these operations were necessary or could be improved.

The goal of our work is to help developers reveal and ultimately correct
these inefficiencies in their applications. In this chapter, we (1) characterize
missed performance opportunities in many-core applications and why
they are difficult to identify, (2) show the performance benefit of correcting
these issues, and (3) describe detection methods that can be used by perfor-



21

mance tools to identify these missed opportunities in other applications.
The detection methods we created lay the groundwork for our later work
on FFM. To guide our discussion, we group the performance opportunities
we have discovered into four categories:

Unobvious missed parallelization opportunities in areas of the appli-
cation where using the GPU would improve performance: What makes an
unobvious region for conversion unobvious is the unknown benefit of con-
verting the region to the GPU. The uncertainty of the conversion is caused
by the assumption that the region does not have the necessary characteris-
tics for profitable parallelization on the GPU. The characteristics needed
are high parallelism, a flat memory structure (single dimensional arrays),
and workload levels high enough to overcome the overheads associated
with moving the computation to the GPU. Reducing the uncertainty of
converting a region to the GPU is key to discovering unobvious paralleliza-
tion opportunities. Reducing uncertainty requires that we identify CPU
regions contributing significantly to runtime, determine the underlying
memory structure of variables accessed within the region, and estimating
the overheads of transferring work to/from the GPU.

We describe the issue of missed parallelizations and techniques to
address them in more detail in Section 3.1.

Duplicate data transfers causing unnecessary transfers of data already
residing in physical memory on the CPU or GPU: The existence of un-
necessary transfers is caused by the way GPU accelerated functionality
is introduced into applications. The most common method of adding
GPU functionality to existing applications is by dropping-in GPU replace-
ments to CPU functionality. GPU replacements often taking the form of a
"GPU-ized" library (such as the use of accelerated libraries like cuFFT [64],
CUSP [33], and others [23, 62]), a parallel code section inserted by the
compiler (such as those generated by OpenACC [96] and OpenMP [14]),
or a block of user written code. Duplicate data transfers can occur when
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multiple replacements are in use by the application or when CPU-style
behavior must be emulated to conform to the existing application struc-
ture. When multiple replacement libraries are in use, duplicate transfers
to the GPU can occur because the replacements cannot communicate with
one another what data they have already moved to the GPU. When CPU
behavior must be emulated, such as when the GPU library is in use by
an application that does not perform GPU computation, the replacement
library cannot assume that CPU data will not change between calls to
the library, requiring that all CPU data needed by GPU computation be
transferred at every call. The underlying cause of duplication is the lack
of reuse of GPU resident memory and the assumption that data has been
modified in between calls to dropped-in replacements. A survey of large
science applications conducted by Oak Ridge National Laboratory [43]
lists the lack of GPU data reuse as one of the key performance issues faced
by many high performance accelerated applications.

We describe the issue of duplicate data transfers and techniques to
address them in more detail in Section 3.2.

Synchronization between the CPU/GPU that are unnecessary or per-
formed before needed, reducing CPU/GPU computation overlap. Mis-
placed or unnecessary synchronization occur when a synchronous oper-
ation happens before data is actually needed by the CPU or GPU. The
existence of synchronization errors is typically due to the drop-in replace-
ment method used by applications, such as by usage of a "GPU-ized"
library. Dropped-in replacements are typically required to emulate CPU-
style behavior to operate within existing application structures. A require-
ment of emulating CPU-style behavior is ensuring that the results of a
GPU computation are in CPU memory before returning to the application
framework, requiring a synchronous memory transfer upon exit of the
library. However, applications may not need the GPU data immediately
on exit of the library (or even at all) making the synchronous operation
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unnecessary.
We describe synchronization issues and techniques to identify mis-

placed and unnecessary synchronization operations in more detail in
Section 3.3.

Unnecessary Just-In-Time (JIT) compilation of GPU code on every ex-
ecution of the application, increasing the overhead of using a GPU within
the application. JIT compilation occurs when the application contains na-
tive GPU code that is incompatible with the GPU in use on the system [63].
The incompatibility is the result of specifying the incorrect GPU architec-
ture at compile time or requiring the code to be generated from virtual
code by the GPU device driver during execution. When an application
is compiled for an incompatible architecture, application performance is
affected due to the cost of performing the JIT compilation and by GPU
code inefficiencies introduced by selecting the wrong virtual architecture
at compile time. The effect in HPC environments can be magnified because
the JIT-generated native code is not cached for subsequent executions. In
addition, if the default virtual architecture targeted by the compiler is
not a good match for the devices actually in use on the system, then the
code may not be able to efficiently exploit to the GPU. When these easily
correctable inefficiencies exist in the application, no notice is given to the
user that performance is being negatively affected.

We describe the JIT compilation issue and techniques to address them
in more detail in Section 3.4.

3.1 Unobvious Parallelization Opportunities

Unobvious parallelization opportunities exist in applications primarily for
two reasons: (1) they have source code structures that do not appear to be
favorable to parallelization and (2) they appear to have a minor benefit or
even negative performance impact on application performance.
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for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {

double dtfm;
dtfm = dtf / mass[type[i]];
v[i][0] += dtfm * f[i][0];
v[i][1] += dtfm * f[i][1];
v[i][2] += dtfm * f[i][2];

}}
Figure 3.1: Example of a missed parallelization opportunity from
LAMMPs

An example of one of these missed unobvious parallelization opportu-
nities can be seen in the code excerpt taken from the 208K line molecular
dynamics application LAMMPs [75] from Sandia National Laboratory
(shown in Figure 3.1). This code from LAMMPs shows characteristics that
are bad for GPUs: unknown number of loop iterations, multiple multi-
level pointer reads and writes, and the presence of a branch condition.
When you look at the code, it appears that the CPU-to-GPU memory trans-
fers for v[i] and f[i] need to be done in separate short (three elements at a
time for each loop iteration) transfers, resulting in an inherently expen-
sive pattern of transfers. So, the amount of work sent to the GPU may
be too small to overcome the overhead of the multiple data transfers. It
appears from the description given for existing techniques for detecting
parallelization opportunities [6, 15, 44, 61, 68], that these techniques would
make the same assumptions that developers would for this code region.
Our goal was to test these research tools to verify our assessment of their
techniques, however none are publicly available, and have never been
tested on real-world code bases of this size.

We were able to obtain a 10% improvement to total application runtime
by migrating the code in Figure 3.1 to the GPU. Previous techniques make
inaccurate assumptions about variables v and f and the unknown value of
nlocal. The assumption that can be drawn from source code is that v[i]
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and f[i] point to completely disjoint memory regions for every value of
i. That assumption is wrong; v and f are each allocated in a contiguous
manner where all indices point into the same contiguous memory region.
Thus the accesses at v and f can be rewritten as a single dimensional
index. The contiguous allocation of v and f is hidden behind the memory
management structure of LAMMPs. It would not be apparent to a de-
veloper that these variables are contiguous in memory without in-depth
knowledge of the memory management framework in use. The unknown
and possibly changing value of nlocal adds additional uncertainty since
the loop may not operate long enough for any reasonable benefit to be
achieved. In our experiments with LAMMPs, we found that the value in
nlocal was high (over 400,000).

Approaches to detect missed parallelization opportunities need to be
able to reveal information about the actual memory access pattern in use
and the length of time spent executing within these code segments.

3.1.1 Detecting Unobvious Parallelization Opportunities

The behavior of long running loops with sequential memory access pat-
terns indicates the presence of a loop that is favorable to conversion to the
GPU. We view long running loops as GPU favorable because the compu-
tation is likely to run long enough to outweigh the overheads associated
with GPU computation, such as memory transfer time and the latency of
launching the kernel. Loops with only a small amount of execution time
on the CPU may have overhead that outweighs any computational benefit,
so we consider these to be unlikely candidates for conversion. A sequential
memory access pattern is often favorable because it allows the GPU to
combine memory operations by different threads into a single memory
transaction. GPUs are well-suited to codes with high memory bandwidth
requirements [30, 60], so identifying codes with this characteristic indicates
GPU favorability.
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A detection method that could be used by performance tools to identify
these behaviors in applications is a dynamic approach combining CPU
profiling with memory tracing. The first step uses CPU profiling to obtain
information about the execution time of loops within the application. A
loop is considered for conversion if it constitutes a large enough fraction
of application execution time to be worth the effort of conversion. We
can leverage existing performance profilers [1, 47, 72, 83] to accomplish
this since they collect the needed CPU profiling information already. The
second step uses memory tracing to determine if the loop under consider-
ation has a memory access pattern suitable for parallelization. For each
candidate loop, memory tracing is performed on a single representative
instance of the candidate loop. Instrumentation inserted into the loop
records the addresses used by all load and store operations. A separate
memory tracing run of the application would be used to collect traces
so profiling results are not perturb. We determine the favorability of the
loop to parallelization by analyzing the memory access patterns contained
in the trace, looking for contiguous ranges of virtual memory addresses
accessed during loop execution. If contiguous virtual memory address
ranges can be formed from the individual virtual memory addresses cap-
tured, the loop is identified as containing a sequential memory access
pattern suitable for the GPU parallelization. Loops identified by both
performance profiling and memory tracing as being suitable for the GPU
would be marked as a missed unobvious parallelization opportunity.

3.2 Duplicate Data Transfers

Duplicate data transfers are unnecessary transfers of data between CPU
and GPU memory. A transfer is unnecessary if the data already exists
in the memory space to which it is being written. Unnecessary transfers
occur when developers cannot make assumptions about data modifications
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between regions of code, such as between functions or libraries, within the
application. A region processing data using the GPU may conservatively
decide to re-transfer data already resident on the GPU if it could have been
modified by another region. Typically, unnecessary transfers occur when
libraries are used to add GPU acceleration to applications or when multiple
dropped-in GPU replacements to CPU functionality are introduced into
an application.

Figure 3.2 shows an example of an unnecessary transfer from the 87K
line QBox [39] molecular dynamics application developed at U.C. Davis.
The unnecessary transfer is caused by QBox’s usage of the discrete Fourier
transform library, cuFFT [64]. cuFFT is a library developed by Nvidia
as a drop in replacement for the CPU discrete Fourier transform library,
FFTW [31]. Maintaining compatibility with FFTW requires that all of the
steps needed to setup the transform on the GPU, such as transferring data,
must be done within the cuFFT library itself. In the example shown in
Figure 3.2, QBox is performing a Fourier transform on data starting at
location data[i] where data is a flat single dimensional array. cuFFT
transfers N elements starting at position data[i] to the GPU. N is defined
by the application on initialization of the FFT library and is stored in the
variable plan. The transform is computed on the GPU and the results are
transferred back to data[i]. Since the values located within data are not
modified between each subsequent transform, each transfer after the initial
iteration contains duplicated data that does not need to be transferred.
The duplicate transfers increase application runtime by approximately
40%.

The issue present in Qbox shown in Figure 3.2 extends to QBall [28],
an enhanced version of QBox created by Lawrence Livermore National
Laboratory. QBall contains experimental features, such as support for
f-projectors and the implementation of a highly-scalable algorithm to
calculate the time-dependent Density Functional Theory on a many-body
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...
for(int i = 0; i < n; i++)

fftw_execute_dft(plan, &data[i], &data[i]);
...

A: Excerpt invoking cuFFT

void fftw_execute_dft(plan, in, out){
...
cuMemcpyHtoD(dev,in);
[Compute FFT on GPU]
cuMemcpyDtoH(out,dev);
...

}

B: cuFFT library code for function fftw_execute_dft

Figure 3.2: QBox and Qball’s usage of Nvidia’s cuFFT library to accelerate
discrete fourier transform calculations

system. QBall inherits its application structure, including the structure
of the FFT computation, from QBox. By inheriting QBox’s FFT structure,
QBall also inherited the performance issue seen in QBox when linked with
cuFFT. The same performance issue described above for QBox shown in
Figure 3.2 appears in QBall.

3.2.1 Detection of Duplicate Data Transfers

We developed a content-based data deduplication approach to identify
duplicate transfers. Content based data deduplication approaches com-
pare the hash values of data regions to identify duplicates [78, 86]. Our
implementation intercepts calls to cudaMemcpy (and its derivatives such
as cudaMemcpyAsync and cuMemcpyHtoD) to obtain the location of data
being transferred between the CPU and GPU. If a match to a previous
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transfer is detected, a stack trace at the location of the duplicate transfer
is recorded. We created a prototype tool of this technique which was
incorporated into our later work on FFM.

With a small extension to our detection technique, we would also be
able to automatically correct duplicate transfers as they occur. We still must
address the fact that the duplicate transfers we identify are not guaranteed
to be duplicates on subsequent runs of the application with different
inputs. To overcome this limitation, permanent instrumentation will be
inserted at data transfers containing duplicate data to always perform a
hash check before the transfer. If a transfer that we expect to be a duplicate
is not, we perform the transfer and record a stack trace to alert the user.
This approach relies on the ability to generate a hash of the data in a
transfer request faster than the transfer could take place. The time cost
of performing a data transfer can be decomposed into startup costs, the
time it takes to move the first byte of data, and the per byte transfer cost
after startup. GPU data transfers have high startup costs but low per byte
data transfer costs [32] while hash checking has very low startup costs
with higher per-byte data costs than a GPU transfer. The fastest CPU
hashing algorithm we have tested so far, xxHash [95], adds approximately
3% overhead to application execution time on the applications we have
tested so far. Using a hashing approach to identify and eliminate duplicate
transfers in QBox [39] we can achieve an estimated 16 - 35% of the benefit
we obtained via manual tuning.

3.3 Synchronization

There are two types of GPU synchronization operations that we have
identified: implicit and explicit. Implicit synchronization is caused as a
side effect of operations such as memory transfers or allocations. Explicit
synchronization operations are manually invoked by the application to
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synchronize the CPU with the GPU. When a synchronization takes place,
the CPU waits for the GPU to complete all existing operations before
continuing. First, we want to remove an unnecessary or redundant syn-
chronization operation. Second, we want to delay for as long as possible
any operation requiring a synchronization with the GPU to maximize
CPU - GPU computational overlap. Ideally, the point where an applica-
tion performs a synchronization operation is right before the result of the
operation is needed by the CPU. We discuss how synchronization errors
present themselves in applications and describe an automated method to
detect synchronization issues.

3.3.1 Implicit Synchronization Issues

Implicit synchronization operations occur when a library call made by
an application synchronizes with the GPU before returning control. The
most typical implicit synchronization operations are associated with syn-
chronous data transfers and memory allocation requests. The challenge
developers face is determining how to delay or replace operations that
implicitly synchronize. The problem of avoiding implicit synchronization
is made more challenging when the synchronization is hidden from ap-
plication code, such as when a library in use by the application is itself
making an implicit synchronization call.

The interaction between QBox/QBall with cuFFT, shown in Figure 3.2,
is an example of an implicit synchronization. Figure 3.2B shows cuFFT
making two calls to cudaMemcpy where each call to cudaMemcpy per-
forms an implicit synchronization. However the result from the second
cudaMemcpy operation is not used until after the for-loop in Figure 3.2A.
The cumulative effect of removing duplicate data transfers and implicit
synchronization operations from both QBox and QBall was a reduction in
execution time by 85%.

In cuIBM [49], a 36K line computational fluid dynamics simulator
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developed at Boston University, the implicit synchronization operations
of cudaMalloc and cudaFree delay CPU execution unnecessarily. The
cudaMalloc and cudaFree operations take place on the creation and de-
struction of temporary GPU vectors. A vector in cuIBM would be created
(causing a synchronization), filled with data via an asynchronous memory
transfer, used by GPU computation, and then in most cases would be
destroyed (causing another synchronization). This pattern of creating and
destroying temporary memory spaces for vectors is common throughout
the execution of cuIBM. The result is an unnecessary delay of CPU code
not dependent on calculations from the GPU. We corrected the problem
by allocating vectors that would be reused only once. The result was a
reduction in cuIBM’s execution time by 8%.

3.3.2 Excessive Explicit Synchronization

Explicit synchronization operations are used to wait for the completion of
in-progress asynchronous operations such as data transfers. The challenge
that developers face is determining when a explicit synchronization is
necessary and where to place it. When a developer does this incorrectly,
application performance can be reduced significantly.

In Hoomd [4], a 112K line molecular dynamics simulator, the removal
of an explicit synchronization operation reduced execution time by 37%.
The explicit synchronization, shown in Figure 3.3, is used to wait for the
GPU to update the shared variable sharedStatus. sharedStatus indicates
whether the GPU computation failed because not enough GPU memory
was allocated for the operation. The value of sharedStatus is true (suc-
cessful GPU completion) for every iteration of the for-loop except the first
iteration when GPU memory is initially allocated by the CPU. Even though
the value of sharedStatus is true for iterations 2 to N of the for-loop, the
application still synchronizes with the GPU on every iteration causing the
reduction in performance by delaying the unrelated CPU computation.
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(a) Original version of Hoomd’s main compuational loop (b) Manually improved version with reduced CPU delay

// Status variables shared between CPU and GPU
bool sharedStatus; int * GPUData;
// Size of GPUData
int size = 0;
cudaMalloc(&GPUData, size);
// Main computational loop of hoomd
for(step = 0; step < nsteps; step++) {

...
do {

GPUComputation<<< >>>(sharedStatus,
GPUData,
size,
...);

// Synchronize to get GPU updates
// to sharedStatus
cudaDeviceSynchronize();
// If sharedStatus is false...
// allocate more GPU memory and retry
if(sharedStatus == false) {

size = len(GPUData) + ...;
cudaMalloc(&GPUData, size);

}
} while(sharedStatus == false);
// CPU work not dependant on GPU data
for(i = 0; i < count; i++)

...
...
// Existing Implicit Synchronization
cudaMemcpy(...)
...

}

// Status variables shared between CPU and GPU
bool sharedStatus; int * GPUData;
// Size of GPUData
int size = MAX_DATA_SIZE;
cudaMalloc(&GPUData, size);
// Main computational loop of hoomd
for(step = 0; step < nsteps; step++) {

...

GPUComputation<<< >>>(sharedStatus,
GPUData,
size,
...);

// CPU work not dependant on GPU data
for(i = 0; i < count; i++)

...
...
// Existing Implicit Synchronization
cudaMemcpy(...);
...

}

Red statements depend on results from GPU Blue statements have no GPU dependencies

Figure 3.3: A flat representation of an explicit synchronization error in the
main computational loop in Hoomd.

3.3.3 Dectecting Implicit and Explicit Synchronization
Opportunities

A synchronization opportunity is present when a synchronization opera-
tion causes unnecessary delay. We view delay as unnecessary when CPU
computation blocks for the GPU but does not access data shared with
the GPU. The result of CPU computation being delayed unnecessarily
is a reduction in CPU - GPU overlap. We have identified three types of
unnecessary delay: (1) when the CPU does not access shared data (data
shared with the GPU) after the synchronization, (2) when the placement of
the synchronization is far from the first access of shared data by the CPU,
and (3) when CPU computation not dependent on GPU data is delayed by
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(a) Original version with synchronizing too early (b) Improved version with reduced CPU delay

cudaMemcpyAsync(dest, src, len,
...);

...
cudaDeviceSynchronization();
v = 1;
if (cond1) {

... // Long CPU Exec Time
} else if (cond2) {

v = dest[0];
...

} else {
... // Long CPU Exec Time

v = dest[1];
}
result = v;

cudaMemcpyAsync(dest, src, len,
...);

...

v = 1;
if (cond1) {

... // Long CPU Exec Time
} else if (cond2) {

cudaDeviceSynchronization();
v = dest[0];
...

} else {
... // Long CPU Exec Time
cudaDeviceSynchronization();
v = dest[1];

}
result = v;

cudaMemcpyAsync()

cudaDeviceSynchronization()

v = dest[0]

v = 1 

if (cond1) 

if (cond2) 

v = dest[1]

results = v

cudaMemcpyAsync()

v = dest[0]

v = 1 

if (cond1) 

if (cond2) 

v = dest[1]

results = v

cudaDeviceSynchronize()Control flow graph edge Elided subgraph

Figure 3.4: Illustrative example of an early synchronization causing un-
necessary delay
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a synchronization. Unnecessary delay can be reduced by removing the
synchronization, moving the synchronization closer to shared data access,
or by reordering CPU computation to make the synchronization obsolete.

Figure 3.4 shows an example of how delaying (or removing) a syn-
chronization can reduce the amount of time the CPU is delayed. This is
a general example representing the behavior seen in QBox, cuIBM, and
Hoomd. In the code section shown in the left of Figure 3.4, a synchroniza-
tion operation occurs after a memory transfer even though the shared data
(stored in dest) may not be accessed. If cond1 is true, the synchronization
is unnecessary, blocking the CPU for no reason. In the other cases, there
may be enough CPU work performed before the access to dest that a delay
could be avoided by moving the synchronization closer to the shared data
access. The impact of the unnecessary delay can be magnified if this code
section is called multiple times, such as within a loop.

Our technique to identify unnecessary synchronization operations
uses a dynamic approach combining the techniques of profiling, memory
tracing, and program slicing [45, 88] to identify where a synchronization
opportunity is located and how to correct its behavior. Our approach can
be broken down into five steps: (1) identify the synchronization opera-
tions that cause long delays on the CPU, (2) determine what data is shared
between the CPU and GPU, (3) identify the CPU instructions that access
shared data, (4) determine how far the instruction performing the synchro-
nization is from the first CPU instruction that accesses data shared, and
(5) determine if CPU computation exists that does not depend on shared
data. Using this information, we will generate the corrective measure
that should be taken and an estimate of the amount of time that could be
saved if the measure was taken. We explain how to gather this information
below.

We target synchronization operations with long CPU delays because
a change in their synchronization behavior can result in significant im-
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provements in CPU - GPU overlap. Due to the synchronization reporting
issues described in Chapter 2.1.2, existing tools cannot be used to accu-
rately identify and time synchronizations. We needed to create a method
for detecting and timing synchronization behavior. Our approach is to
identify the function(s) that perform synchronization operations between
the CPU and GPU, inserting timers to identify synchronizations with long
delays.

At each synchronization, we must identify what data is shared be-
tween the CPU and GPU. Data can be shared between the CPU and GPU
using one of two methods: a memory transfer or through the mapping
of CPU memory pages to the GPU. Both methods are initiated through
requests made through a standardized API. We identify data being shared
between the CPU and GPU by intercepting these requests and recording
the memory location (and size) of the data being shared.

We identify where shared data is accessed by CPU computation using
memory tracing. Memory tracing is used to determine the instructions that
access a memory location containing shared data at runtime. The ordered
set of instructions accessing shared data allows us to identify two types of
unnecessary delay: no shared data access by the CPU and synchronization
far from the use of shared data. If the set of instructions accessing shared
data is empty, no access to shared data occurs and the synchronization
can be removed. If the total number of instructions between the end of
the synchronization and the first access to shared data is large, we know
that CPU delay could be reduced by moving the synchronization closer to
this access. The corrective measure is to move the synchronization to the
location of the access. The synchronization opportunities in QBox [39],
QBall [28], and cuIBM [49] fall under these types and are identified here.

The third type of unnecessary delay is when CPU computation not
dependent on GPU data is being delayed by a synchronization. A CPU
computation is not dependent on GPU data if the values of variables used
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in the computation are not affected by changes to data shared with the
GPU. The delay is unnecessary because it can be reduced by perform-
ing the CPU computation before the synchronization, increasing CPU -
GPU overlap. Identifying this case of unnecessary delay requires that we
locate instructions that do not depend on GPU data. We use program
slicing [45, 88] to identify instructions that do not depend on GPU data.
An instruction is dependent on GPU data if the values used by the instruc-
tion are affected by data shared with the GPU. A forward slice is created
starting at the synchronization operation with the locations of shared data
being used as the criterion for the instructions to be included in the slice.
The result is a slice containing the instructions that may depend on data
shared with the GPU. We are interested in the set of instructions that are
not in the slice since they do not depend on data shared with the GPU. If
the number of instructions not in the slice is large (say, greater than a few
hundred instructions), then moving these instructions before the synchro-
nization operation could have a noticeable benefit. The synchronization
opportunity in Hoomd [4] falls under this type of unnecessary delay and
would be detected here.

3.4 JIT Compilation

GPU native code may need to be generated, from a GPU virtual archi-
tecture at runtime because there is no native GPU code present in the
executable file, or the code that is present is for the wrong model GPU.
The lack of native GPU support is a product of the misconfiguration of the
applications at compile time. Common reasons for misconfiguration are a
developer not knowing the correct native architecture of the GPU, build
systems such as CMake incorrectly identifying the native architecture,
and use of compiler defaults that produce incompatible binaries for most
GPUs. When a miss-configuration of the architecture occurs, application
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users are not notified that their application is misconfigured, either at
compile or execution time.

cuIBM [49] is an example of the impact a misconfiguration can have
on performance. 18% of cuIBM’s execution time is spent performing JIT
compilation because the wrong architecture is selected by the build system.
cuIBM defaults to compiling to the virtual architecture "compute_20",
while the GPUs in the system actually support "compute_35". Since we
ran cuIBM in an HPC environment (the Cray Titan supercomputer at Oak
Ridge), the JIT compilation is not cached and must be performed at every
execution.

Application incompatability with its GPU codes seems to be quite
simple and is surprising (but widely present). We can detect GPU code
incompatibility at application startup and provide explicit instructions to
the user as how to produce a more efficient executable.
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4 the feed-forward measurement model

Delivering actionable feedback that provides an estimate of expected ben-
efit requires refining the techniques introduced in Chapter 3 to address
three challenges:

1. Identify and trace hidden synchronization operations.

2. Predict what the application performance would be if a problematic
operation were corrected.

3. Combine these techniques with the detection of problematic op-
erations into a one that could be implemented by a performance
tool.

We focus our efforts on problematic synchronization and memory
transfer operations. These problems were the most common and most per-
formance detrimental in the applications we studied. In this work, we have
not addressed missed parallelization opportunities and JIT compilation
problems. For missed parallelization opportunities, generating an estimate
of expected benefit would require accurately predicting performance of a
CPU loop on the GPU. Predicting the performance of CPU codes on the
GPU is an active area of research [9, 12] but we feel is not mature enough
where we would be comfortable relying on these techniques. As these
techniques mature, the problem of identifying missed parallelization op-
portunities would be worthy of revisiting. Due in part to the publication
of our original work where we describe the JIT problem [91], the vendor
has taken steps to mitigate this issue by reporting when JIT operations
take place.

We introduce a multi-stage, multi-run performance measurement and
analysis approach called feed-forward measurement (FFM). The principal
idea of FFM is that the insertion of instrumentation into an application
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and the performance data that is collected is guided by the application’s
behavior. The applications behavior during execution guides FFM to po-
tentially problematic GPU operations, including those that are hidden
from existing tools with a reliance on vendor supplied interfaces. The
collection of performance data is split over multiple stages of instrumenta-
tion conducted over multiple runs, allowing for potentially problematic
operations that are discovered to be profiled and traced at increasing levels
of detail. The changing level of detail over multiple stages allows the FFM
approach to collect the fine-grained details needed to automate analyses
that are too costly for other methods to collect. The analysis performed by
FFM gives targeted feedback on what operations are problematic along
with an estimate of the performance benefit that could be obtained if the
problem were corrected.

FFM is inspired by the dynamic instrumentation approach originally
developed in the Paradyn Performance Tool [57]. Unlike Paradyn’s ap-
proach of running each stage of instrumentation in a single run of the
application, FFM runs each stage in a separate complete run of the applica-
tion. The multi-run approach was chosen to gather the information from a
complete run before making decisions on what level of detail to collect for
an operation. With Paradyn’s single run approach, if an operation is not
known to be potentially problematic before its last occurrence, the chance
to collect additional detail on the operation is missed.

FFM consists of five stages, four data collection stages that take place
in separate runs of the application and an analysis stage that uses the data
collected to identify problematic operations. FFM uses binary instrumen-
tation of the CPU code to collect performance data on synchronization
and memory transfer operations, capturing synchronization operations
that are missed by vendor-supplied performance data collection frame-
works and library interposition methods. Binary instrumentation allows
FFM to maintain compatibility with applications written in a wide range
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Figure 4.1: Overview of the stages of the FFM model

of parallelization frameworks such as CUDA [63], OpenACC [96], and
OpenMP [14]. Figure 4.1 shows an overview of the stages of FFM, the data
each stages collects, and how the stages interact. The five stages of the
FFM model are:

Stage 1 - Baseline Measurement: Collect the list of application functions
that performed a GPU synchronization operation and measure overall
application execution time. The baseline measurement stage is designed
to be low overhead to ensure that application execution time and behavior
closely match its uninstrumented form. The starting point of the FFM
model is a list of functions called by the application that perform syn-
chronization. This list dictates where more detailed information will be
collected in stages 2 and 3.

Stage 2 - Detailed Tracing: Trace calls to functions performing synchro-
nization and memory transfers. For each transfer and synchronization
operation, we record the amount of time spent in the call and a stack trace.
The traced functions are the ones identified in stage 1 as performing a
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synchronization and a predefined set of user-space GPU driver function
calls known to perform memory transfers.

Stage 3 - Memory Tracing and Data Hashing: Collect the data needed
to determine if an operation is problematic. Two different collection ap-
proaches are employed based on the type of the operation. For a syn-
chronization operation, we collect a stack trace of the synchronization
operation, the location of the instruction that first accessed a memory
location containing data that could be modified by the GPU, and a stack
trace of the instruction location that performed the access. For memory
transfers, we collect hashes of the data being transferred to and from the
GPU.

Stage 4 - Sync-Use Analysis: Collect timing information to determine
if a synchronization is misplaced. The time between a synchronization
and the first instruction that accesses data computed by the GPU after
the synchronization is recorded. A large time gap indicates a potentially
misplaced synchronization and is used by the Analysis stage to determine
if the operation is problematic. The instructions that access GPU-computed
data are identified from the Memory Traces collected in stage 3.

Stage 5 - Analysis: Determine if an operation is problematic and what
the potential benefit might be from correcting the operation. For a synchro-
nization operation, we use a simple data flow analysis to determine the
necessity of the synchronization. We look for accesses to the data protected
by the synchronization on the CPU to detect if the synchronization opera-
tion could be moved (or removed) to improve CPU/GPU overlap safely.
For data transfers, we use a content-based data deduplication approach to
detect problematic data transfers.

In this chapter, we describe each of these stages and the information
they collect.
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4.1 Baseline Measurement Stage

The baseline measurement stage is responsible for recording application
execution time and recording stack traces of where synchronization oper-
ations are performed. Application execution time is stored for use by the
analysis stage to determine the percentage of execution time a problematic
synchronization or memory transfer consumes. The stack traces are used
to determine the GPU driver functions called by the application that syn-
chronize with the GPU. This list of functions is then traced in the Detailed
Tracing stage. We collect the list of synchronizing functions in advance
of the Detailed Tracing stage to ensure complete trace information can be
collected for all synchronization operations.

The stack traces are obtained by inserting binary instrumentation into
the internal driver function that waits for completion of a sequence of
operations on the GPU (see Figure 4.2). This underlying function is called
by all operations, including conditional and private API operations, that
need to synchronize (such as cuMemcpy and cuCtxSynchronize). The direct
instrumentation of the function implementing the wait allows FFM to
detect synchronization operations that are missed by the vendor supplied
performance data collection methods.

We created a method that can automatically identify the internal syn-
chronization function of the user space driver. The technique starts by
creating call graphs for functions known to perform synchronization oper-
ations. We intersect the call graphs of these functions to generate a list of
common functions that are called by the known synchronous functions. To
identify the function in which we are interested, we run a small program
that live-locks on a synchronization with the GPU. We instrument the
list of common functions and record which functions never return. This
generates a small stack, typically 1 or 2 functions, that are do not return
when a synchronization is performed. We select the deepest function on
the stack as the synchronization function.
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GPU Driver (libcuda.so)

cuCtxSynchronize

cuStreamSynchronize

cuMemcpy

cuMemFree

…

cuMemcpyAsync

cuMemset

…

CUPTI Profiled 
Synchronizations

Implicit 
Synchronizations

Conditional 
Synchronizations

Shared 
Internal

Synchronization 
Function

Figure 4.2: The internal synchronization function instrumented by FFM

4.2 Detailed Tracing

The detailed tracing stage traces all synchronization and memory transfer
operations performed by the application. For each operation, we collect a
stack trace of the operation, the time spent performing the synchronization
(if applicable), and the total time spent in the driver function performing
the operation. This information is used by the analysis stage to determine
the time that could be saved removing an operation.

We insert exit/entry instrumentation into three classes of functions:
synchronizing functions identified in the Baseline Measurement stage,
functions described by the GPU driver API as performing memory trans-
fers (such as cuMemcpy), and the internal synchronization function.

4.3 Memory Tracing and Data Hashing Stage

The Memory Tracing and Data Hashing stage detects if an operation is
problematic. An operation is problematic if it can be removed or moved to
a more performance-advantageous location while maintaining application
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cuMemcpyDTHAsync(CPU_Mem,…);

…

…

cuCtxSynchronize(…);

…

…

… = CPU_Mem[…]; 

1. Capture CPU memory ranges that GPU computation may 
change (CPU_Mem)

2. When synchronization called, use load/store analysis to 
identify accesses to captured CPU memory ranges.

3. If access occurs, synchronization is required for correctness. 
Store the location of instruction that performed access

Figure 4.3: An illustrative example of the steps the FFM model takes to
identify problematic synchronization operations

correctness. Problematic synchronization operations are ones that are not
required to maintain correctness and ones that are required for correctness
but unnecessarily reduce CPU/GPU overlap. We target the two types of
problematic synchronization operations described in Chapter 3.3.3: when
the CPU does not access shared data (data shared with the GPU) after
the synchronization and when the placement of the synchronization is
far from the first access of shared data by the CPU. Problematic memory
transfers are duplicate transfers where the data being transferred has been
previously transferred.

FFM relies on binary modification to collect the information needed to
determine if an operation is problematic. For synchronization operations,
we use memory tracing. For memory transfer operations, we use a content-
based data deduplication strategy.

4.3.1 Identifying Problematic Synchronization
Operations

FFM determines if a synchronization operation is required by identifying
the accesses to the data protected by the operation. If a synchronization is
not protecting data accessed by the program, the synchronization is prob-
lematic. FFM must identify the locations of protected data and identify if
any instruction accesses the data after a synchronization takes place.

Figure 4.3 shows an example of how FFM identifies problematic syn-
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chronization operations. FFM first identifies the locations of protected
data by intercepting calls that transfer data and allocate pages shared
between the CPU/GPU. We record the CPU memory addresses and the
size of the memory region used in the operation. After the synchroniza-
tion completes, load/store analysis is used to determine if any instruction
accesses data in these regions. If an instruction accesses GPU computed
data, the instruction’s address and a callstack of the synchronization are
saved.

4.3.2 Identifying Problematic Memory Transfers

Problematic memory transfers are transfers that contain data that has al-
ready been transferred between the CPU/GPU. FFM uses a content-based
data deduplication approach to identify problematic memory transfers.
FFM intercepts calls, such as cuMemcpy, to obtain the location of the data
being transferred. The buffer of data being transferred is hashed and then
compared to the stored hashes from prior transfers. If a match is found,
FFM marks the transfer as being a duplicate. FFM collects a stack trace of
the duplicate transfer, the location of the first transfer of the duplicated
data, and the hash of the data that was transferred.

4.4 Sync-Use Analysis Stage

The Sync-Use Analysis stage collects timing information to determine if a
synchronization is misplaced. For synchronization operations identified as
being required for correctness, we record the time between the end of the
synchronization and the first access of protected data. Sync-Use analysis
is based on load/store instrumentation of those instructions identified as
accessing protected data in stage 3.



46

Figure 4.4: Example of the different outcomes from removing a problem-
atic synchronization

4.5 Analysis Stage

The actual benefit obtained from (re)moving a problematic operation is
impacted by the duration of the problematic operation and the operations
that remain. As first observed in early work on critical path analysis [99],
changes in the behavior of remaining operations can eliminate any benefit
from fixing problematic operations. Two examples can be seen in Figure 4.4.
Removing the first wait operation (CWait0) from both examples results
in different outcomes even though the removed wait has an identical
duration. The difference is due to the impact the removal has on the
second wait. In the limited-benefit case, the second wait grows to fill up
most of the time saved from the first wait. Modeling the behavior of the
(re)moved problematic operation on the remaining operations is critical
to generating an effective estimate.
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For each problematic operation identified in stage 3 and 4, we model
the effect of fixing the problem has on application execution time. The
model generates an estimate of the time saved if the problematic operation
were (re)moved. The estimate takes into account the effect the changing
the problematic operation will have on other unchanged operations in the
program.
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5 the performance model of ffm

The time that a developer can spend correcting performance problems
often is limited. Given a list of performance problems in their program,
they may need to chose on which problems they will focus. A developer
starts by choosing the problems that, if corrected, will have the greatest
impact on performance. With current tools, the developer makes this
choice based how much time a given operation consumed. However, the
amount of time consumed by an operation is not always a good predictor
of the benefit that could be obtained from correcting a problem. Selecting
and correcting the problems that have consumed the most time in the pro-
gram can result in skipping problems that have substantial performance
benefit. Giving the developer insight on the potential benefit of correcting
a problem is key to unlocking this hidden performance potential.

The FFM performance model generates an estimate of expected benefit
if a problem were corrected. After an estimate is generated, problems
are grouped together if they have the same underlying cause, allowing
easier identification of where a single corrective measure may fix multiple
problems. Giving developers an estimate of expected benefit and group-
ing problems together by their cause allows them to focus their time on
problems that are the most impactful.

FFM models application execution as a graph G = (N,V), where N is
the set of events on each processor and V is the set of edges. N = {C,G}

where C is the set of CPU nodes in the graph and G is the set of GPU
nodes in the graph.

Each node has attributes (NType,STime,Problem, FirstUseTime) as-
sociated with it, where NType denotes the event performed by the node,
STime is the start time of the event, Problem is the problematic operation
identified in stages 3 and 4 (None, Unnecessary Synchronization, Mis-
placed Synchronization, Unnecessary Transfer), and FirstUseTime is the
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duration between a synchronization event and the first use of protected
data on the CPU (calculated in stage 4). NType can be a wait event where
a processor is waiting on the other processor (CWait on the CPU, GWait

on the GPU), a work event where the processor is performing computation
(CWork on the CPU, GWork on the GPU), or a CPU event that requests
that the GPU perform work (CLaunch).

An edge describes the Lamport happens-before [48] ordering between
events. Edges have a label Duration that denotes the real-time duration
of the event. On the same processor, an outbound edge from a node nx

to a node ny denotes the operation performed by nx completes process-
ing before ny starts executing. An edge between processors denotes a
dependency where a node nx must wait for an operation on the other
processor to complete before beginning execution. We define the func-
tions OutGPUEdge(N) and OutCPUEdge(N) to obtain the out-edge from
node N that ends on a node with the given processor type. There can be
only one edge leading from N to a node of a given processor type.

There are three problem types that we model: unnecessary synchro-
nization, misplaced synchronization, and unnecessary memory transfer.
For unnecessary synchronization operations, we model the removal of the
event performing the unnecessary synchronization. To model the removal
of an unnecessary synchronization from node N (of type CWait), we set
the label of the edge to zero (OutCPUEdge(N) Duration = 0). For mis-
placed synchronization operations, we model moving the event perform-
ing the synchronization. To model moving a misplaced synchronization
from a node M (of type CWait), we subtract the time to first use (collected
in stage 4) from the current label of the edge (OutCPUEdge(N)Duration−

FirstUseTime). For an unnecessary transfer, we model the removal of
the event performing the transfer. To model the removal of the transfer
from a node T (of type CLaunch), we set the label of the edge to zero
(OutCPUEdge(N)Duration = 0). The expected benefit algorithm alters
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the graph based on the problem types present, calculating the expected
performance improvement that is obtainable by fixing the problematic
operation.

5.1 Expected Benefit Algorithm

Figure 5.1 shows the algorithm for calculating expected benefit. We assume
that the graph has already been annotated with the data collected in stages
1-4. In function ExpectedBenefit, we iterate through the graph evaluating
nodes that represent problematic operations.

If a node performs an unnecessary synchronization, the function
RemoveSyncronization on line 10 removes the synchronization and re-
turns the expected benefit. RemoveSyncronization updates the duration
of the next synchronization at node NextSync (line 19) and sets the dura-
tion of Node to zero (line 21). The removal of Node results in NextSync

startingNodeduration earlier (NextSync.STime = NextSync.STime -OutCPU

Edge(Node)Duration). The duration of the synchronization operation
started in NextSync potentially increases due to having to wait on GPU
events that started prior toNode to complete. The increase of OutCPUEdge(
NextSync) Duration can be as large asOutCPUEdge(Node)Duration, negat-
ing any benefit. OutCPUEdge(Next Sync)Duration is determined by the
amount of GPU work remaining when NextSync starts. We must estimate
how the GPU graph will change when Node is removed.

The removal of a synchronization does not alter the work events that
are performed by the GPU, so the duration of GWork events stays the
same. However, the duration of GIdle events between GWork events
is reduced. The reduction is caused by CLaunch events that take place
between the nodes Node and NextSync having their start time reduced
by OutCPUEdge(Node)Duration. The total GPU idle time between Node

and NextSync can contract by as much OutCPUEdge(Node)Duration.
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1 // SumDuration ([ Nodes ]) sums the duration of a list of nodes
2 // GetNextNode (Node) returns the node at OutCPUEdge (Node)
3 // GetNextSyncNode (Node) returns the next synchronization node
4 // in the CPU graph after Node
5 def ExpectedBenefit (Graph):
6 for Node in Graph. ProblematicNodes :
7 if Node. Problem == UnnecessarySynchronization :
8 EstBenefit = RemoveSyncronization (Graph , Node)
9 else if Node. Problem == MisplacedSynchronization :

10 EstBenefit = MoveSynchronization (Graph , Node)
11 else if Node. Problem == UnnecessaryTransfer :
12 EstBenefit = RemoveMemoryTransfer (Graph , Node)
13
14 def RemoveSyncronization (Graph , Node):
15 NextSync = GetNextSyncNode (Node)
16 EstMaxGPUIdle = SumDuration ( CPUNodesBetween (Node , NextSync ,
17 CLaunch or CWork))
18 EstBenefit = min( EstMaxGPUIdle , OutCPUEdge (Node). duration )
19 OutCPUEdge ( NextSync ). duration += max (0,
20 ( OutCPUEdge (Node). duration - EstBenefit ))
21 OutCPUEdge (Node). duration = 0
22 return EstBenefit
23
24 def MisplacedSynchronization (Graph , Node):
25 EstBenefit = Node. FirstUseTime
26 OutCPUEdge (Node). duration = max (0,
27 ( OutCPUEdge (Node). duration - EstBenefit ))
28 return EstBenefit
29
30 def RemoveMemoryTransfer (Graph , Node):
31 EstBenefit = OutCPUEdge (Node). duration
32 OutCPUEdge (Node). duration = ( OutCPUEdge (Node). duration -
33 EstBenefit )
34 return EstBenefit
35
36 def CPUNodesBetween (StartNode , EndNode , Type):
37 ret = list ()
38 while ( StartNode = GetNextNode ( StartNode )) != EndNode :
39 if StartNode .NType == Type:
40 ret. append ( StartNode )
41 return ret

Figure 5.1: The expected benefit algorithm

GPU idle time cannot be negative, so the contraction of GPU idle duration
is limited to the sum of the duration of GPU idle events between Node

and NextSync.
We have found that an effective estimate for the change in GPU idle duration

between Node and NextSync can be made with only the CPU graph. With only
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the CPU graph, we can determine the upper bound of the change in GPU
idle duration after OutCPUEdge(Node)Duration is set to zero. In practice,
we have found that the benefit typically is close to the upper bound. On
line 16, we estimate GPU Idle time to be the duration of all nodes between
Node and NextSync. This is the maximum duration that the GPU can be
idle before the next synchronization. The estimated benefit is calculated on
line 18 to be the minimum of the duration of the synchronization removed
(OutCPUEdge(Node)Duration) and the maximum period of GPU idle
time. On line 19 we calculate the new duration of NextSync by adding
(OutCPUEdge(Node)Duration − EstBenefit) to the current duration of
NextSync.

EstBenefit on line 22 is the estimated time that could be saved if only
the synchronization operation were removed. If the operation also per-
forms a duplicate memory transfer, the estimate on line 22 is combined
with the estimated benefit produced by RemoveMemoryTransfer to form
the final expected benefit. If removing an unnecessary synchronization
requires removing the operation performing the synchronization, the esti-
mate on line 22 can be combined with the execution time of the operation
performing the synchronization to form the final expected benefit. We
perform this combination on cudaFree operations since there is no asyn-
chronous version. Correcting a cudaFree synchronization problem would
require its removal.

If the node has a misplaced synchronization, the function
MisplacedSynchronization on line 14 calculates the effect on the edge
label of the node performing the synchronization if it was moved. For a mis-
placed synchronization at nodeNode, we model howOutCPUEdge(Node)

Duration would change if NodeSTime was increased. NodeSTime increases
by the time to first use (FirstUseTime), the time between the end of the
synchronization event and the first use of protected data collected in stage
4. Moving the synchronization forward in time results in some CPU and



53

GPU work being moved forward in time. While the start time of some
work events change, their duration still does not. The only events with
durations that change are GPU idle events.

The calculation of change in expected benefit for moving a misplaced
synchronization is similar to removing a synchronization. On line 25,
we calculate the estimated benefit to be Node.FirstUseTime. This is the
maximum duration that the GPU can be idle between NodeSTime and its
new location (NodeSTime+FirstUseTime). We calculate the new duration
of OutCPUEdge(Node)Duration on line 26 to be the original duration
subtracted by Node.FirstUseTime.

If a node has a unnecessary memory transfer, the function
RemoveMemoryTransfer on line 37 calculates the effect of removing the
transfer. A transfer operation consists of a CPU event of type CLaunch

and a GPU event of type GWait. The CLaunch event performs setup
and initiates the transfer while the GWait event waits for the transfer
to complete. We estimate that the expected benefit to be the duration of
CLaunch (line 31). The net effect is that the node’s duration is set to zero
(line 32).

5.2 Node Groupings

In real applications, multiple problematic operations often have the same
underlying cause. For example, a single line of source code or a single
function might be responsible for many problematic operations. Making
a single fix can result in multiple problematic operations being corrected.
We group problematic nodes together to expose problems where a single
fix could be applied at a single point in the program (single point), to a
single function in the program (folded function), and to problematic nodes
that appear in a contiguous sequence (sequence).

The single point grouping combines the expected benefit of nodes with
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identical stack traces that are matched by instruction address. We modify
the ExpectedBenefit function in Figure 5.1 to combine the estimated
benefit of nodes with the same stack trace. The stack traces for the nodes
in the graph were collected in stage 2.

The folded function grouping combines the expected benefit of nodes
with identical stack traces that are matched by function name. We compare
stack traces by the base function name. For C++ functions, we demangling
the function name and discard template parameter type information before
matching. Template function calls with the same function name with
instances that differ only by template parameter types often are the same
function in source code. A fix to a problem in the source code for the
template would affect all instances. The ExpectedBenefit function in
Figure 5.1 is modified in an identical manner to the single point grouping.

The sequence grouping combines the expected benefit of problematic
nodes that appear in a contiguous sequence on the CPU graph. A sequence
starts at a problematic node N0 and traverses the CPU graph, ending when
a node Ni is discovered that performs a synchronization that is neces-
sary. No synchronization operation needs to take place in the sequence
set {N0, ...,Ni−1}. This property allows for the spreading of unnecessary
synchronization delay across a wider timespan, increasing the number of
GWait events with durations that could be reduced, allowing for large
unnecessary synchronization delays to be profitable corrected. Support-
ing sequences requires a small modification to RemoveSyncronization to
carry forward unrealized savings (OutCPUEdge(Node).duration that
could not be absorbed by GPU idle time) to future nodes that may have
GPU idle time that could be reduced.
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5.3 Diogenes: A Performance Tool
Implementing FFM

We have implemented the FFM model in a tool we call Diogenes. Diogenes
identifies problematic synchronization and memory transfer operations,
estimating an expected benefit for the correction of each issue. Through
the use of the FFM model, Diogenes is able to identify operations that are
unreported by existing performance tools (including vendor supplied tools
such as NVProf [66] and CUPTI [65]) and provides actionable feedback
on what problematic operations are correctable. Note that for evaluation
purposes, we built Diogenes specifically to identify problematic synchro-
nization and memory transfer operations. Diogenes is not a replacement
for a general purpose profiling tool but a supplement that aids in the
identification of these problematic operations. Our next step is to integrate
our collection and analysis approaches into an existing general purpose
profiling tool. Diogenes collected performance data is stored in a stan-
dard format (JSON) that can be read by other tools. While we generate
estimates of expected benefit for synchronization and memory transfers,
our techniques can be applied to other problem types and be used in other
tools.

5.4 Experiments with Automatic Problem
Identification

We tested the effectiveness of FFM’s model to identify problematic op-
erations and predict benefit by applying Diogenes to four real world ap-
plications: cumf_als [84] an alternating least square matrix factorization
library developed at IBM and University of Illinois Urbana-Champaign,
cuIBM [49] the computational fluid dynamics simulator developed at
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Boston University, AMG [100] an MPI based parallel algebraic multigrid
solver developed at LLNL, and the Gaussian GPU benchmark from Ro-
dinia [19] developed at the University of Virginia. The applications we
tested, outside of cuIBM [49], differ from those in Chapter 3 to show that
the problems we target appear in a wider variety of application types than
just computational fluid dynamics and molecular dynamics simulations.
However, we revisit Qbox [39] in our experiments in Chapters 6 and 7.
All experiments were run on the Ray Coral early-access cluster located at
LLNL. Each compute node on Ray contains a 20-core PowerPC 8-processor
node with four Nvidia Pascal-class GPUs.

For each application, we used Diogenes to identify the problems present
in the application, fixed the problems with the highest potential benefit,
and compared the results of Diogenes to other profiling tools. In Sec-
tion 5.4.1 we detail the problems detected by Diogenes and the fixes ap-
plied in each application. Section 5.4.2 compares the output of Diogenes
to other performance tools, and Section 5.4.3 discusses the limitations of
Diogenes and the FFM model.

5.4.1 Application Problems

Table 5.1 shows the problem types Diogenes discovered in each appli-
cation, the estimated benefit Diogenes produced for the problems we
addressed, and the actual benefit obtained for fixing the problems. In
cumf_als, we corrected a single sequence of composed of 13 different
problematic operations that spanned across two functions. In cuIBM, we
corrected problematic synchronization operations that appeared in a tem-
plate function. In AMG and Rodinia, we corrected unnecessary operations
that appeared at single points in the program. The estimates produced by
Diogenes were 77% (cumf_als), 61% (cuIBM), 85% (AMG), and 92% (Ro-
dinia) accurate to the real benefit obtained. The major outlier was cuIBM,
where the fix also corrected other problematic behavior not targeted by
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Diogenes Actual
App Diogenes Estimated Runtime

Name App Size Application Discovered Benefit Reduction
(Version) (Lines of Code) Organization Description Issues (% of exec) (% of exec)

cumf_als 5 K IBM/UIUC Matrix Factorization Sync and 137 s (10.0%) 106 s (08.3%)
(git rev: a5d918a) Mem Trans
cuIBM 36 K Boston University Immersed Boundary Sync 202 s (10.8%) 330 s (17.6%)
(git rev: 0b63f86) Method
AMG 65 K LLNL Algebraic Multigrid Sync 0.34s (06.8%) 0.29s (05.8%)
(v2.14) Solver
Rodinia <1 K UVA Gaussian (CUDA) Sync 0.13s (02.2%) 0.12s (02.1%)
(v3.1)

Table 5.1: Applications improved by correcting a subset of Diogenes dis-
covered issues

Diogenes, resulting in a much larger benefit.
cumf_als [84] is a GPU-based large matrix factorization library that

uses the alternating least square (ALS) method. We ran our experiments
using the GroupLens MovieLens [40] 10M input data set, a dataset con-
taining 10 million user ratings for movies created by the University of
Minnesota. The MovieLens data set was run with cumf_als iteration count
set to 5000. Diogenes estimated that correcting a sequence containing
problematic synchronization and memory transfer operations in cumf_als
would result in a reduction in execution time by 11% (see Figure 5.2). This
sequence contained 23 problematic operations spread across two func-
tions in two different source files. The sequence contained 18 problematic
synchronization and 5 problematic synchronous memory transfer (with
both an unnecessary transfer and synchronization) operations.

To remove the problematic synchronization operations at the cudaFree
operations in the beginning of the sequence in Figure 5.2, a major rework
of the structure of GPU memory handling within the application would
be needed, however we wanted to avoid making large structural changes
to the application. We inspected each problematic operation in Figure 5.2,
looking for the problems that we could fix easily. The operation at entry
10 of Figure 5.2 was the first one we could easily fix. We then used the
subsequence feature of Diogenes, which allows a user to create a sequence
between any two points of an existing sequence, to generate a subsequence
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from entry 10 to entry 23. Figure 5.4 shows that the benefit that could
be obtained by fixing the subsequence was 10% of execution time, close
to the estimated 11% benefit from fixing the entire sequence. Note that
the evaluation of the benefit of fixing this subset of operations does not
require additional data collection. It can be invoked directly from the
command line interface of Diogenes. We are working on ways to automate
the identification of high-impact subsequences. To properly automate
subsequence generation, we need to be able to estimate the complexity
of fixing the problematic behavior and weight it against the benefit that
could be obtained.

The fix applied to cumf_als removed function calls performing an
unnecessary synchronization and removed memory transfer operations
that would repeatedly retransfer the same data to the same destination. For
problematic synchronization operations at cudaFree, we could not simply
remove the cudaFree operation as it would lead to a memory leak. We
also could not swap cudaFree for an asynchronous operation as there is no
asynchronous version of cudaFree in the CUDA API. Instead of removing
the call, we moved the cudaFree call and its associated cudaMalloc call
outside of the for-loop in which they were contained, resulting in memory

Figure 5.2: A sequence of unnecessary operations identified by Diogenes
in cumf_als
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Time(s) (% of execution time)
421.716s(22.52%) Fold on cudaFree

202.985s(10.84%) thrust::detail::contiguous_storage<...>
Conditionally unnecessary (see: conditions)

113.375s(6.06%) thrust::pair<...>
Conditionally unnecessary (see: conditions)

65.258s(3.49%) void cusp::system::detail::generic::multiply<...>
Conditionally unnecessary (see: conditions)

…

Time(s) (% of execution time)
421.716s (22.52%) Fold on cudaFree
150.353s ( 8.03%) Sequence starting at call ….
136.150s ( 7.27%) Fold on cudaDeviceSynchronize
98.803s ( 5.28%) Sequence starting at call …
80.938s ( 4.32%) Fold on cudaMemcpyAsync
…
Back/Previous
Exit

Diogenes Overview Display Expansion of Problem

Figure 5.3: Diogenes overview of problematic operations (left) and the
expansion of problems at cudaFree (right) for cuIBM

allocation and deallocation that occurs only once instead of once per loop
iteration (approximately 5000 loop iterations).

To remove a memory transfer, we need to ensure that the removal of the
transfer did not result in incorrect computation when the application was
used with another data set. To guard against such incorrect application
behavior, we use compiler and system based methods. Our first approach
is to make use of the C/C++ const qualifier on the variables in the removed
transfers. By using the const qualifier, the compiler will report an error
if there is an attempt to write to these variables in either the CPU or
GPU code. However, since a developer can still perform an unsafe cast
to get around the restrictions of const, we also use the system mprotect
primitive to ensure that the data cannot be modified. We allocate the
variables used in the removed transfers on page aligned boundaries and
use mprotect to write protect the variables memory pages.

cuIBM [49] is a computational fluid dynamics (CFD) application that
uses the immersed boundary method (IBM) to calculate fluid flows on a
cartesian grid. We ran our experiments using the lid-driven cavity with
Reynolds number 5000 dataset supplied (lidDrivenCavityRe5000) in the
code repository for cuIBM [50]. For cuIBM, Diogenes reported that the
22% of execution time could be saved by removing problematic cudaFree
operations (left side of Figure 5.3). Asking Diogenes for more details on
the cudaFree revealed that a single template function accounted for 10.8%
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of application execution time (right side of Figure 5.3). The issue was
caused by the repeated (millions of times) allocation and deallocation
of temporary GPU memory regions. Each deallocation performs a syn-
chronization with the GPU that was unnecessary. The template function
allocates a temporary GPU data region via the Thrust [67] parallel algo-
rithms library and frees it on exit. The result is many calls to cudaFree
that synchronize with the GPU. To avoid this problem, we wrote a simple
memory manager that reuses temporary GPU data regions on subsequent
calls to the function. We modified cuIBM to use this method instead of
allocating storage via Thurst. The fix resulted in the synchronization being
eliminated. However, the fix also eliminated over 2 million cudaFree and
cudaMalloc operations, providing additional benefit.

AMG [100] is a parallel algebraic solver for linear systems, specializing
in 3-dimensional problems on unstructured grids. We ran our experiments
using the ij matrix benchmark provided with AMG. For AMG, Diogenes
estimated that 6.8% of execution time could be saved by fixing a prob-
lematic synchronization at a cudaMemset operation. cudaMemset performs
a synchronization only when it used on a unified memory address (a
memory address accessible by both the CPU and GPU). Since the mem-
ory pages being set were already located in CPU memory, we replaced
cudaMemset call with a normal C memset operation. The result was a 5.8%
improvement, close to the predicted value.

Figure 5.4: The estimate of benefit reported by Diogenes for fixing a sub-
sequence of the operations in Figure 5.2.
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NVProf Profiled HPCToolkit Profiled Diogenes Estimated
App Time (% of exec, Time (% of exec, Savings (% of exec,
Name Operation pos in profile) pos in profile) pos in profile)
cumf_als cudaDeviceSynchronize 745 s (52.0%, 1) 628 s (24.5%, 1) 1 s (<0.1%, 3)

cudaFree 275 s (18.7%, 2) 258 s (10.1%, 2) 214 s (15.7%, 1)
cudaMalloc 218 s (17.3%, 3) 230 s (09.1%, 3) -
cudaMemcpy 158 s (11.8%, 4) 119 s (04.7%, 4) 30 s (02.2%, 2)

cuIBM cudaFree Profiler Crashed 447 s (12.3%, 1) 421 s (22.0%, 1)
cudaLaunchKernel 395 s (12.1%, 2) -
cudaMalloc 382 s (10.8%, 3) -
cudaDeviceSynchronize 170 s (04.8%, 4) 136 s (07.2%, 2)
cudaMemcpyAsync 163 s (04.4%, 5) 80 s (04.3%, 3)
cudaFuncGetAttributes 154 s (04.2%, 6) -
cudaStreamSynchronize 52 s (01.4%, 7) 4 s (00.2%, 4)

AMG cudaFree 0.93s (18.7%, 1) 0.39s (03.3%, 2) 0.31s (06.3%, 2)
cudaMemset 0.81s (16.3%, 2) 0.57s (06.0%, 1) 0.34s (06.8%, 1)
cudaMallocManaged 0.15s (03.1%, 3) 0.06s (00.7%, 4) -
cudaStreamSynchronize 0.13s (02.6%, 4) 0.12s (01.3%, 3) 0.07s (01.4%, 3)

Rodinia cudaThreadSynchronize 6.05s (94.9%, 1) 5.01s (75.7%, 1) 0.13s (02.2%, 1)
cudaMemcpy <0.01s (00.9%, 2) 0.07s (01.2%, 2) 0.06s (00.9%. 2)
cudaFree <0.01s (<0.1%, 3) <0.01s (00.2%, 3) <0.01s (<0.1%, 3)

Table 5.2: Comparison of cuda function call profiling results between
Diogenes, HPCToolkit, and NVProf

Rodinia [19] is a benchmark suite for heterogeneous computing de-
signed to study the performance effect new computing architectures have
on a variety of well known algorithms. We ran our experiments using
Rodinia’s Gaussian GPU benchmark. In Rodinia, Diogenes estimated that
2.2% of execution time could be saved by fixing a problematic synchro-
nization at a cudaThreadSy nchronize operation. There were no other
operations that had potential benefits greater than 1% of execution time.
We fixed the issue by commenting out the cudaThreadSynchronize call,
obtaining a benefit close to the predicted value.

5.4.2 Comparison to NVProf and HPCToolkit

Table 5.2 shows a comparison of the expected-benefit provided by Dio-
genes against the results produced by NVProf [66] and HPCToolkit [56].
NVProf is Nvidia’s profiling tool supplied as part of the CUDA [63] soft-
ware distribution and HPCToolkit is a sample-based profiling tool created
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at Rice University. NVProf and HPCToolkit are two of the most widely
used profilers for GPU applications, especially on high performance com-
puting platforms. We compare the call times reported by each tool and,
in Diogenes’ case, the expected benefit for the CUDA functions called.
The entries are sorted by the order in which they appear in the summary
generated by NVProf.

NVProf and HPCToolkit show similar results while Diogenes differs
significantly for synchronization and memory transfer operations. An
example can be seen in the profiling results for cumf_als. NVProf and
HPCToolkit reported that the function cudaDeviceSynchronize executed
for 745 and 628 seconds respectively. Diogenes reported that only 1 sec-
ond of the execution time could be saved if you removed the calls to
cudaDeviceSynchronize. We verified that there was no impact on the
execution time of cumf_als when only the cudaDeviceSynchronize calls
were removed.

There were six other differences in results between Diogenes and the
other tools for the four programs tested. The gap between Diogenes and
other tools was caused by two differences in the way results are gener-
ated: Diogenes expected benefit analysis provides an estimate of the potential
reduction in synchronization delay for an operation while other tools only pro-
vide the time consumed by an operation. As we described in the section 5.1,
the removal of a synchronization operation can increase the delay of the
next synchronization. The increase in delay of the next synchroniza-
tion operation reduces the benefit that can be obtained. The removal
of the synchronization operations at cudaFree in cumf_als, cudaMemcpy in
cumf_als, cudaStreamSynchronize in cuIBM, cudaMemcpyAsync in cuIBM,
cudaMemset in AMG, and cudaThreadSynchronize in Rodinia substan-
tially increase the delay of the next synchronization operation. Diogenes
accounts for this increased delay by reducing the expected benefit of re-
moving the synchronization operation while other tools do not.
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Diogenes expected benefit analysis excludes required operations while other
tools do not. Diogenes determines whether a memory transfer or synchro-
nization is required, while other tools simply report how much time was
consumed by the operation. If Diogenes detects that an operation is re-
quired, the expected benefit of the operation is set to zero since it cannot be
(removed. cudaMemcpy (in cumf_als), cudaStreamSynchronize (in cuIBM),
and cudaMemcpyAsync (in cuIBM) have occurrences where the operation
being performed is required and thus those occurrences are excluded from
Diogenes results but not from the results of other tools.

Unlike NVProf and HPCToolkit, Diogenes does not collect performance
data on calls that do not contain a problematic synchronization or mem-
ory transfer operation. We collect no data on calls such as cudaMalloc
and cudaLaunchKernel because they do not perform a synchronization
or a memory transfer. The calls we collect data on is determined during
stage 1 of the FFM model when we identify what calls are performing a
synchronization or memory transfer. In the future, if these calls become
synchronous or perform memory transfers, Diogenes will collect data on
them automatically.

It should be noted that we were unable to run NVProf on cuIBM due to
a crash of NVProf during profiling. We tried several different versions of
NVProf between CUDA version 9.1 and 9.2, all of which crashed before pro-
ducing a result. The crash was likely caused by the large number of CUDA
calls that take place during cuIBM’s execution (Diogenes collected data on
> 75 million CUDA function calls). For HPCToolkit, the reported percent-
age of execution time in Table 5.2 is lower than expected for the applications
cuIBM and cumf_als. cumf_als has an uninstrumented execution time of
1360 seconds but HPCToolkit reports that cudaDeviceSynchronize took
628 seconds and consumed 24.5% of execution time (when it should be
closer to 40%). We are still investigating why this discrepancy exists.
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5.4.3 Limitations of Diogenes

While we have seen success using Diogenes, there are some limitations.
Given that Diogenes runs an application multiple times, it performs best
when the execution pattern of the application does not change dramatically
between runs with the same inputs. While Diogenes can tolerate small
changes in behavior between runs, applications with large changes in
behavior could result in missed problematic behavior.

The overhead of running Diogenes is significantly higher than that
of other performance tools. The multiple runs and the use of high cost
instrumentation result in data collection times between 8x (cumf_als) and
20x (cuIBM) of the applications original execution time. When testing
with other applications not included in this study, we saw performance
penalties as high as 45x. While the cost is high for running Diogenes, the
automated nature of the tool and the targeted feedback Diogenes provides
can save programmer time as compared to identifying these problems
manually.

Diogenes has a limited ability to analyze applications using CUDA’s
unified memory. Unified memory provides a single virtual memory ad-
dress space accessible by any CPU or GPU device on the system, removing
the need to explicitly transfer data between the devices. The transfer of
data between CPU and GPU physical memory still takes place but is au-
tomatically performed by the GPU device driver. Though the transfer of
data is automatic, problematic transfers can still occur. However, unlike a
normal memory transfer, the source and destination of a unified memory
transfer are not known until after the transfer completes. The notification
of transfer completion is not immediate, so the data could be modified
before a hash could be calculated, hiding the presence of a problematic
transfer.
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6 automatic remedy identification

While FFM was able to identify problems missed by other approaches,
there were still gaps in its analysis that resulted in unexposed performance
opportunities. FFM could label a synchronization as problematic, but it
could not identify if the synchronization is a component of a larger con-
struct that exhibit a problem that spanned many operations. For example,
a frequently occurring unnecessary synchronization caused by a memory
free operation (such as cudaFree) could indicate that a larger memory man-
agement problem is present. If larger constructs exhibiting this problem
could be identified, it would result in the elimination of memory allocation
and free operations, significantly increasing the potential performance
benefit.

When a problem is discovered, identifying the correct remedy to em-
ploy requires an understanding of the cause of the problem. We focus on
identifying the cause of four of the most common types of synchronization
problems we have seen in the real-world applications: 1) memory transfer
issues, 2) memory management issues, 3) unnecessary operations, and
4) misplaced operations. Fixing the cause of these problems can result in
a reduction in execution time by up to 43%. In this chapter, we describe
the challenges of automating the identification of the cause of the prob-
lem, remedies for each problem type, and the extensions made to FFM to
support these capabilities.

6.1 Memory Transfer Issues

The unnecessary use of synchronous memory transfer operations is a
problem that found to be common in large applications, such as within
cuIBM, cumf_als, and cuFFT when used with Qbox. One such instance
can be seen in Figure 3.2 with the synchronization operations performed
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in Nvidia’s cuFFT library when used as a drop-in replacement for FFTW.
In this example, cuMemcpyHtoD and cuMemcpyDtoH both perform an im-
plicit synchronization during the process of performing a transfer. The
implicit synchronization operations can be unnecessary depending on
how the application uses fftw_execute_dft. The molecular dynamics
application Qbox, when linked against cuFFT in compatibility mode, has
instances where the implicit synchronization operations performed by
cuMemcpyHtoD and cuMemcpyDtoH are unnecessary.

The obvious remedy for an unnecessary synchronization performed
at a transfer is to convert these call to their asynchronous form, such as
converting cuMemcpyDtoH to cuMemcpyDtoHAsync. However, performing
only this conversion may result in the synchronous behavior remaining. In
cases where the transfer being performed is from the GPU to the CPU, such
as with cuMemcpyDtoH, converting only the call site to its asynchronous
form will not eliminate the synchronous behavior unless the CPU memory
is also pinned. A proper remedy for this issue requires identifying and
converting all CPU memory used in a transfer to use pinned pages, such as
by allocating the CPU memory with cuMemAllocHost. Using pinned pages
gives the added benefit of increasing the transfer speed itself, reducing
transfer time by as much as 50%. In large programs, containing 100K+ lines
of code with multiple levels of indirection between the allocation of an
address and its use in a transfer, identifying the CPU memory allocations
that would need to be changed can be difficult without assistance.

Providing actionable feedback requires not only identifying the prob-
lem but also describing what needs to change to remedy the problem. The
requirements to create a remedy that is actionable by the developer are
shown in Figure 6.1. We must identify 1) the locations in the program
where CPU memory is allocated, 2) the problematic transfers and the CPU
memory used in the transfer request, and 3) the locations where the CPU
memory is freed. For the locations of memory allocation and free opera-
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3. Identify where CPU 
memory is freed  

Figure 6.1: Information required to remedy a problematic synchronization
caused by a memory transfer

tions to be useful, they should relate to a line (or a collection of lines) in
application source code. Relating back to the source code gives context to
allocation and free operations when they performed by an external library,
such as an allocator in the C++ standard library, allowing the developer to
place blame for the improper transfer behavior on a specific library, class,
and function.

6.1.1 Extensions to FFM for Memory Transfer Issues

We extend stages 2 and 5 of FFM to support the identification and auto-
matic remedy generation of memory transfer problems (see Figure 6.2).
We extend stage 2 to construct a simple dynamic data flow graph to track
the location where memory addresses are allocated, what memory ad-
dresses are used by transfers, and the location that allocated memory
was freed. We use a binary interposition approach that leverages the
tool GOTCHA [76] developed by Lawrence Livermore National Labora-
tory to track these operations. GOTCHA is a tool that allows a user to
programatically define and insert function wrappers into an application.

We interpose on malloc, free, and memory transfer operations to
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Figure 6.2: Overview of the stages of the FFM model with extended FFM
components listed in green.

capture the locations where CPU memory addresses are used or created.
Memory transfer operations, such as cuMemcpyHtoD and cuMemcpyDtoH,
are interposed to identify the CPU addresses used as parameters to the
call. When a memory transfer operation is requested by the application,
we check the CPU address that is used in the call to determine if it was
allocate by malloc. If the address was allocated via malloc, we record the
location of the the transfer and the location of the allocation. When the
recorded address is freed by free, we record the location it was freed. We
also interpose on the pinning functions of CUDA, such as cuMemAllocHost,
to identify memory that was already pinned by the application.

Stage 5 was modified to generate a remedy based on how the memory
was allocated for these transfers. We use the existing data that Diogenes
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cuMemcpyHtoD_v2 called at...
Offset 131568 in libcufftw.so.8.0
...
cosft1(int, double*) at line 146 in sinft.C
Species::initialize_ncpp() at line 411 in Species.C
...

Problem: Unnecessary synchronous transfer, replace with cudaMemcpyAsync and
pin CPU memory address

Pin non-pinned CPU memory allocated at:
operator new(unsigned long) at line 56 in new_op.cc
...

CPU memory freed at:
operator delete(void*) at line 46 in del_op.cc
...

Figure 6.3: Example Diogenes remedy output for unnecessary synchro-
nization operations caused by memory transfers in Qbox

collects to determine if the synchronization performed by the transfer is
unnecessary. If the transfer is unnecessary, we generate a remedy listing
the transfer operation with the unnecessary synchronization along with
the memory allocation and free operations that would need to be modified
to correct the problem. We obtain source code line information using
Dyninst [77] to tell the user the lines that would need to be modified to
correct the problem. If source code information is not available, such as
when the synchronization occurs in a proprietary binary like cuFFT, we
report the offset address in the binary at which the transfer/allocation
occurs. An example of a remedy generated by Diogenes for Qbox using
cuFFT is shown in Figure 6.3. Figure 6.3 shows a stack of the call site of
the problematic synchronous transfer (cuMemcpyHtoD_v2 in libcufftw),
a brief textual description of the problem, and the locations of memory
management operations that would need to change to correct the issue.
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void cusp::system::detail::generic::multiply<...>(...) {
// temporary_array<...> inherets thrust::temporary_array<...>
// eventually resulting in cudaMalloc(...) being called
cusp::detail::temporary_array<...> rows(...);
cusp::detail::temporary_array<...> vals(...);
...
// cudaFree called by temporary_array object deconstructor

}

Figure 6.4: Example of an unnecessary synchronization as a result of
memory management issue in cuIBM

6.2 Memory Management Issues

Frequent unnecessary synchronization caused by cudaFree operations is
one of the most common mistakes that we detected in GPU programs.
Two factors play a key role in the overuse of cudaFree operations: the ap-
plication structure can hide where these operations take place and fixing
problematic behavior requires modifying other operations in the program.
Figure 6.4 is an excerpt from the application cuIBM that shows how iden-
tifying the location of cudaFree operations can be difficult in modern pro-
grams. The function cusp::system::detail::generic::multiply<...>
is a template function in the header-only library CUSP [33] used by cuIBM.
This function is called after multiple levels of template indirection. In
this function, two temporary_array objects are instantiated. While the
name implies that a temporary array will be created, it is only after several
more layers of indirection and template function calls that a cudaMalloc
is performed. Only when the temporary_array object is being destroyed,
and after calling another several layers of destructors, is the cudaFree
operation performed. An extra level of complexity is added when the com-
piler optimizes this code by removing some of these layers of indirection,
increasing the difficulty in locating the problem.

Unlike other unnecessary synchronization operations that FFM detects,
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cudaFree is unique in that there is no asynchronous version of the oper-
ation available. Fixing a synchronization issue at cudaFree is limited to
removing or moving the operation. However, fixing a cudaFree operation
cannot be done without also addressing the cudaMalloc that allocated
the memory being freed. Without moving or removing the cudaMalloc, a
memory leak would result.

6.2.1 Extensions to FFM for Memory Management Issues

Providing actionable feedback requires that we identify the cudaFree calls
that perform unnecessary synchronization and identify the corresponding
cudaMalloc calls.

The first step is to link the cudaMalloc call with the cudaFree call that
freed the memory. We use a similar method to that used in identifying
remedies for memory transfer issues described in Chapter 6.1.1. In stage
2, a simple dynamic data flow graph is constructed for cudaMalloc and
cudaFree operations. Stage 5 was modified to generate a remedy that
reports the cudaFree call was unnecessary along with the cudaMalloc call
that allocted the memory being freed. Figure 6.5 shows an excerpt from
the output of Diogenes for the program cumf_als. The output contains the
stack with line numbers at which cudaFree was called, the type of problem
idenfied (unnecessary synchronization), and the stack with line numbers
for all GPU malloc sites that allocated memory freed at the cudaFree call
site.

6.3 Unnecessary and Misplaced Explicit
Synchronization Operations

Detecting unnecessary explicit synchronization operations, such as
cuCtxSynchronize, was part of the original FFM design. While FFM could
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cudaFree called at:
doALS(...) at line 1031 in als.cu
main at line 146 in main.cpp
...

Problem: Unnecessary sync at cudaFree
GPU Malloc Site:

doALS(...) at line 689 in als.cu
main at line 146 in main.cpp
...

Figure 6.5: Example Diogenes remedy output for unnecessary synchro-
nization operations caused by memory mangement issues in cumf_als

detect the presence of these operations, it did not give the user a remedy
for these problems. FFM also did not differentiate between a synchroniza-
tion operation that was unnecessary and one that needed to be moved.
The result was that a developer needed to do manual analysis to determine
the type of problem that was present and how to fix it. The extended FFM
model addresses this issue by modifying stage 5 to output the type of prob-
lem present at the explicit synchronization (unnecessary or misplaced).

6.4 Experiments with Automatic Remedy
Identification

We tested the effectiveness of the remedy identification by creating Dio-
genes 2.0 that implements the extended FFM model. We employed the
modified version of Diogenes on three real world applications: cumf_als
(git revision a5d918a), cuIBM (git revision 0b63f86), and Qbox (version
r140b) using cufft (version 8.0) in compatibility mode. We described these
applications in detail in Chapters 3 and 5.4.1. All experiments were run
on the Ray Coral early-access cluster located at LLNL. Each compute node
on Ray contains a 20-core PowerPC 8-processor node with four Nvidia



73

FFM Perscribed Remedies
Memory Transfer Explicit

Application Source Size Mgmt Sync Sync
Name (lines of code) Problems Problems Problems

cumf_als 5K 22 3 10
cuIBM 36K 539 31 168
QBox 87K 0 79 1

Table 6.1: Number of remedies perscribed for synchronization problems
identified by FFM

Pascal-class GPUs.
Table 6.1 summarizes the remedies prescribed by Diogenes 2.0 for each

application. We categorize the remedies based on the type of problem:
memory management, memory transfer, and explicit synchronization.
Each remedy represents the suggested correction to a problem of a speci-
fied type that occured at a unique execution stack during program exe-
cution. If the same execution stack is responsible for multiple occurences
of a problem, the remedies necessary to correct those occurrences are
combined to form a single remedy that would address all occurrences.

We validated, via manual source code analysis, that the remedies identified in
cumf_als and the memory transfer remedies identified in QBox addressed actual
problems that existed in the program. Due to the complexity of the source
code and high number of problems identified for cuIBM, we did not
manually validate every remedy. However, for the problems that we
employ autocorrection on (most memory and transfer issues), we validated
that the program output remained identical. The performance benefit
that we have observed from applying remedies to all three applications
resulted in performance gains between 9% and 43%. We describe the
performance obtained from actually applying these remedies in Chapter 7.

Our experiments for cumf_als were run using the GroupLens Movie-
Lens 10M data set run with an iteration count of 5000. Diogenes 2.0
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identified remedies for 22 memory management, 3 memory transfer, and
10 explicit synchronization issues. The memory management issues iden-
tified in cumf_als were primarily cudaMalloc and cudaFree pairs that
were inside the main execution loop of the program. The memory trans-
fer issues identified were caused by implicitly synchronous cudaMemcpy
calls. In these instances, the CPU memory used in the transfer was al-
ready pinned and the problem was caused by not using the asynchronous
version of the call. The explicit synchronization issues were primarily
cudaDeviceSynchronization calls that were unnecessary. There were two
memory transfer issues identified by Diogenes 1.0 detailed in Chapter 5.4.1
for which Diogenes 2.0 could not create remedies due to the inability to
construct a complete data flow graph for the CPU memory used in these
transfers. We believe the cause of this problem is memory that is not being
freed before application exit. Dut to limitations of the construction of
Diogenes, we cannot capture tracing data after the program calls exit. If
memory is not freed by the time the application exits, Diogenes is not able
to capture the location of the free operation since it never took place. We
require complete information on where all memory addresses used in the
transfer are allocated and freed to ensure that the remedy we generate is
accurate.

The remedies identified for cuIBM and QBox addressed similar prob-
lematic behavior as those of cumf_als. For cuIBM, Diogenes 2.0 identified
remedies for 539 memory management, 31 memory transfer, and 168
explicit synchronization issues. The major difference in the problems
identified in cuIBM from those identified in cumf_als was the transfer
remedies identified were primarily unnecessary synchronization caused
by not using pinned memory with asynchronous memory transfer re-
quests. Our experiments with cuIBM were run using the lid-driven cavity
with Reynolds number 5000 dataset supplied in the public source code
repository for cuIBM (lidDrivenCavityRe5000).
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In QBox, Diogenes 2.0 identified remedies for 79 memory transfer and
1 explicit synchronization issue. The memory transfer remedies targeted
implicitly synchronous cuMemcpyHtoD and cuMemcpyDtoH function calls
that occured in the Nvidia cufft library that needed to both be converted
to an asynchronous form and to use pinned memory in the transfer. Our
experiments with QBox were run using the Gold 16 data set generated by
the tool contained in the QBox distribution.
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7 automatic correction of problematic
operations

Fixing problems identified by FFM can require a significant restructuring
of application code or the modification of closed-source binaries. Devel-
opers are left with the tough choice of leaving these issues unresolved
or potentially spending significant effort refactoring their code. If they
choose to address the issues, the benefit they get may not have been worth
the effort they place into fixing the problem. The high cost of developer
time to fix problematic operations in combination with the potential risk
of limited performance benefit results in the choice being made to not
address these issues.

FFM provides an estimate of potential benefit to a developer to lessen
the risk. While FFM is able to provide accurate estimates of benefit of fixing
problematic operations, significant risk for the developer still remains. The
developer needs to devise a plan on how to fix the issue, determine if that
plan would be efficient enough to obtain the benefit FFM predicted, and
then do the work to apply the fixes.

We created autocorrection techniques to lessen the risk to developers.
Autocorrection works by identifying a class of fixable problematic opera-
tions in a program, selecting transformations that can be applied to correct
the problems, and applying these transformations to the application bi-
nary to reveal the actual benefit that could be obtained. Autocorrection
supplies the developer with transformations that can be used as starting
point for the creation of a permanent solution. Unlike an estimate of bene-
fit, this starting point is an actual benefit obtained if these transformations
were made permanent to the program, reducing the risk to the developer
that their time will be wasted. While the transformations implemented
by autocorrection can be used as permanent solutions in some instances,
application specific fixes may exist that a developer can identify that can
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offer greater benefits. We are also still bound by the limitation of FFM in
that it can only give assurances on transformation safety for the program
inputs for which it has seen. Thus a developer still must ensure that these
transformations are valid for other inputs not exercised by FFM, either by
manual analysis or by reruning FFM with these inputs.

Autocorrection is performed using binary code modification that takes
place at application startup. We focus on correcting the problematic syn-
chronization operations caused by memory management and memory
transfers issues. We focus on these issues since they are the most likely to
require large structural changes to the application to resolve. The trans-
formation we apply for memory management issues is to use a memory
pool that limits the number of memory allocation and free operations
that are passed to the GPU driver. This transformation eliminates a large
percentage of overhead from excessive memory allocation and free oper-
tions while also allowing us to selectively enable/disable synchronization
behavior when it is required.

Our memory transfer transformations convert the call to its asyn-
chronous form and then selectively apply a synchronization operation
when required. Supporting the asynchronous call requires that we en-
sure that any CPU memory address passed to the transfer request falls
on CUDA pinned page. If the CPU address is not on a pinned page, a
temporary pinned page is allocated that will be used for the transfer.

Autocorrection takes place in two phases: the setup phase at appli-
cation start-up to identify and apply the transformations to remedy the
problem and the execution phase where the transformation applies the
remedy when the operation is invoked by the application. In this chapter,
we describe the model of application execution created to identify prob-
lematic operations and how these phases work together to remedy these
common synchronization problems.
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7.1 Model of Application Execution

To identify problematic operations in the program and identify the cor-
rective measure to apply, we extend the model of application execution
used defined in Chapter 5. This model is used by the setup and execution
phases to apply corrections to the application. Recall that we model appli-
cation execution as a graph G = (N,V), where N is the set of operations
performed by a processor and V is the set of edges.

We expand the definition of the existing attribute NType and add the
new attributes CallStack,MemPtr, and Size to a node N. NType is ex-
panded to denote eight new operation types: a CPU memory operation
(CPUMalloc or CPUFree), a GPU memory operation (GPUMalloc or
GPUFree), a pinned page memory operation (PinnedMalloc or
PinnedFree), or a synchronous transfer operation (SyncTransCPUtoGPU

and SyncTransGPUToCPU). The CallStack attribute denotes the cur-
rent execution stack on the processor at the beginning of the operation.
The MemPtr and Size attributes vary based the NType of the node. For
GPU memory operations, MemPtr is the memory address created or freed.
For transfer operations, MemPtr is the CPU memory address used by the
transfer.

7.2 Setup Phase of Autocorrection

The autocorrection process begins by using the model of application ex-
ecution created in stages 1 through 4 of FFM to identify unnecessary
synchronization operations. For use in autocorrection, we slightly alter
FFM’s model of application execution to generate call stacks for each un-
necessary synchronization operation. The call stacks will be saved for use
by the execution stage to determine what corrections are safe to apply at
an instance of a synchronization. We also use the setup phase to insert



79

1 // uSync - Set of unnecessary sync ops stacks

2 uSync = []

3 // rSync - Set of necessary sync ops stacks

4 rSync = []

5
6 def AutocorrectSetup (Graph):

7 InterceptTransOps ( TransIntercept )

8 InterceptGPUMemOps ( GPUMemIntercept )

9 WrapPinnedMemoryOps ( PinnedWrap )

10 PostCallSyncNotify ( PostSynchronization )

11 for Node in Graph.N:

12 if (Node.NType == SyncTransCPUtoGPU or

13 Node.NType == SyncTransGPUToCPU or

14 Node.NType == GPUFree ):

15 if (Node. Problem == Sync and ! IsTransFromStack (Node)):

16 uSync = uSync U Node. CallStack

17 else:

18 rSync = rSync U Node. CallStack

19 uSync = uSync - rSync

20 WriteToFile (uSync)

Functions TransIntercept, GPUMemIntercept, PinnedWrap, and
PostSynchronization are defined in Figure 7.2

Functions InterceptTransOps, InterceptGPUMemOps, WrapPinnedMemoryOps,
PostCallSyncNotify, and WriteToFile are defined in Figure 7.3

Figure 7.1: Setup phase used to identify unnecessary synchronization
operations and insert function wrappers to support Autocorrection

instrumentation into the application around the functions required to
support autocorrection.

Figure 7.1 shows the algorithm used during the setup phase. In func-
tion AutocorrectSetup on line 7 and 8, we insert instrumentation to
intercept calls to common transfer operations (such as cuMemcpy and
cuMemcpyAsync) and GPU memory operations (such as cuMemAlloc and
cuMemFree). The interception instrumentation modifies the code to redi-
rect the calls made by the application to apply the appropriate remedy
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at execution time. On line 9, we insert instrumentation to wrap common
CUDA pinned page memory operations (such as cuMemAllocHost and
cuMemFreeHost). The wrapping instrumentation captures the paramerters
and return values of the wrapped call but does not alter the behavior of
the call performed. The captured information is used to help identify the
appropriate remedy at execution time. On line 10, we insert instrumena-
tion at the exit of the internal GPU driver synchronization function to be
notified when a synchronization operation has completed. At synchro-
nization exit, we execute code to finalize the remedies applied during
interception of problematic operations. The functions TransIntercept,
PinnedWrap, GPUMemIntercept, and PostSynchronization are defined in
the execution stage.

On lines 11-18, we iterate through the nodes in the graph to identify
the synchronization operations that are problematic. We look at every
transfer and memory free operation performed by the application, record-
ing the call stack of the operation and whether the operation is performing
a required synchronization. The necessity of the synchronization oper-
ation was determined by the original FFM analysis. A synchronization
is deemed necessary by FFM if data protected by the synchronization is
accessed. Data protected by the synchronization includes the CPU mem-
ory regions used in all pending memory transfers and the CPU memory
regions of all memory pages shared between the CPU/GPU. A memory
access by the CPU to the memory regions of protected data marks the
synchronization as required. The call stacks later are used by the execution
phase to determine if a synchronization operation should be skipped. On
line 15, IsTransFromStack checks if the node is performing a GPU to CPU
transfer with a destination on the CPU stack. We force a synchronization if
a transfer has a destination of a CPU stack due to potential dangers that can
occur with delaying writes to stack addresses during autocorrection. If the
operation is performing an unnecessary synchronization, we add the call
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stack to the set uSync. Likewise for required synchronization operations,
we add the call stack to the set rSync. After we have iterated through
the graph, we remove any call stack that appears in rSync from uSync to
ensure that only unnecessary synchronization operations are remedied.
On line 20, we write the call stacks out to a file to be read by the execution
phase.

7.3 Execution Phase of Autocorrection

The execution phase identifies and corrects problematic operations that
occur during program execution. We intercept potentially problematic
operations that the application performs, such as memory allocation and
free routines, and use the information collected during the setup phase to
determine what corrective measure should be applied. For all synchronous
operations intercepted, we change the default behavior to be asynchronous.
We then use the data from the setup phase to identify if the intercepted
call requires a synchronization. If a synchronization is required, we invoke
an explicit synchronization operation before returning control back to the
application.

Figure 7.2 shows the algorithm used during execution to correct syn-
chronization problems in the program and apply general fixes to problem-
atic behavior. Memory management operations are intercepted and mod-
ified to apply the appropriate remedy by the function GPUMemIntercept
on line 31. Similarly, TransIntercept on line 13 intercepts and modifies
memory transfer operations to apply remedies. The wrapper function
PinnedWrap on line 6 supports the interceptor function TransIntercept
by providing data on pinned memory allocation operations. The function
exit wrapper PostSynchronization on line 26 notifies the execution phase
of a synchronization and performs post synchronization tasks.

GPUMemIntercept (line 31) intercepts memory allocation and free op-
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1 uSync = ReadFromFile ()
2 Ordered .Map pinnedSet = ∅
3 // DelayedCopies - List of (TransPtr , TempPinnedPtr ) pairs
4 DelayedCopies = []
5
6 def PinnedWrap (Node):
7 CallOriginalFunction (Node)
8 if Node.NType == PinnedMalloc :
9 pinnedSet [Node. MemPtr ] = Node.size

10 else:
11 pinnedSet = pinnedSet - Node. MemPtr
12
13 def TransIntercept (Node):
14 TempPinnedPtr = Node. MemPtr ;
15 if ( pinnedSet ∩ Node. MemPtr == ∅):
16 TempPinnedPtr = GetPinnedMemFromPool (Node. TransSize )
17 if (Node.NType == SyncTransCPUtoGPU ):
18 memcpy ( TempPinnedPtr , Node. MemPtr )
19 else if (Node.NType == SyncTransGPUToCPU ):
20 DelayedCopies = DelayedCopies ∪
21 (Node.MemPtr , TempPinnedPtr )
22 AsyncTransfer ( TempPinnedPtr , Node)
23 if (uSync ∩ CallStack == ∅):
24 PerformSynchronization ()
25
26 def PostSynchronization ():
27 for pair in DelayedCopies :
28 memcpy (pair.MemPtr , pair. TempPinnedPtr )
29 DelayedCopies = []
30
31 def GPUMemIntercept (Node)
32 if Node.NType == GPUMalloc :
33 return GetGPUMemFromPool (Node.size)
34 else:
35 ReturnGPUMemToPool (Node. MemPtr )
36 if (uSync ∩ CallStack == ∅)
37 PerformSynchronization ()

Functions ReadFromFile, IsPinnedPage, GetPinnedMemFromPool,
PerformSynchronization, AsyncTransfer, GetGPUMemFromPool,
ReturnGPUMemToPool and CallOriginalFunction are defined in Figure 7.3

Figure 7.2: Execution Phase of Autocorrection
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ReadFromFile() - reads call stacks from file provided by the setup
phase.

IsPinnedPage(Map, Ptr) - returns true if Ptr is contained in Map
GetPinnedMemFromPool(size) - returns a temp pinned page from a

memory pool (reclaimed when no longer used)
PerformSynchronization() - performs an explicit CPU/GPU

synchronization
AsyncTransfer(CPUMemAddress, Node) - Performs an async transfer

using the original parameters in node, replacing the
CPU address used in the transfer with
CPUMemAddress

GetGPUMemFromPool(size) - Get a GPU memory allocation with a
specified size from a memory pool

ReturnGPUMemToPool(MemPtr) - Return memory address to
memory pool

CallOriginalFunction(Node) - Calls the original function that was
requested by the application

InterceptTransOps(TransIntercept) - Intercepts a set of known
transfer ops

InterceptGPUMemOps(GPUMemIntercept) - Intercepts a set of known
GPU memory ops

WrapPinnedMemoryOps(PinnedWrap) - Wraps a set of known pinned
memory ops

PostCallSyncNotify(PostSynchronization) - Inserts a call to
Function at end of sync

WriteToFile([Stacks]) - Writes the set of stacks performing
unnecessary sync to a file.

IsTransFromStack(MemPtr) - Returns true if CPU stack address is
used in a GPU to CPU transfer at Node

Figure 7.3: Auxiliary functions for the setup and execution phases of
autocorrection
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erations, redirecting these operations to use a memory pool. By using
a memory pool, we limit the number of calls to cuMemFree made to the
driver, reducing the number of synchronization operations that take place.
When an allocation request is intercepted, we redirect the call to allocate
memory using the memory pool (line 33). cuMemAlloc is called only if
the memory pool does not have enough allocated memory to satisfy the
request. When a free request is intercepted, we return the memory region
to the memory pool (line 35). Since we may not call cuMemFree, and thus
may not perform the implicit synchronization, we must check to see if the
intercepted call requires a synchronization. We compare the call stack that
initiated the request to the call stacks that were identified as unnecessary
in the setup phase (line 36). If there is no match, we perform an explicit
synchronization.

TransIntercept (line 13) intercepts and modifies memory transfer op-
erations to remove unnecessary synchronization operations. We convert
the synchronous memory copy operation to its asynchronous form, ap-
plying a synchronization only when it is required. Converting the call its
asynchronous form requires that we first identify if the transfer is going
to or from a CUDA managed pinned page. We compare the CPU mem-
ory pointer used in the transfer to a set of pinned pages allocated by the
program (line 14). The set of allocated pinned pages (pinnedSet) is cap-
tured by the wrapper PinnedWrap on line 6. PinnedWrap inserts allocated
memory ranges into a set (line 8) and removes those that are freed (line
10).

If the intercepted transfer request is not going to or from a pinned page
CPU memory address, we must modify the transfer to use a temporary
pinned page. The temporary pinned page stages the data being transferred
to or from the GPU, allowing for the transfer to become asynchronous and
accelerating the rate data is transferred. For transfers of data going to the
GPU, the data to be transferred from the CPU is copied to this temporary
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Application

…
cuMemcpyDtoH(cpuDST, gpuSRC, size)

…

Is cpuDST pinned? 

Obtain temporary pinned page for transfer from memory pool
(TempPinnedPtr = GetPinnedMemFromPool(size))

No

Yes

Insert (cpuDST, TempPinnedPtr)into DelayedCopies to copy 
transferred data from TempPinnedPtr to cpuDST after next 

synchronization 

Perform Asynchronous Transfer
cuMemcpyDtoHAsync(TempPinnedPtr,

gpuSRC,size)

Perform Asynchronous Transfer
cuMemcpyDtoHAsync(cpuDST,

gpuSRC,size)

Is the stack for cuMemcpyDtoH in the list of call stacks 
captured by the setup phase?

Perform Synchronization

Yes, Return to 
Application

No

TransIntercept

Figure 7.4: An ilustration of the processing steps performed by
TransIntercept for intercepted cuMemcpyDtoH operations
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page and the transfer request is modified to use the pinned page (lines
16-18). If instead the transfer is from the GPU to the CPU, we modify the
transfer request to use the pinned page. However, the data transferred
from the GPU is expected by the program to be at the CPU memory
address used in the original transfer request. We ensure this behavior by
delaying the copy from the temporary pinned page to the original CPU
destination memory address to occur at the completion of the transfer at
the next synchronization (line 20). The function PostSynchronization is
called when a synchronization completes and the copy is performed (line
26-29). While the additional copy does add overhead to the operation,
both the allocation of a pinned page and the copy operation would be
performed by CUDA driver if we did not perform this ourselves. On
line 22, we initiate the modified asynchronous transfer. On line 23-24, we
determine if a synchronization must be performed. If the current execution
stack is not contained in the unnecessary synchronization set collected
during the setup phase, a synchronization is performed. In Figure 7.4, we
show an illustration of the processing steps taken by TransIntercept for
intercepted cuMemcpyDtoH operations.

7.4 Experiments with Autocorrection

We tested the effectiveness of the autocorrection on the applications cuIBM,
cumf_als, and Qbox. All experiments were conducted using the same in-
put datasets used and described in remedy identification experiments in
Section 6.4. Table 7.1 summarizes the benefit obtained using autocorrec-
tion in these experiments. For each application, we list its unmodified
execution time, the percentage of execution time saved in the original
study of FFM by manually correcting a subset of problems in the program,
and the percentage of execution time saved by using the autocorrection
method. The use of autocorrection reduced execution time by 43.3% for
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cuIBM, 33.2% for cumf_als, and 9.9% for Qbox. When compared to the
results obtained using the original implementation of FFM, we obtained
an additional 25.7% reduction in execution time using autocorrection for
cuIBM and a 24.9% reduction for cumf_als. Qbox itself was not manually
corrected as part of the original work on Diogenes. However, a reduction
in execution time of 85% was achieved in Chapter 3 by modifying a few
hundred lines of the FFT component of Qbox to use the native cufft in-
terface. These changes required refactoring the code to use a library with
different abstraction and manually managing the GPU memory and syn-
chronization. The automatic corrections applied to Qbox do not require
these modifications.

The major cause of the performance difference seen between manual
correction using FFM and autocorrection is the larger number of problems
that are actually corrected. The original FFM experiments focused on fixing
only the top few problems with the largest potential performance benefit.
This choice was made to mimic the typical behavior of a performance
tool user who only typically fix the most problematic operations. This
leaves, in some cases, hundreds of smaller issues that are viewed as not
having large enough benefit to justify fixing them by themselves but can
result in large aggregate benefit if they were all corrected. Autocorrection
allows for these potential large gains available from fixing smaller issues
to be exposed without having to perform the tedious repair of hundreds
of smaller issues.

Table 7.2 summarizes the number of problems automatically remedied
and the resulting number of synchronization operations that were elimi-
nated by the applied remedies. We categorize the remedies using the same
criteria as the remedy identification experiments: memory management
problems and unnecessary synchronous memory transfer problems. Each
remedy represents the correction of a problem of a specified type at a
unique execution stack. We verified the output of each application to ensure
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Savings With
Original Original FFM by Savings With

App Exec Time Manual Correction Autocorrection
Name (seconds) (% of exec) (% of exec)
cumf_als 1169 8.3% 33.2%
cuIBM 1909 17.6% 43.3%
Qbox 2243 No Manual Correction 9.9%

Table 7.1: Summary of the performance benfits obtained using autocorrec-
tion compared to the original implementation of FFM

that the remedies did not result in incorrect behavior.
Our experiments for cumf_als resulted in remedies being applied to

22 memory management and 3 memory transfer issues. The 22 remedies
applied to memory management issues intercepted approximately 85K
calls to cudaMalloc and 85K calls to cudaFree. These operations were
primarily the cudaMalloc/cudaFree pairs inside of the main execution
loop of the program that we described in the remedy identification phase.
The result of this remedy was the elimination of 85K synchronization
operations that took place unnecessarily at cudaFree operations. The 3
remedies applied to memory transfer issues removed an additional 45K
synchronization operations. Total benefit obtained was a reduction in
execution time by 33.2%.

cuIBM shows an extreme example of unnecessary synchronization
caused by cudaFree operations. Remedies were applied to 539 problem-
atic synchronization operations occuring at cudaFree. The application of
the remedies resulted in the interception of 45 million calls to cudaMalloc
and 45 million calls to cudaFree, removing 45 million synchronization op-
erations. Remedies applied to the 31 memory transfer problems resulted
in 32 synchronization operations being removed. Total benefit obtained
was a reduction in cuIBM’s execution time by 43.3% for the lidDrivenCavi-
tyRe5000 input dataset.
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Memory Management Memory Transfer
Application Problems Sync Ops Problems Sync Ops
Name Remedied Removed Remedied Removed
cumf_als 22 85,005 3 45,005
cuIBM 539 45,290,724 31 32
Qbox 0 0 79 32,048,836

Table 7.2: Synchronization operations removed using autocorrection

We also saw a reduction in cuIBM’s execution time with other input
datasets using the same autocorrection generated to resolve the problems
seen with lidDrivenCavityRe5000. We obtained a 58% reduction in execu-
tion time with cylinderRe3000, a 48% reduction with flyingSnakeRe2000
AoA30, and a 43% reduction with lidDrivenCaveityRe3200. These results
suggest that the problems identified and the autocorrection generated for
cuIBM with the lidDrivenCavityRe5000 input dataset address problems
that are not unique to a specific dataset and would benefit application
performance more broadly if corrected.

Qbox shows an extreme example of unnecessary synchronization caused
by memory transfer operations. Remedies were applied to 79 problem-
atic synchronization operations that occured at various memory transfer
operations (such as cuMemcpyHtoD). The result was the elimination of 32
million synchronization operations, reducing execution time by 9.9%.

7.5 Limiations of Diogenes 2.0 and Next Steps

Similar to Diogenes 1.0, the overhead of running Diogenes 2.0 is signif-
icantly higher than that of other performance tools. The overhead of
running the entire extended FFM model was between 7x (for cumf_als) to
45x (for Qbox) of execution time. While the cost of FFM is high in terms of
time, the targeted feedback that a tool user receives and the performance
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benefits that can be obtained can save programmer time.
While cumf_als and cuIBM showed a significant reduction in applica-

tion execution time beyond what was obtained using manual correction,
Qbox fell short of the 85% reduction in execution time achieved in Chap-
ter 3. We believe the primary reason for this shortfall was the inability to
automatically remove duplicate transfers. In Qbox, there are millions of
transfers that duplicate either full or partial data of prior transfers. The
conversion in Chapter 3 used a new interface that allowed us to directly
control when data was transferred between the CPU and GPU, giving us
the ability to minimize the occurrence of duplicate transfers. A method to
automatically correct duplicate data transfers would likely see the auto-
matic correction approach close in on the benefits seen with the manual
method.
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8 conclusion

Our goal for this research has been to create performance tool techniques
that can help developers adapt their applications to more effectively exploit
the additional parallelism afforded by many-core architectures. The guid-
ing principle of our work was to deliver actionable feedback to developers
on the problems present in their applications, exposing previously hid-
den performance opportunities that would offer substantial performance
benefits if corrected. The result was the development of the feed-forward
measurement model capable of guiding developers to problematic oper-
ations in their program and delivering actionable feedback in the form
of an estimate of expected benefit if the problem were corrected. We ex-
panded this work to automatically identify how to remedy problematic
operations and a method for automatically applying these remedies to the
program. In this chapter, we summarize the technical contributions and
future research directions of our work.

8.1 Contributions

In this dissertation, we presented five main contributions:

Exposing hidden performance problems in GPU applications: We iden-
tified four performance issues that impact high performance scien-
tific applications that use GPUs for computation: unobvious missed
parallelization opportunities, duplicate data transfers, synchroniza-
tion issues, and JIT compilation. The manual correction of the prob-
lems we discovered resulted in 18%-87% reduction in program exe-
cution time. What links the issues together is the lack of performance
tools and techniques to detect their presence. We have developed
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techniques that can detect when and where these issues are present
within applications.

The feed-forward measurement model: We introduce a multi-stage,
multi-run performance measurement and analysis approach called
the feed-forward measurement model (FFM). FFM automates the
identification of unnecessary synchronization and memory transfer
operations in GPU programs. We focused on these problems because
they were the most common and most performance detrimental in
the applications we studied. FFM gives targeted feedback on what
problems exist in the application and what the benefit would be if
the problem were corrected. FFM is not reliant on vendor-supplied
performance measurement collection frameworks for data collec-
tion, instead FFM uses binary instrumentation to directly capture
and time events such as synchronization operations. The multi-
stage/multi-run method of data collection allowed FFM to collect
performance data that would otherwise be missed or is too costly
for other performance tools to collect.

The performance model of FFM: We created a performance model that
uses the data collected by FFM to provide an estimate of expected ben-
efit that could be obtained if a problematic operation were fixed. We
model application execution to determine the effect that (re)moving a
problematic operation will have on other operations in the program
and overall application execution time. The performance model
groups problematic operations together to identify problems where
a single fix could be applied and gives an estimate of the benefit of fix-
ing the problems. The prototype implementation of FFM, Diogenes,
was able to identify performance issues in real world applications.
Diogenes was able to provide accurate feedback (around 77% com-
bined accuracy across the applications that we studied) on what the
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benefit would be if the problem were fixed. Using Diogenes we were
able to improve the performance of these applications by as much as
17%.

Automatic remedy identification: We extended FFM model to identify
if the synchronization problem is a component of a larger construct
that exhibits a problem that can span over many operations and
automates the identification of remedies that can correct the issue.
We focused on identifying the cause of four of the most common
types of synchronization problems we have seen in the real-world
applications: 1) memory transfer issues, 2) memory management
issues, 3) unnecessary operations, and 4) misplaced operations. Dio-
genes 2.0 implements the extended FFM model to automatically
identify remedies to problematic synchronization operations. Using
this implements, we were able automatically identify remedies for
several hundred synchronization issues across three applications.

Automatic correction of problematic synchronization operations: We
further extended the FFM model to automatically correct synchro-
nization problems. We focused our efforts on automatically cor-
recting synchronization problems caused by memory transfer and
memory management issues. These larger constructs exhibit a prob-
lem that span over many operations, making them more difficult to
fix manually. We implemented this extension in Diogenes 2.0 and
were able to automatically reduce application execution time by 7%
to 43% in the applications that we have studied.

8.2 Future Directions

There are several opportunities for future expansion of the work and ideas
we have presented here.
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Expanding FFM to new problem types: FFM’s ability to adjust instru-
mentation based on program behavior and spread data collection
over multiple runs opens the possibility for creating new tools that
deliver actionable feedback on other problems. One such potential
problem is missed parallelization opportunities. One profiling run
of the program would be used to collect the detailed data needed to
detect memory access patterns favorable to parallelization. A second
profiling run would be used to collect measurements sensitive to
CPU overhead such as the GPU activity taking place during the loops
execution. There would still be challenges that need to be overcome,
such as how to estimate the GPU execution time of a CPU loop, but
FFMs framework would jump start the development of this tool.

Reducing Execution Overhead of FFM/Diogenes: One of the key lim-
itations of FFM is the overhead we observed. A majority of this
overhead is caused by load/store analysis performed to detect un-
necessary synchronization operations. Creating new techniques to
collect this data or finding methods to limit its use would expand
the applications that can be run with FFM. One path that warrants
exploration is limiting the use of load/store analysis so that it is per-
formed for only limited number of occurrences of a synchronization
operation with a unique stack trace. What we have seen in practice is
that a synchronization operation that is necessary is often necessary
every time it occurs in the program. Turning on load/store analysis
only when a synchronization operation with a unique stack trace
is seen could substantially reduce overhead. The limitation of this
approach is that it opens the possibility for incorrectly marking a
synchronization operation as being unnecessary. However, this a
trade off that a user might be willing to accept if it allows them to
run the tool on programs they otherwise would not be able to.

The recent introduction of a new hardware primitive on Intel x86-64
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processors called Memory Protection Keys [42] (MPK) is another
promising option for reducing the cost of load/store analysis phase.
MPK allows for memory regions to be protected using unprivileged
CPU instructions that can be called by the application directly with-
out involving the operating system kernel. Using MPK, we could
protect the memory regions containing GPU-computed data and
wait for hardware to signal that an instruction is trying to access
that data. This would allow us to capture the data we need while
leveraging the extremely low overhead of MPK, shown in a study to
be less than 1% of application execution time [71]. The limitation of
this approach is that only Intel server processors currently support
this feature. Until other vendors such as AMD also support this
feature, using MPK would limit its applicability.

Extraction of FFM components for use by other performance tools:
During the course of our work on FFM, several techniques were
created that could be used by other performance tools to improve
their data collection and analysis. Two techniques that we feel would
have significant impact on existing tools are the direct measurement
of synchronization operations and the performance model. To our
knowledge, FFMs technique for identifying and measuring synchro-
nization operations is the only alternative method for measuring
synchronization delay outside of vendor-supplied performance mea-
surement collection frameworks. This technique can supply a more
detailed and accurate picture of the synchronization operations than
those supplied by the vendor and would immediately impact tech-
niques such as blame analysis that can make use of this information.
We are in the process of extracting this measurement capability into
a stand-alone measurement tool that other tools and techniques can
utilize to collect this information. We believe the performance model
could be used by other performance tools to provide better informa-
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tion on the expected benefit of fixing a performance problem.

Expanding FFM to new platforms: FFM was developed and its imple-
mentation Diogenes tested on PowerPC platforms with Nvidia GPUs.
We focused our development efforts on this combination of CPU and
GPU architecture due to its prominence in today’s leadership-class
high performance computing platforms. However, the upcoming
release of exascale high performance computing platforms sees a
significant shift in both CPU and GPU architectures. x86-64 based
CPUs paired with Intel and AMD GPUs are slated to be used in
at least two of the upcoming major exascale machines. Given the
increase in architecture diversity of exascale machines, architecture
dependencies contained within FFM and Diogenes will need to be
addressed. We believe that only minor changes to FFM and Diogenes
will be required to support these platforms but the lack of informa-
tion on the GPUs to be used in these machines leaves us uncertain
on exactly what will need to be changed.
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