Scalable performance analysis with

Projections
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Effects of Application Scaling

 Enlarged performance-space.
* Increased performance data volume.

* Reduces accessibility to machines and
increases resource costs
> Time to queue.

> CPU resource consumption.



Overview

e Introduction.

» Scalable Techniques:
> Support for Analysis ldioms
> Data Reduction
° Live Streaming
> Hypothesis Testing



Scalable Tool Features: Motivations

* Performance analysis idioms need to be
effectively supported by tool features.

* ldioms must avoid using tool features that
become ineffectual at large processor
counts.

* We want to catalog common idioms and
match these with scalable features.



Scalable Tool Feature Support (1/2)

* Non-scalable tool features require
analysts to scan for visual cues over the
processor domain.

* How do we avoid this requirement on
analysts?



Scalable Tool Feature Support (2/2)

» Aggregation across processor domain:
> Histograms.
> High resolution Time Profiles.

e Processor selection:

o Extrema Tool.



Histogram as a Scalable Tool Feature

 Bins represent time spent by activities.

» Counts of activities across all processors
are added to appropriate bins.

* Total counts for each activity are
displayed as different colored bars.




Case Study:

» Apparent load imbalance.
* No strategy appeared to solve imbalance.
* Picked overloaded processor timelines.™
* Found longer-than-expected activities.

* Longer activities associated with specific
objects.

* Possible work grainsize distribution
problems.

*As we will see later, not effective with large numbers of processors.



Case Study:
Validation using Histograms
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Effectiveness of ldiom

* Need to find way to pick out overloaded
processors. Not scalable!

 Finding out if work grainsize was a
problem simply required the histogram
feature.



High Resolution Time Profiles

* Shows activity-overlap over time summed
across all processors.

e Heuristics guide the search for visual cues
for various potential problems:

> Gradual downward slopes hint at possible
load imbalance.

> Gradual upward slopes hint at communication
inefficiencies.

* At high resolution, gives insight into
application sub-structure.



Case Study: Using Time Profiles
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Finding Extreme or Unusual
Processors

* A recurring theme in analysis idioms.

* Easy to pick out timelines in datasets with
small numbers of processors.

* Examples of attributes and criteria:
° Least idle processors.
> Processors with late events.

> Processors that behave very differently from
the rest.



The Extrema Tool

e Semi-automatically picks out interesting
processors to display.

* Decisions based on analyst-specified
criteria.

* Mouse-clicks on bars load interesting
processors onto timeline.



Using the Extrema Tool
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Some recent examples: scalable views
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Scalable Tool Features: Conclusions

* Effective analysis idioms must avoid non-
scalable features.

e Histograms, Time Profiles and the
Extrema Tool offer scalable features in
support of idioms.



Data Reduction

* Normally, scalable tool features are used
with full event traces.

* What happens if full event traces get too
large?
* We can:

> Choose to keep event traces for only a subset
of processors.

> Replace event traces of discarded processors
with interval-based profiles.



Choosing Useful Processor Subset

(1/2)

* What are the challenges!?

> No a priori information about performance
problems in dataset.

> Chosen processors need to capture details of
performance problems.



Choosing Useful Processor Subsets
(2/2)

e Observations:

> Processors tend to form equivalence classes
with respect to performance behavior.

> Clustering can be used to discover
equivalence classes in performance data.

> Qutliers in clusters may be good candidates
for capturing performance problems.



Applying k-Means Clustering to
Performance Data

* Treat the vector of recorded performance metric
values on each processor as a data point for
clustering.

* Measure similarity between two data points using
the Euclidean Distance between the two metric
vectors.

e Given k clusters to be found, the goal is to
minimize similarity values between all data points
and the centroids of the k clusters.



Choosing from Clusters

e Choosing Cluster Outliers.

o Pick processors furthest from cluster
centroid.

> Number chosen by proportion of cluster size.

e Choosing Cluster Exemplars.

> Pick a single processor closest to the cluster
centroid.

e Qutliers + Exemplars = Reduced Dataset.



Applying k-Means Clustering Online

e “Death-bed” or “Moriens” analysis:

o Just before the program terminates, we have
all performance logs, and a huge parallel m/c

° This is the simplest example of Moriens
analysis
e Decisions on data retention are made
before data is written to disk.

» Requires a low-overhead and scalable
parallel k-Means algorithm



Important k-Means Parameters

* Choice of metrics from domains:
° Activity time.
> Communication volume (bytes).
> Communication (number of messages).

e Normalization of metrics:
o Same metric domain = no normalization.

o Min-max normalization across different metric
domains to remove inter-domain bias.



MetricY

Equivalence Class Discovery

uclidean Distance

Representatives

Metric X



Overhead of parallel k-Means
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Data Reduction: Conclusions

* Showed combination of techniques for
online data reduction is effective™.

* Choice of processors included in reduced
datasets can be refined and improved
° Include communicating processors.

° Include processors on critical path.

» Consideration of application phases can
further improve quality of reduced
dataset.

*Chee Wai Lee, Celso Mendes and LaxmikantV. Kale. Towards Scalable
Performance Analysis and Visualization through Data Reduction.
| 3th International Workshop on High-Level Parallel Programming Models
and Supportive Environments, Miami, Florida, USA, April 2008.



Live Streaming of Performance Data

* Live Streaming mitigates need to store a
large volume of performance data.

e Live Streaming enables analysis idioms
that provide animated insight into the
trends application behavior.

e Live Streaming also enables idioms for the
observation of unanticipated problems,
possibly over a long run.



Challenges to Live Streaming

e Must maintain low overhead for
performance data to be recorded, pre-
processed and disposed-of.

* Need efficient mechanism for
performance data to be sent via out-of-
band channels to one (or a few)
processors for delivery to a remote
client.



Enabling Mechanisms

e Charm++ adaptive runtime as medium for
scalable and efficient:
> Control signal delivery.
> Performance data capture and delivery.

e Converse Client-Server (CCS) enables
remote interaction with running Charm+
+ application through a socket opened by
the runtime.



Live Streaming System Overview

A) Gathering Performance Data in Parallel Runtime System:

(1) Broadcast Request for
Root Processor Utilization Profiles
“ Periodic Once Per Second
\_../ Requests * * *
Trace Processor Trace Processor Trace
Module Module =sa Module
(3) Buffer
Utilization
Profiles N (2) Reduction Merges Compressed Utilization Profiles

B) Visualizing Performance Data:

- P - Root Processor

Visualization Client (1) Send Request via

,_ —— -‘ TCP using CCS protocol

E E = P CCS <
Wm < Handler ]
£ (2) Retrieve a
(3) CCS Reply Contains Buffered Utilization

Utilization Profile Profile

(4) Update Display




What is Streamed?

A Utilization Profile similar to high
resolution Time Profiles.

* Performance data is compressed by only
considering significant metrics in a special
format.

* Special reduction client merges data from
multiple processors.

# of Bins # Processors Bin 1 T Binm
4 bytes 4 bytes
# of Records EID1 Utilization 1 " EIDn Utilization n

2 bytes 2 bytes 1 byte 2 bytes 1 byte



Visualization
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Overheads (1/2)

% Overhead when compared to baseline system:

Same application with no performance

instrumentation.

512 1024 2048 4096 8192
With instrumentation,

data reductions to root | gu0r | 179 | _026% | 0.16% | 0.83%
with remote client

attached.

With instrumentation,

data reductions to root | coor | o179 | 037% | 1.14% | 0.99%

but no remote client

attached.




Overheads (2/2)

For bandwidth consumed when streaming
performance data to the remote
visualization client.
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Live Streaming: Conclusions™

* Adaptive runtime allowed out-of-band
collection of performance data while in
user-space.

* Achieved with very low overhead and
bandwidth requirements.

*Isaac Dooley, Chee Wai Lee, and Laxmikant V. Kale. Continuous
Performance Monitoring for Large-Scale Parallel Applications.
Accepted for publication at HiPC 2009, December-2009.



Repeated Large-Scale Hypothesis
Testing

 Large-Scale runs are expensive:

> Job submission of very wide jobs to
supercomputing facilities.

> CPU resources consumed by very wide jobs.

* How do we make repeated but
inexpensive hypothesis testing
experiments!?



Trace-based Simulation

» Capture event dependency logs from a
baseline application run.

 Simulation produces performance event
traces from event dependency logs.



Advantages

* The time and memory requirements at
simulation time are divorced from
requirements at execution time.

e Simulation can be executed on fewer
Processors.

 Simulation can be executed on a cluster
of workstations and still produce the
same predictions.



Using the BigSim Framework (1/2)

e BigSim emulator captures:
> Relative event time stamps.
> Message dependencies.
> Event dependencies.

* BigSim emulator produces event
dependency logs.



Using the BigSim Framework (2/2)

* BigSim simulator uses a PDES engine to
process event dependency logs to predict
performance.

* BigSim simulator can generate
performance event traces based on the
predicted run.



Examples of Hypothesis Testing
Possible
e Hypothetical Hardware changes:

o Communication Latency.

> Network properties.

* Hypothetical Software changes:
o Different load balancing strategies.
o Different initial object placement.

o Different number of processors with the
same object decomposition.



Example:
Discovering Latency Trends

* Study the effects of network latency on
performance of seven-point stencil
computation

* For each of the data-points on the plots
on next few slide/s
> You have full traces

> Can do projections analysis as if you ran it on
the modified machine (with lower/higher

latency)



Latency Trends —
Jacobi 3d 256x256x192 on 48 pes
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Summary

* Scalable views can be effective tools
> Histograms, time-profiles, ...
e Data reduction via on-line analysis

> Parallel k-means, Sampling

e Live analysis: helped by message-driven
execution

e Traces can be used for simulation:

> what-if analysis via BigSim



Further Thoughts

Future: a lot more emphasis on moriens (death-bed)
analysis

> Requires more automation of the analysis process
More “Automated Expert Analysis”

> Topic of 1994 thesis on projections

Message-driven execution or communication layer
integration for tools communication

> No “out of band” issues

Another grand challenge/s:
> How to get grad students interested in tools research?

> How to get funding in this area?
All our work has been (mostly) unfunded or only indirectly funded



