Scalable performance analysis with

Projections

Sanjay Kale, http://charm.cs.illinois.edu

<ldentity Map>

Based on Thesis defense slides By Chee Wai Lee

Inclusive

Function

(Wracaitel fogion

ecale = 106990%

Timel
[av][] [e]me] [<]>) 88s 220
Lowest / Max. Depth ¢|Zoom Level Global Min Time View Init Time Zoom Focus Time. View Final Time Global Max Time Time Per Pixel N2 -
10713 ')_o [-0.00605¢ -0.0060565 23861427525 477.634607 477.634607 062031255 @J % l::mm
Cumulativex... ¥ TimeLines 17.0
15L0G-2
Do
D: [: I s
e (D S
0O ‘ (O B B | [5
i L B I R B B
[Paraprot visuatizer: application 13, Trial57. D4 ' N
File Options Windows Help Ds \ [} | | I 4 [} | | H -
Triangle Meshll [y v \ ' ' | ¢ | ¢ ' | &
\ ' . ' A] i i =
® Bar Plot b7 Eo Belp |
(~oruRzaTomeeptass_wevorreinz X |
Ds = . = =
Scatter Plot 1 B@BYEEDE M m &
Height Metric < Overview X Trabc Rapon X |10 iates X | v Funcion X | Counters Pot X | |
2 2.3 2.75 2. 2.an 2.0 2.0 % 2.2 1
Inclusive [{ — _*J k { [
t
Color Metric —r
e ™
‘ ']

it

£ri)

Qzoomb| Qzoomou| Qevai
)

O utilization (©) By EP Colors

Effects of Application Scaling

 Enlarged performance-space.
* Increased performance data volume.

* Reduces accessibility to machines and
increases resource costs
> Time to queue.

> CPU resource consumption.

Overview

e Introduction.

» Scalable Techniques:
> Support for Analysis ldioms
> Data Reduction
° Live Streaming
> Hypothesis Testing

Scalable Tool Features: Motivations

* Performance analysis idioms need to be
effectively supported by tool features.

* ldioms must avoid using tool features that
become ineffectual at large processor
counts.

* We want to catalog common idioms and
match these with scalable features.

Scalable Tool Feature Support (1/2)

* Non-scalable tool features require
analysts to scan for visual cues over the
processor domain.

* How do we avoid this requirement on
analysts?

Scalable Tool Feature Support (2/2)

» Aggregation across processor domain:
> Histograms.
> High resolution Time Profiles.

e Processor selection:

o Extrema Tool.

Histogram as a Scalable Tool Feature

 Bins represent time spent by activities.

» Counts of activities across all processors
are added to appropriate bins.

* Total counts for each activity are
displayed as different colored bars.

Case Study:

» Apparent load imbalance.
* No strategy appeared to solve imbalance.
* Picked overloaded processor timelines.™
* Found longer-than-expected activities.

* Longer activities associated with specific
objects.

* Possible work grainsize distribution
problems.

*As we will see later, not effective with large numbers of processors.

Case Study:
Validation using Histograms

890

800 -
1200

700 .

1000 N
600 - n

sB60H =

4880 =

Number of computes

300 .
400 .

200 .

200 - .
100 -

olllllllllll"ll"-lllllllL—l_l_l_

113 53 7 8 11713 1817 19 21123 25527 29 31183 39137 29 41283
Eeiisizes((nsd)

Effectiveness of ldiom

* Need to find way to pick out overloaded
processors. Not scalable!

 Finding out if work grainsize was a
problem simply required the histogram
feature.

High Resolution Time Profiles

* Shows activity-overlap over time summed
across all processors.

e Heuristics guide the search for visual cues
for various potential problems:

> Gradual downward slopes hint at possible
load imbalance.

> Gradual upward slopes hint at communication
inefficiencies.

* At high resolution, gives insight into
application sub-structure.

Case Study: Using Time Profiles

—_—
D040 0)

4300 3933300 3956300 3957300 29583C 19540 119640 0 1197400 119040 0
TITETRETTS (10000
- 5.6s 0 5,08
.

1111

W&@b@ﬂm@' |I_I“@deBEIanmg Strategy

12

Finding Extreme or Unusual
Processors

* A recurring theme in analysis idioms.

* Easy to pick out timelines in datasets with
small numbers of processors.

* Examples of attributes and criteria:
° Least idle processors.
> Processors with late events.

> Processors that behave very differently from
the rest.

The Extrema Tool

e Semi-automatically picks out interesting
processors to display.

* Decisions based on analyst-specified
criteria.

* Mouse-clicks on bars load interesting
processors onto timeline.

Using the Extrema Tool

HMM4-WW~WMP*-W-%«MWM.—WW.W+*<;.,.*._H+ i NP TN D ENDUDIDES TSP DU SN DD S

PEE0 N mm-—-l—-—-q ﬂ[ﬂl-'—-T-I-
e ---ﬂﬂu:ﬂ-ﬂ----—-mﬂlmwm-— | EOE=E B EEE

Some recent examples: scalable views

Received Bytes Over Time

8 10G I
g I I
: Il
3 I
g TH (T L
0 5G III ll I I
5 ' ' :
i II | ““I ||| . 'l || II‘
180.817s 180.927s 180.937s 180.947s 180.857s 180.967s 180.977s 180.987s 180.997s

Time (1ms resolution)

Received External Node Bytes Over Time

4.5G
4G

3.5G
3G]

2.5G

1.5G 7

1000M 3 | II U I

UL ..

180.917s 180.927s 180.937s 180.947s 180.957s 180.967s 180.977s 180.987s 180.997s

Bytes Received Externally Node

Time {1ms resolution)

Tirme In Microsecon ds
739,028,000 75,033,000 79,028,000 79,043,000 73,048,000 79,053,000 73,058,000 79,063,000 739,068,000
!] |] |]] |]

oy s e e e e e e o e e
o | IIIlLIIIlL...J..-....lLLLLLIIJIHL...lL..J...J_.....Jil W (T e T i
T e - — —— I e e
cormevisze [N ..u....uuLulul..,....1......- i ..uL....._..uwm-L.L-.. ..L.I._.IILI.I.LI-IIIHI e i i
PO o N —— | e N —— || e—— 0
comme e RN -J.LI.lHII.IIH.LLIL.-.....L.....-.....,IiI b T 1
T] | we— e | ee———
corme e |_........| B -
RO e | e— N]| e ——
Come N7 ﬂlmlL............1.4mmw.ut........-_-.. i N R o
0o e | —————— '——-"-—m—l-‘in
cormemeees [N A S nL.._.uwnwuum...u..muuuuwuuww.t s 11 1 e N
RTINS] O — N S e — e ——
comme v A wum- .| M o .lIlILII.llIllIIlL.L_................|. o oo B LA A
P " ——| | I-r,)—JI-HJ-H-'-%'.-iI e nee e

1 il 11

Scalable Tool Features: Conclusions

* Effective analysis idioms must avoid non-
scalable features.

e Histograms, Time Profiles and the
Extrema Tool offer scalable features in
support of idioms.

Data Reduction

* Normally, scalable tool features are used
with full event traces.

* What happens if full event traces get too
large?
* We can:

> Choose to keep event traces for only a subset
of processors.

> Replace event traces of discarded processors
with interval-based profiles.

Choosing Useful Processor Subset

(1/2)

* What are the challenges!?

> No a priori information about performance
problems in dataset.

> Chosen processors need to capture details of
performance problems.

Choosing Useful Processor Subsets
(2/2)

e Observations:

> Processors tend to form equivalence classes
with respect to performance behavior.

> Clustering can be used to discover
equivalence classes in performance data.

> Qutliers in clusters may be good candidates
for capturing performance problems.

Applying k-Means Clustering to
Performance Data

* Treat the vector of recorded performance metric
values on each processor as a data point for
clustering.

* Measure similarity between two data points using
the Euclidean Distance between the two metric
vectors.

e Given k clusters to be found, the goal is to
minimize similarity values between all data points
and the centroids of the k clusters.

Choosing from Clusters

e Choosing Cluster Outliers.

o Pick processors furthest from cluster
centroid.

> Number chosen by proportion of cluster size.

e Choosing Cluster Exemplars.

> Pick a single processor closest to the cluster
centroid.

e Qutliers + Exemplars = Reduced Dataset.

Applying k-Means Clustering Online

e “Death-bed” or “Moriens” analysis:

o Just before the program terminates, we have
all performance logs, and a huge parallel m/c

° This is the simplest example of Moriens
analysis
e Decisions on data retention are made
before data is written to disk.

» Requires a low-overhead and scalable
parallel k-Means algorithm

Important k-Means Parameters

* Choice of metrics from domains:
° Activity time.
> Communication volume (bytes).
> Communication (number of messages).

e Normalization of metrics:
o Same metric domain = no normalization.

o Min-max normalization across different metric
domains to remove inter-domain bias.

MetricY

Equivalence Class Discovery

uclidean Distance

Representatives

Metric X

Overhead of parallel k-Means

Time to Perform K-Means Clustering

0.300
0.225

0.150

Seconds

0.075

240 1200 2400 4800 9600 19200

Number of Processor Cores

Data Reduction: Conclusions

* Showed combination of techniques for
online data reduction is effective™.

* Choice of processors included in reduced
datasets can be refined and improved
° Include communicating processors.

° Include processors on critical path.

» Consideration of application phases can
further improve quality of reduced
dataset.

*Chee Wai Lee, Celso Mendes and LaxmikantV. Kale. Towards Scalable
Performance Analysis and Visualization through Data Reduction.
| 3th International Workshop on High-Level Parallel Programming Models
and Supportive Environments, Miami, Florida, USA, April 2008.

Live Streaming of Performance Data

* Live Streaming mitigates need to store a
large volume of performance data.

e Live Streaming enables analysis idioms
that provide animated insight into the
trends application behavior.

e Live Streaming also enables idioms for the
observation of unanticipated problems,
possibly over a long run.

Challenges to Live Streaming

e Must maintain low overhead for
performance data to be recorded, pre-
processed and disposed-of.

* Need efficient mechanism for
performance data to be sent via out-of-
band channels to one (or a few)
processors for delivery to a remote
client.

Enabling Mechanisms

e Charm++ adaptive runtime as medium for
scalable and efficient:
> Control signal delivery.
> Performance data capture and delivery.

e Converse Client-Server (CCS) enables
remote interaction with running Charm+
+ application through a socket opened by
the runtime.

Live Streaming System Overview

A) Gathering Performance Data in Parallel Runtime System:

(1) Broadcast Request for
Root Processor Utilization Profiles
“ Periodic Once Per Second
_../ Requests * * *
Trace Processor Trace Processor Trace
Module Module =sa Module
(3) Buffer
Utilization
Profiles N (2) Reduction Merges Compressed Utilization Profiles

B) Visualizing Performance Data:

- P - Root Processor

Visualization Client (1) Send Request via

,_ —— -‘ TCP using CCS protocol

E E = P CCS <
Wm < Handler]
£ (2) Retrieve a
(3) CCS Reply Contains Buffered Utilization

Utilization Profile Profile

(4) Update Display

What is Streamed?

A Utilization Profile similar to high
resolution Time Profiles.

* Performance data is compressed by only
considering significant metrics in a special
format.

* Special reduction client merges data from
multiple processors.

of Bins # Processors Bin 1 T Binm
4 bytes 4 bytes
of Records EID1 Utilization 1 " EIDn Utilization n

2 bytes 2 bytes 1 byte 2 bytes 1 byte

Visualization

-

Utilization Stacked by EP

85

Percent Utilization
NOW W B B U O O~ ~ 0o
[0 T e T s I e TRV T e TR W B e TR s R e S B e

— = N
Vi O v O

0

M Other W dummy_thread_ep M init [Jstartup M collectSumDetailData M initialize_pencils [enqueueWorkA
M recvGrid W enqueueSelfA W enqueueSelfB M enqueueWorkB M recvUntrans MrecvTrans Mresume
W updateLocalComputes M updateLocalComputes3 M ReceiveMigration

34

Overheads (1/2)

% Overhead when compared to baseline system:

Same application with no performance

instrumentation.

512 1024 2048 4096 8192
With instrumentation,

data reductions to root | gu0r | 179 | _026% | 0.16% | 0.83%
with remote client

attached.

With instrumentation,

data reductions to root | coor | o179 | 037% | 1.14% | 0.99%

but no remote client

attached.

Overheads (2/2)

For bandwidth consumed when streaming
performance data to the remote
visualization client.

CCS Reply Message Sizes

12,500
12,000
11,500 ".;I'H-pr-}-. " -ﬂ
11,000
10,500 wl 1l
10,000 T | | |
9,500 o
9,000
8,500
- 8000 m I
g 75001 | ‘
@ 70001 ®
g 65001 |
9 60001 | ‘
5,500 | | "om ‘
5,000 { | - —— —
4,500 { | ‘ "
4,000 (| \ !
3,500
3,000 {|
2,500
2,000

0 10 20 30 40 50 60 70 80 90 100 110 120 130
CCS Non-Empty Reply Message

f- Startup >} SE::;VS =}t Load Balanced Steps =i}

Live Streaming: Conclusions™

* Adaptive runtime allowed out-of-band
collection of performance data while in
user-space.

* Achieved with very low overhead and
bandwidth requirements.

*Isaac Dooley, Chee Wai Lee, and Laxmikant V. Kale. Continuous
Performance Monitoring for Large-Scale Parallel Applications.
Accepted for publication at HiPC 2009, December-2009.

Repeated Large-Scale Hypothesis
Testing

 Large-Scale runs are expensive:

> Job submission of very wide jobs to
supercomputing facilities.

> CPU resources consumed by very wide jobs.

* How do we make repeated but
inexpensive hypothesis testing
experiments!?

Trace-based Simulation

» Capture event dependency logs from a
baseline application run.

 Simulation produces performance event
traces from event dependency logs.

Advantages

* The time and memory requirements at
simulation time are divorced from
requirements at execution time.

e Simulation can be executed on fewer
Processors.

 Simulation can be executed on a cluster
of workstations and still produce the
same predictions.

Using the BigSim Framework (1/2)

e BigSim emulator captures:
> Relative event time stamps.
> Message dependencies.
> Event dependencies.

* BigSim emulator produces event
dependency logs.

Using the BigSim Framework (2/2)

* BigSim simulator uses a PDES engine to
process event dependency logs to predict
performance.

* BigSim simulator can generate
performance event traces based on the
predicted run.

Examples of Hypothesis Testing
Possible
e Hypothetical Hardware changes:

o Communication Latency.

> Network properties.

* Hypothetical Software changes:
o Different load balancing strategies.
o Different initial object placement.

o Different number of processors with the
same object decomposition.

Example:
Discovering Latency Trends

* Study the effects of network latency on
performance of seven-point stencil
computation

* For each of the data-points on the plots
on next few slide/s
> You have full traces

> Can do projections analysis as if you ran it on
the modified machine (with lower/higher

latency)

Latency Trends —
Jacobi 3d 256x256x192 on 48 pes

Sinulated Inpact of Latency Variation on Perfornance (3D Jacobi 256x256x192)
10060

T T T "

T T
Virtualization Factor 1 —+— L~
Virtualization Factor 4 —#%— -
Virtualization Factor 8 —65— =
Virtualization Factor 16 —8— T

goeee

*
-~

%)

b=
L 4

. 60608

Qo
-
v

[

Qo

o S

" :
5 4ee8 | -
[y

™M

>
(=

2000 -
8 1 1 1 1 1
8 1000 2000 3000 4000 5000 6000

Latency {us)

Summary

* Scalable views can be effective tools
> Histograms, time-profiles, ...
e Data reduction via on-line analysis

> Parallel k-means, Sampling

e Live analysis: helped by message-driven
execution

e Traces can be used for simulation:

> what-if analysis via BigSim

Further Thoughts

Future: a lot more emphasis on moriens (death-bed)
analysis

> Requires more automation of the analysis process
More “Automated Expert Analysis”

> Topic of 1994 thesis on projections

Message-driven execution or communication layer
integration for tools communication

> No “out of band” issues

Another grand challenge/s:
> How to get grad students interested in tools research?

> How to get funding in this area?
All our work has been (mostly) unfunded or only indirectly funded

