
15.07.2013 | 

Trace-Based Analysis of Task 

Dependency Effects on Performance 

Daniel Lorenz 
Jülich Supercomputing Centre 
 
CScADS  Tools Workshop 
Madison, Wisconsin 



Introduction 

 Tasks provide automatic scheduling and load-balancing 

 Profiling can be used to identify tasks of inappropriate size 

■ Too small tasks create large management overhead 

 

 Task dependencies can have effects that 

■ Create performance loss 

■ Execution time profile might provide too little information to understand 

the reasons 



Task dependency case 1 

Task 1 

Task 2 

Task 3 

Task 4 

T 

T 

T 

T 

T 

T T 

T 

T 

T 

T 

T Thread 1 

Thread 2 

Thread 3 

Thread 4 

 Critical path determines runtime 

■ Execution time of the critical path much larger than average execution 

time of all threads. 

■ Execution time profile is perfectly balanced 



Task dependency case 1 (possible improvements) 

Task 1 

Task 2 

Task 3 

Task 4 

T 

T 

T 

T 

T 

T T 

T 

T 

T 

T 

T Thread 1 

Thread 2 

Thread 3 

Thread 4 

Task 1 

Task 2 

Task 3 

Task 4 

T 

T 

T 

T 

T 

T T 

T 

T 

T 

T 

T Thread 1 

Thread 2 

Thread 3 

Thread 4 



Task dependency case 2 

 

 

 

 

 

 

 Suspension / Late start of critical path 

■ The critical path is suspended for a significant amount of time 

■ Execution time profile is perfectly balanced 

T 

T 

T 

T 

T 

T 

T T 

T 

T 

T Thread 1 

Thread 2 

Thread 3 

Thread 4 T T1 

T2 

T3 

T4 



Task dependency case 2 (optimal schedule) 

T 

T 

T T 

T 

T T T 

T 

T 

T Thread 1 

Thread 2 

Thread 3 

Thread 4 

T 

T1 T2 T3 T4 



Goal 

 Identify task dependency induced performance loss 

■ Analysis of the task dependency graph 

 Point to causes 

 Automatic search over full program run 

 Present the analysis result in a small high-level report 

■ Manual scan through large number of tasks (e.g., in a time-line view) is 

tedious 

■ The effects may be obscured by other task chains  

 



Performance issue detection 

 Determine critical path 

■ Chain with the longest wall-clock time  

 Calculate ideal execution time 

■ Sum of execution time of all tasks divided by the number of threads 

 If critical path is not significantly longer than ideal execution time 

■ No problem 

 Else 

■ Suspension time on the critical path is always a problem 

■ Compare execution time of critical path with ideal execution time and 

determine imbalance   



Bad scheduling  

T T 

Thread 1 

Thread 2 

Thread 3 

Thread 4 T T1 

T2 

T3 

T4 

Critical path 
suspension time 

T1 T2 T3 T4 

T T T 

T T T 

T T T 

T1 T2 T3 T4 

Critical path wallclock time 

Ideal execution time 

Critical path suspension time 

Critical path profile 



Critical path imbalance 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Critical path 

Ideal execution time 

Imbalance impact  

Critical path profile 



Presentation ideas 

 Output on task instance level is too detailed. 

■ Output information at an abstract level 

■ Map to source code 

 Goal: Add information to a profile 

 

 



Execution time profile 

T 

Thread 2 

Thread 1 T T1 

T2 T T 

T T1 T2 

ti
m

e
 

Execution time 
 

■ Aggregates statistics for all visits of a 

code region / task region 

■ Does not show that T1 and T2 are the 

important tasks to improve 



Profile with critical path execution time 

T 

Thread 2 

Thread 1 T T1 

T2 T T 

T T1 T2 

ti
m

e
 

Execution time 
 

Critical path execution time 

■ Add the time spent on the critical path 

■ Shows that T1 and T2 are the limiting 

tasks 

■ But where does the wall clock time come 

from if the critical path is so short? 

 



Profile with critical path suspension time  

T 

Thread 2 

Thread 1 T T1 

T2 T T 

T T1 T2 

ti
m

e
 

Execution time 
 

Critical path execution time 
 

Critical path suspension time 
 

Critical path delaying time 

■ Add the critical path suspension time to 

T1 

■ Blame T for the time it delays the 

execution of the critical path 



T2 

Execution time profile  

T1 

T 

T 

T 

T 

T 

T 

T2 

T         T1           T2 

ti
m

e
 

Execution time 
 

Idle time 

■ The execution time does not provide the 

right hint 

■ What causes the idle time? 



T2 

Profile with critical path execution time 

T1 

T 

T 

T 

T 

T 

T 

T2 

T           T1               T2 

ti
m

e
 

Execution time 
 

Idle time 
 

Critical path execution time 
 

■ Adding the critical path metric shows 

which tasks determine the execution time 

much better. 



T2 

Profile with imbalance impact 

T1 

T 

T 

T 

T 

T 

T 

T2 

T           T1               T2 

ti
m

e
 

Execution time 
 

Idle time 
 

Critical path execution time 
 

Imbalance impact 

■ The imbalance impact pin points where 

to optimize 

■ Show optimization potential 



How to tell task instances apart? 

 The profile aggregates all tasks of the same source code region. 

 

 

 

 

 Sometimes all tasks stem from the same region, but behave different  

■ Caused by different internal execution path 

■ Can be distinguished in a profile by providing 

■ Task-internal call-path data 

■ Parameter data 

T 

T 

T 

T 

T 

T 
T T T 

T T T 



T 

Tell critical path imbalance impact apart 

T 

T 

T 

T 

T 

T  

ti
m

e
 

Execution time 
 

Idle time 
 

Critical path execution time 
 

Imbalance impact 

■ Example task with conditional exection of 

foo or bar 

 

 

 

 

■ The total sum tells us that there is some 

imbalance caused by T, but how? 

#pragma omp task // T 

{ 

    if (condition) foo(); 

    else bar(); 

} 

bar 

bar 



T 

Tell critical path imbalance impact apart 

T 

T 

T 

T 

T 

T           T/foo        T/bar 

 t
im

e
 

Execution time 
 

Idle time 
 

Critical path execution time 
 

Imbalance impact 

■ T/foo does not contribute to the critical 

path 

■ The execution path through T/bar creates 

the long tasks and the imbalance 

 

bar 

bar 



Tell critical path suspension apart 

T 

Thread 2 

Thread 1 T T 

T T T 

T 

Execution time 
 

Critical path execution time 
 

Critical path suspension time 
 

Critical path delaying time 

■ The sum of all tasks T tells that  

■ Some instances are part of the critical 

path 

■ The critical path is delayed by 

instances of T 

■ The delayed tasks are instances of T 

ti
m

e
 



Tell critical path suspension apart 

T 

Thread 2 

Thread 1 T T 

T T T 

T      T/foo       T/bar 

Execution time 
 

Critical path execution time 
 

Critical path suspension time 
 

Critical path delaying time 

■ The sum of all tasks T tells that  

■ Some instances are part of the critical 

path 

■ The critical path is delayed by 

instances of T 

■ The waiting delayed tasks are 

instances of T 

■ Separating the execution path reveals 

which tasks. 

ti
m

e
 



Current status 

 Prototypical implementation by Youssef Hatem 

■ Graph generation and analysis 

■ Outputs dependency graph as intermediate result in CUBE format 

■ Implementation produce more vertices and edges 

■ Task creation divides the creator task in two nodes 

 Complexity tests with BOTS benchmark suite 

■  Preliminary results 

 Missing 

■ Mapping to call-path profile 

 



Preliminary: Event, vertices and edge count 

Figure from Youssef Hatem: “Critical pat Analysis of Parallel Applications Using OpenMP Tasks” 



Preliminary: Analysis time 

Figure from Youssef Hatem: “Critical pat Analysis of Parallel Applications Using OpenMP Tasks” 



Preliminary: Number of events 

Figure from Youssef Hatem: “Critical pat Analysis of Parallel Applications Using OpenMP Tasks” 



Thanks for your attention 


