#) 0LICH

FORSCHUNGSZENTRUM

Trace-Based Analysis of Task
Dependency Effects on Performance

15.07.2013 | Daniel Lorenz
Julich Supercomputing Centre

CScADS Tools Workshop
Madison, Wisconsin

#))OLICH

FORSCHUNGSZENTRUM

Introduction

» Tasks provide automatic scheduling and load-balancing

» Profiling can be used to identify tasks of inappropriate size

= Too small tasks create large management overhead

» Task dependencies can have effects that

= Create performance loss

= Execution time profile might provide too little information to understand
the reasons

#))OLICH

FORSCHUNGSZENTRUM

Task dependency case 1

Task 1 > T > T > T)Thread 1
T —> Task 2 > T > T >Thread 2
T > T > Task 3 > T)Thread 3
T N > T — Task 4)Thread 4

» Critical path determines runtime

= Execution time of the critical path much larger than average execution
time of all threads.

= Execution time profile is perfectly balanced

#))OLICH

FORSCHUNGSZENTRUM

Task dependency case 1 (possible improvements)

Task 1 > T > T > T)Thread 1
T \ Task 2 > T > T >Thread 2
T S T Task3a p[T , Thread 3
T > T > T \ Task 4)Thread 4
Thread 1

wki T [T [T X

. Thread 2
> T R rea

> T . Thread 3

5 E e

>

i Task 4 Thread 4

>

#))OLICH

FORSCHUNGSZENTRUM

Task dependency case 2

T T T T4)Thread 1
T T T T3 >Thread 2
T T T T2)Thread 3
T T T T1 >Thread 4

» Suspension / Late start of critical path

= The critical path is suspended for a significant amount of time

= Execution time profile is perfectly balanced

#))OLICH

FORSCHUNGSZENTRUM

Task dependency case 2 (optimal schedule)

T T T T)Thread 1
= T T T >Threadz
T T T T)Thread3
T1L P T2 P T3 P T4)Thread4

#))OLICH

FORSCHUNGSZENTRUM

Goal

> ldentify task dependency induced performance loss
= Analysis of the task dependency graph
» Point to causes

» Automatic search over full program run

» Present the analysis result in a small high-level report

= Manual scan through large number of tasks (e.g., in a time-line view) is
tedious

= The effects may be obscured by other task chains

#))OLICH

FORSCHUNGSZENTRUM

Performance issue detection

» Determine critical path
= Chain with the longest wall-clock time
» Calculate ideal execution time
= Sum of execution time of all tasks divided by the number of threads
> If critical path is not significantly longer than ideal execution time
= No problem
> Else

= Suspension time on the critical path is always a problem

= Compare execution time of critical path with ideal execution time and
determine imbalance

#))OLICH

FORSCHUNGSZENTRUM

Bad scheduling

T T T T4)Thread 1
T T T T3)Thread 2
T T T | T2 >Thread 3
T T T T1)Thread 4
Critical path

suspension time

Critical path profile

_ T1 | T2 | T3 | T4 | Critical path wallclock time

T4 | |deal execution time

_ Critical path suspension time

Critical path imbalance

#) JOLICH

FORSCHUNGSZENTRUM

| | > —> —> >Thread 1
—> | > —>)Thread 2
—> — | | >)Thread 3
> —> —> | |)Thread 4
Critical path profile
Critical path

Ideal execution time

Imbalance impact

#))OLICH

FORSCHUNGSZENTRUM

Presentation ideas

» Output on task instance level is too detailed.

= Output information at an abstract level

= Map to source code

» Goal: Add information to a profile

#))OLICH

FORSCHUNGSZENTRUM

Execution time profile

= Aggregates statistics for all visits of a
code region / task region

time

= Does not show that T1 and T2 are the
Important tasks to improve

T1 T2

. Execution time

T

T T T2 s Thread 2

T T T1 s Thread1

#))OLICH

FORSCHUNGSZENTRUM

Profile with critical path execution time

time

T T1 T2

. Execution time

Critical path execution time

Add the time spent on the critical path

Shows that T1 and T2 are the limiting
tasks

But where does the wall clock time come
from if the critical path is so short?

T T T2 s Thread 2

T T T1 s Thread1

#))OLICH

FORSCHUNGSZENTRUM

Profile with critical path suspension time

time

T T

1 T2

. Execution time

Critical path execution time

Critical path suspension time
. Critical path delaying time

= Add the critical path suspension time to
T1

= Blame T for the time it delays the
execution of the critical path

T T T2 s Thread 2

T T T1 s Thread1

#))OLICH

FORSCHUNGSZENTRUM

Execution time profile

A
= The execution time does not provide the
e right hint
= What causes the idle time?
T T1 T2
TL P T > T
>
. Execution time
l]
. Idle time T T2 >l T >
T[S T > T2 | |
>

#))OLICH

FORSCHUNGSZENTRUM

Profile with critical path execution time

A
= Adding the critical path metric shows
e which tasks determine the execution time
. much better.
T T1 T2
T1 P T > T
>
. Execution time
l]
. Idle time T I T12 > T >
Critical path execution time
T[> T > T2 | 1§

#))OLICH

FORSCHUNGSZENTRUM

Profile with imbalance impact

A
= The imbalance impact pin points where
£ to optimize
= Show optimization potential
T T1 T2
1 P> T > T
>
. Execution time
| |
. Idle time T T2 > T >
Critical path execution time
T | T -1 T2 | J
Imbalance impact >

#))OLICH

FORSCHUNGSZENTRUM

How to tell task instances apart?

» The profile aggregates all tasks of the same source code region.

T ST R
T T] 17]
> T Sl T
>
T T [T
> T > T R

» Sometimes all tasks stem from the same region, but behave different

= Caused by different internal execution path
= Can be distinguished in a profile by providing

= Task-internal call-path data
= Parameter data

#))OLICH

FORSCHUNGSZENTRUM

Tell critical path imbalance impact apart

A = Example task with conditional exection of
foo or bar

time

#pragma omp task // T
{

if (condition) foo();
else bar();

}

= |he total sum tells us that there is some
Imbalance caused by T, but how?

T
T > T
>
. Execution time
. >
lllmenme U bar 1 >
Critical path execution time
T > T bar
Imbalance impact >

#))OLICH

FORSCHUNGSZENTRUM

Tell critical path imbalance impact apart

A

time

T T/foo T/bar

Execution time
Idle time
Critical path execution time

Imbalance impact

s [1/foo does not contribute to the critical
path

= The execution path through T/bar creates
the long tasks and the imbalance

T > T
>
T bar > T
>
9
T T bar s

#))OLICH

FORSCHUNGSZENTRUM

Tell critical path suspension apart

time

T

. Execution time

Critical path execution time

Critical path suspension time

. Critical path delaying time

s The sum of all tasks T tells that

= Some instances are part of the critical
path

= The critical path is delayed by
Instances of T

= The delayed tasks are instances of T

T T T s Thread2

T T T s Thread1

#))OLICH

FORSCHUNGSZENTRUM

Tell critical path suspension apart

s The sum of all tasks T tells that

time

= Some instances are part of the critical
path

= The critical path is delayed by
Instances of T

= The waiting delayed tasks are

Instances of T
= Separating the execution path reveals
which tasks.

T T/foo T/bar
B Execution time T T T |, Thread?2
Critical path execution time
Critical path suspension time T T T s Thread 1

. Critical path delaying time

#))OLICH

FORSCHUNGSZENTRUM

Current status

» Prototypical implementation by Youssef Hatem

= Graph generation and analysis
= Outputs dependency graph as intermediate result in CUBE format
= Implementation produce more vertices and edges
= Task creation divides the creator task in two nodes
» Complexity tests with BOTS benchmark suite

= Preliminary results
» Missing

= Mapping to call-path profile

#))OLICH

FORSCHUNGSZENTRUM

Preliminary: Event, vertices and edge count

400000 21020019 54005111

350000 |-

300000 |

250000 |-

200000 |-

150000 | | [

100000 |- | [-

50000 |- | N . | [-

ALIGN FLOOR SPARS STRAS QUEEN

s Vertices mmmmm Edges mmmn Events

Figure from Youssef Hatem: “Critical pat Analysis of Parallel Applications Using OpenMP Tasks”

#))OLICH

FORSCHUNGSZENTRUM

Preliminary: Analysis time

91.08 491.94
10
8
. 6
o
LAl
4
2
0
ALIGN FLOOR SPARS STRAS QUEEN
Graph Generation Algorithm mmmmm CUBE serialization
mmm Vertex Annotation Algorithm e DOT generation
o Circles Removal Algorithm DOT serialization

mmmm CUBE generation

Figure from Youssef Hatem: “Critical pat Analysis of Parallel Applications Using OpenMP Tasks”

#) JULICH

FORSCHUNGSZENTRUM

Preliminary: Number of events

80000
70000
60000
50000
40000
30000
20000

10000

ALIGN FLOOR SPARS STRAS QUEEN

mmmm Creation Events mmmm Switch Events mmmm Enter Events

Figure from Youssef Hatem: “Critical pat Analysis of Parallel Applications Using OpenMP Tasks”

Thanks for your attention

RRRRRRRRRRRRRRRR

