
Scalable performance analysis with 
Projections 
Sanjay Kale, http://charm.cs.illinois.edu 
Based on Thesis defense slides By Chee Wai Lee 

1 



Effects of Application Scaling 

� Enlarged performance-space. 

�  Increased performance data volume. 

� Reduces accessibility to machines and 
increases resource costs 
◦ Time to queue. 
◦ CPU resource consumption. 
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Overview 

�  Introduction. 
�  Scalable Techniques: 
◦  Support for Analysis Idioms 
◦ Data Reduction 
◦  Live Streaming 
◦ Hypothesis Testing 
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Scalable Tool Features: Motivations 

� Performance analysis idioms need to be 
effectively supported by tool features. 

�  Idioms must avoid using tool features that 
become ineffectual at large processor 
counts. 

� We want to catalog common idioms and 
match these with scalable features. 
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Scalable Tool Feature Support (1/2) 

� Non-scalable tool features require 
analysts to scan for visual cues over the 
processor domain. 

� How do we avoid this requirement on 
analysts? 
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Scalable Tool Feature Support (2/2) 

� Aggregation across processor domain: 
◦ Histograms. 
◦ High resolution Time Profiles. 

� Processor selection: 
◦  Extrema Tool. 
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Histogram as a Scalable Tool Feature 

� Bins represent time spent by activities. 
� Counts of activities across all processors 

are added to appropriate bins. 
� Total counts for each activity are 

displayed as different colored bars. 
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Case Study:  

� Apparent load imbalance. 
� No strategy appeared to solve imbalance. 
� Picked overloaded processor timelines.* 
�  Found longer-than-expected activities. 
� Longer activities associated with specific 

objects. 
� Possible work grainsize distribution 

problems. 
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*As we will see later, not effective with large numbers of processors. 



Case Study: 
Validation using Histograms 

9 



Effectiveness of Idiom 

� Need to find way to pick out overloaded 
processors. Not scalable! 

�  Finding out if work grainsize was a 
problem simply required the histogram 
feature. 
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High Resolution Time Profiles 
�  Shows activity-overlap over time summed 

across all processors. 
� Heuristics guide the search for visual cues 

for various potential problems: 
◦ Gradual downward slopes hint at possible 

load imbalance. 
◦ Gradual upward slopes hint at communication 

inefficiencies. 
� At high resolution, gives insight into 

application sub-structure. 
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Case Study: Using Time Profiles 

Possible Load Imbalance After Greedy Load Balancing Strategy 
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Bigger! 



Finding Extreme or Unusual 
Processors 

� A recurring theme in analysis idioms. 
� Easy to pick out timelines in datasets with  

small numbers of processors. 
� Examples of attributes and criteria: 
◦  Least idle processors. 
◦  Processors with late events. 
◦  Processors that behave very differently from 

the rest. 
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The Extrema Tool 

�  Semi-automatically picks out interesting 
processors to display. 

� Decisions based on analyst-specified 
criteria. 

� Mouse-clicks on bars load interesting 
processors onto timeline. 
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Using the Extrema Tool 

15 



Some recent examples: scalable views 
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Scalable Tool Features: Conclusions 

� Effective analysis idioms must avoid non-
scalable features. 

� Histograms, Time Profiles and the 
Extrema Tool offer scalable features in 
support of idioms. 
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Data Reduction 

� Normally, scalable tool features are used 
with full event traces. 

� What happens if full event traces get too 
large? 

� We can: 
◦ Choose to keep event traces for only a subset 

of processors. 
◦ Replace event traces of discarded processors 

with interval-based profiles. 
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Choosing Useful Processor Subset 
(1/2) 

� What are the challenges? 
◦ No a priori information about performance 

problems in dataset. 
◦ Chosen processors need to capture details of 

performance problems. 
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Choosing Useful Processor Subsets 
(2/2) 

� Observations: 
◦  Processors tend to form equivalence classes 

with respect to performance behavior. 
◦ Clustering can be used to discover 

equivalence classes in performance data. 
◦ Outliers in clusters may be good candidates 

for capturing performance problems. 
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Applying k-Means Clustering to 
Performance Data 
 
�  Treat the vector of recorded performance metric 

values on each processor as a data point for 
clustering. 

�  Measure similarity between two data points using 
the Euclidean Distance between the two metric 
vectors. 

�  Given k clusters to be found, the goal is to 
minimize similarity values between all data points 
and the centroids of the k clusters. 
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Choosing from Clusters 

� Choosing Cluster Outliers. 
◦  Pick processors furthest from cluster 

centroid. 
◦ Number chosen by proportion of cluster size. 

� Choosing Cluster Exemplars. 
◦  Pick a single processor closest to the cluster 

centroid. 

� Outliers + Exemplars = Reduced Dataset. 
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Applying k-Means Clustering Online 

�  “Death-bed” or “Moriens” analysis: 
◦  Just before the program terminates, we have 

all performance logs, and  a huge parallel m/c 
◦ This is the simplest example of Moriens 

analysis 

� Decisions on data retention are made 
before data is written to disk. 

� Requires a low-overhead and scalable 
parallel k-Means algorithm 
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Important k-Means Parameters 

� Choice of metrics from domains: 
◦ Activity time. 
◦ Communication volume (bytes). 
◦ Communication (number of messages). 

� Normalization of metrics: 
◦  Same metric domain = no normalization. 
◦ Min-max normalization across different metric 

domains to remove inter-domain bias. 
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Data Reduction: Conclusions 
�  Showed combination of techniques for 

online data reduction is effective*. 
� Choice of processors included in reduced 

datasets can be refined and improved 
◦  Include communicating processors. 
◦  Include processors on critical path. 

� Consideration of application phases can 
further improve quality of reduced 
dataset. 
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*Chee Wai Lee, Celso Mendes and Laxmikant V. Kale. Towards Scalable 
Performance Analysis and Visualization through Data Reduction. 
13th International Workshop on High-Level Parallel Programming Models 
and Supportive Environments, Miami, Florida, USA, April 2008.  



Live Streaming of Performance Data 

� Live Streaming mitigates need to store a 
large volume of performance data. 

� Live Streaming enables analysis idioms 
that provide animated insight into the 
trends application behavior. 

� Live Streaming also enables idioms for the 
observation of unanticipated problems, 
possibly over a long run. 
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Challenges to Live Streaming 

� Must maintain low overhead for 
performance data to be recorded, pre-
processed and disposed-of. 

� Need efficient mechanism for 
performance data to be sent via out-of-
band channels to one (or a few) 
processors for delivery to a remote 
client. 
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Enabling Mechanisms 

� Charm++ adaptive runtime as medium for 
scalable and efficient: 
◦ Control signal delivery. 
◦  Performance data capture and delivery. 

� Converse Client-Server (CCS) enables 
remote interaction with running Charm+
+ application through a socket opened by 
the runtime. 
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Live Streaming System Overview 
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What is Streamed? 
� A Utilization Profile similar to high 

resolution Time Profiles. 
� Performance data is compressed by only 

considering significant metrics in a special 
format. 

�  Special reduction client merges data from 
multiple processors. 
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Visualization 
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Overheads (1/2) 

512 1024 2048 4096 8192 

With instrumentation,  
data reductions to root 
with remote client 
attached. 

0.94% 0.17% -0.26% 0.16% 0.83% 

With instrumentation, 
data reductions to root 
but no remote client 
attached. 

0.58% -0.17% 0.37% 1.14% 0.99% 
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% Overhead when compared to baseline system: 
Same application with no performance 
instrumentation. 
 



Overheads (2/2) 
For bandwidth consumed when streaming 
performance data to the remote 
visualization client. 
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Live Streaming: Conclusions* 

� Adaptive runtime allowed out-of-band 
collection of performance data while in 
user-space. 

� Achieved with very low overhead and 
bandwidth requirements. 
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*Isaac Dooley, Chee Wai Lee, and Laxmikant V. Kale. Continuous 
Performance Monitoring for Large-Scale Parallel Applications. 
Accepted for publication at HiPC 2009, December-2009. 
 



Repeated Large-Scale Hypothesis 
Testing 

� Large-Scale runs are expensive: 
◦  Job submission of very wide jobs to 

supercomputing facilities. 
◦ CPU resources consumed by very wide jobs. 

� How do we make repeated but 
inexpensive hypothesis testing 
experiments? 
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Trace-based Simulation 

� Capture event dependency logs from a 
baseline application run. 

�  Simulation produces performance event 
traces from event dependency logs. 
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Advantages 
� The time and memory requirements at 

simulation time are divorced from 
requirements at execution time. 

�  Simulation can be executed on fewer 
processors. 

�  Simulation can be executed on a cluster 
of workstations and still produce the 
same predictions. 
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Using the BigSim Framework (1/2) 

� BigSim emulator captures: 
◦ Relative event time stamps. 
◦ Message dependencies. 
◦  Event dependencies. 

� BigSim emulator produces event 
dependency logs. 
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Using the BigSim Framework (2/2) 

� BigSim simulator uses a PDES engine to 
process event dependency logs to predict 
performance. 

� BigSim simulator can generate 
performance event traces based on the 
predicted run. 
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Examples of Hypothesis Testing 
Possible 
� Hypothetical Hardware changes: 
◦ Communication Latency. 
◦ Network properties. 

� Hypothetical Software changes: 
◦ Different load balancing strategies. 
◦ Different initial object placement. 
◦ Different number of processors with the 

same object decomposition. 

43 



Example:  
Discovering Latency Trends 

�  Study the effects of network latency on 
performance of seven-point stencil 
computation 

�  For each of the data-points on the plots 
on next few slide/s 
◦ You have full traces 
◦ Can do projections analysis as if you ran it on 

the modified machine (with lower/higher 
latency) 
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Latency Trends – 
Jacobi 3d 256x256x192 on 48 pes 
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Summary 

�  Scalable views can be effective tools 
◦ Histograms, time-profiles, … 

� Data reduction via on-line analysis 
◦  Parallel k-means, Sampling 

� Live analysis: helped by message-driven 
execution 

� Traces can be used for simulation:  
◦ what-if analysis via BigSim 
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Further Thoughts 
�  Future: a lot more emphasis on moriens (death-bed) 

analysis 
◦  Requires more automation of the analysis process 

�  More “Automated Expert Analysis” 
◦  Topic of 1994 thesis on projections 

�  Message-driven execution or communication layer 
integration for tools communication 
◦  No “out of band” issues 

�  Another grand challenge/s: 
◦  How to get grad students interested in tools research? 
◦  How to get funding in this area? 
�  All our work has been (mostly) unfunded or only indirectly funded 
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