
Scalable performance analysis with
Projections
Sanjay Kale, http://charm.cs.illinois.edu
Based on Thesis defense slides By Chee Wai Lee

1

Effects of Application Scaling

� Enlarged performance-space.

�  Increased performance data volume.

� Reduces accessibility to machines and
increases resource costs
◦ Time to queue.
◦ CPU resource consumption.

2

Overview

�  Introduction.
�  Scalable Techniques:
◦  Support for Analysis Idioms
◦ Data Reduction
◦  Live Streaming
◦ Hypothesis Testing

3

Scalable Tool Features: Motivations

� Performance analysis idioms need to be
effectively supported by tool features.

�  Idioms must avoid using tool features that
become ineffectual at large processor
counts.

� We want to catalog common idioms and
match these with scalable features.

4

Scalable Tool Feature Support (1/2)

� Non-scalable tool features require
analysts to scan for visual cues over the
processor domain.

� How do we avoid this requirement on
analysts?

5

Scalable Tool Feature Support (2/2)

� Aggregation across processor domain:
◦ Histograms.
◦ High resolution Time Profiles.

� Processor selection:
◦  Extrema Tool.

6

Histogram as a Scalable Tool Feature

� Bins represent time spent by activities.
� Counts of activities across all processors

are added to appropriate bins.
� Total counts for each activity are

displayed as different colored bars.

7

Case Study:

� Apparent load imbalance.
� No strategy appeared to solve imbalance.
� Picked overloaded processor timelines.*
�  Found longer-than-expected activities.
� Longer activities associated with specific

objects.
� Possible work grainsize distribution

problems.

8

*As we will see later, not effective with large numbers of processors.

Case Study:
Validation using Histograms

9

Effectiveness of Idiom

� Need to find way to pick out overloaded
processors. Not scalable!

�  Finding out if work grainsize was a
problem simply required the histogram
feature.

10

High Resolution Time Profiles
�  Shows activity-overlap over time summed

across all processors.
� Heuristics guide the search for visual cues

for various potential problems:
◦ Gradual downward slopes hint at possible

load imbalance.
◦ Gradual upward slopes hint at communication

inefficiencies.
� At high resolution, gives insight into

application sub-structure.

11

Case Study: Using Time Profiles

Possible Load Imbalance After Greedy Load Balancing Strategy
12

Bigger!

Finding Extreme or Unusual
Processors

� A recurring theme in analysis idioms.
� Easy to pick out timelines in datasets with

small numbers of processors.
� Examples of attributes and criteria:
◦  Least idle processors.
◦  Processors with late events.
◦  Processors that behave very differently from

the rest.

13

The Extrema Tool

�  Semi-automatically picks out interesting
processors to display.

� Decisions based on analyst-specified
criteria.

� Mouse-clicks on bars load interesting
processors onto timeline.

14

Using the Extrema Tool

15

Some recent examples: scalable views

16

17

Scalable Tool Features: Conclusions

� Effective analysis idioms must avoid non-
scalable features.

� Histograms, Time Profiles and the
Extrema Tool offer scalable features in
support of idioms.

18

Data Reduction

� Normally, scalable tool features are used
with full event traces.

� What happens if full event traces get too
large?

� We can:
◦ Choose to keep event traces for only a subset

of processors.
◦ Replace event traces of discarded processors

with interval-based profiles.

19

Choosing Useful Processor Subset
(1/2)

� What are the challenges?
◦ No a priori information about performance

problems in dataset.
◦ Chosen processors need to capture details of

performance problems.

20

Choosing Useful Processor Subsets
(2/2)

� Observations:
◦  Processors tend to form equivalence classes

with respect to performance behavior.
◦ Clustering can be used to discover

equivalence classes in performance data.
◦ Outliers in clusters may be good candidates

for capturing performance problems.

21

Applying k-Means Clustering to
Performance Data

�  Treat the vector of recorded performance metric

values on each processor as a data point for
clustering.

�  Measure similarity between two data points using
the Euclidean Distance between the two metric
vectors.

�  Given k clusters to be found, the goal is to
minimize similarity values between all data points
and the centroids of the k clusters.

22

Choosing from Clusters

� Choosing Cluster Outliers.
◦  Pick processors furthest from cluster

centroid.
◦ Number chosen by proportion of cluster size.

� Choosing Cluster Exemplars.
◦  Pick a single processor closest to the cluster

centroid.

� Outliers + Exemplars = Reduced Dataset.

23

Applying k-Means Clustering Online

�  “Death-bed” or “Moriens” analysis:
◦  Just before the program terminates, we have

all performance logs, and a huge parallel m/c
◦ This is the simplest example of Moriens

analysis

� Decisions on data retention are made
before data is written to disk.

� Requires a low-overhead and scalable
parallel k-Means algorithm

24

Important k-Means Parameters

� Choice of metrics from domains:
◦ Activity time.
◦ Communication volume (bytes).
◦ Communication (number of messages).

� Normalization of metrics:
◦  Same metric domain = no normalization.
◦ Min-max normalization across different metric

domains to remove inter-domain bias.

25

Equivalence Class Discovery
M

et
ri

c Y

Metric X

Euclidean Distance

Outliers

Representatives

Overhead of parallel k-Means

0

0.075

0.150

0.225

0.300

240 1200 2400 4800 9600 19200

Number of Processor Cores

S
e
c
o

n
d

s

Time to Perform K-Means Clustering

27

Data Reduction: Conclusions
�  Showed combination of techniques for

online data reduction is effective*.
� Choice of processors included in reduced

datasets can be refined and improved
◦  Include communicating processors.
◦  Include processors on critical path.

� Consideration of application phases can
further improve quality of reduced
dataset.

28

*Chee Wai Lee, Celso Mendes and Laxmikant V. Kale. Towards Scalable
Performance Analysis and Visualization through Data Reduction.
13th International Workshop on High-Level Parallel Programming Models
and Supportive Environments, Miami, Florida, USA, April 2008.

Live Streaming of Performance Data

� Live Streaming mitigates need to store a
large volume of performance data.

� Live Streaming enables analysis idioms
that provide animated insight into the
trends application behavior.

� Live Streaming also enables idioms for the
observation of unanticipated problems,
possibly over a long run.

29

Challenges to Live Streaming

� Must maintain low overhead for
performance data to be recorded, pre-
processed and disposed-of.

� Need efficient mechanism for
performance data to be sent via out-of-
band channels to one (or a few)
processors for delivery to a remote
client.

30

Enabling Mechanisms

� Charm++ adaptive runtime as medium for
scalable and efficient:
◦ Control signal delivery.
◦  Performance data capture and delivery.

� Converse Client-Server (CCS) enables
remote interaction with running Charm+
+ application through a socket opened by
the runtime.

31

Live Streaming System Overview

32

What is Streamed?
� A Utilization Profile similar to high

resolution Time Profiles.
� Performance data is compressed by only

considering significant metrics in a special
format.

�  Special reduction client merges data from
multiple processors.

33

Visualization

34

Overheads (1/2)

512 1024 2048 4096 8192

With instrumentation,
data reductions to root
with remote client
attached.

0.94% 0.17% -0.26% 0.16% 0.83%

With instrumentation,
data reductions to root
but no remote client
attached.

0.58% -0.17% 0.37% 1.14% 0.99%

35

% Overhead when compared to baseline system:
Same application with no performance
instrumentation.

Overheads (2/2)
For bandwidth consumed when streaming
performance data to the remote
visualization client.

36

Live Streaming: Conclusions*

� Adaptive runtime allowed out-of-band
collection of performance data while in
user-space.

� Achieved with very low overhead and
bandwidth requirements.

37

*Isaac Dooley, Chee Wai Lee, and Laxmikant V. Kale. Continuous
Performance Monitoring for Large-Scale Parallel Applications.
Accepted for publication at HiPC 2009, December-2009.

Repeated Large-Scale Hypothesis
Testing

� Large-Scale runs are expensive:
◦  Job submission of very wide jobs to

supercomputing facilities.
◦ CPU resources consumed by very wide jobs.

� How do we make repeated but
inexpensive hypothesis testing
experiments?

38

Trace-based Simulation

� Capture event dependency logs from a
baseline application run.

�  Simulation produces performance event
traces from event dependency logs.

39

Advantages
� The time and memory requirements at

simulation time are divorced from
requirements at execution time.

�  Simulation can be executed on fewer
processors.

�  Simulation can be executed on a cluster
of workstations and still produce the
same predictions.

40

Using the BigSim Framework (1/2)

� BigSim emulator captures:
◦ Relative event time stamps.
◦ Message dependencies.
◦  Event dependencies.

� BigSim emulator produces event
dependency logs.

41

Using the BigSim Framework (2/2)

� BigSim simulator uses a PDES engine to
process event dependency logs to predict
performance.

� BigSim simulator can generate
performance event traces based on the
predicted run.

42

Examples of Hypothesis Testing
Possible
� Hypothetical Hardware changes:
◦ Communication Latency.
◦ Network properties.

� Hypothetical Software changes:
◦ Different load balancing strategies.
◦ Different initial object placement.
◦ Different number of processors with the

same object decomposition.

43

Example:
Discovering Latency Trends

�  Study the effects of network latency on
performance of seven-point stencil
computation

�  For each of the data-points on the plots
on next few slide/s
◦ You have full traces
◦ Can do projections analysis as if you ran it on

the modified machine (with lower/higher
latency)

44

Latency Trends –
Jacobi 3d 256x256x192 on 48 pes

45

Summary

�  Scalable views can be effective tools
◦ Histograms, time-profiles, …

� Data reduction via on-line analysis
◦  Parallel k-means, Sampling

� Live analysis: helped by message-driven
execution

� Traces can be used for simulation:
◦ what-if analysis via BigSim

46

Further Thoughts
�  Future: a lot more emphasis on moriens (death-bed)

analysis
◦  Requires more automation of the analysis process

�  More “Automated Expert Analysis”
◦  Topic of 1994 thesis on projections

�  Message-driven execution or communication layer
integration for tools communication
◦  No “out of band” issues

�  Another grand challenge/s:
◦  How to get grad students interested in tools research?
◦  How to get funding in this area?
�  All our work has been (mostly) unfunded or only indirectly funded

47

