
15.07.2013 |

Trace-Based Analysis of Task

Dependency Effects on Performance

Daniel Lorenz
Jülich Supercomputing Centre

CScADS Tools Workshop
Madison, Wisconsin

Introduction

 Tasks provide automatic scheduling and load-balancing

 Profiling can be used to identify tasks of inappropriate size

■ Too small tasks create large management overhead

 Task dependencies can have effects that

■ Create performance loss

■ Execution time profile might provide too little information to understand

the reasons

Task dependency case 1

Task 1

Task 2

Task 3

Task 4

T

T

T

T

T

T T

T

T

T

T

T Thread 1

Thread 2

Thread 3

Thread 4

 Critical path determines runtime

■ Execution time of the critical path much larger than average execution

time of all threads.

■ Execution time profile is perfectly balanced

Task dependency case 1 (possible improvements)

Task 1

Task 2

Task 3

Task 4

T

T

T

T

T

T T

T

T

T

T

T Thread 1

Thread 2

Thread 3

Thread 4

Task 1

Task 2

Task 3

Task 4

T

T

T

T

T

T T

T

T

T

T

T Thread 1

Thread 2

Thread 3

Thread 4

Task dependency case 2

 Suspension / Late start of critical path

■ The critical path is suspended for a significant amount of time

■ Execution time profile is perfectly balanced

T

T

T

T

T

T

T T

T

T

T Thread 1

Thread 2

Thread 3

Thread 4 T T1

T2

T3

T4

Task dependency case 2 (optimal schedule)

T

T

T T

T

T T T

T

T

T Thread 1

Thread 2

Thread 3

Thread 4

T

T1 T2 T3 T4

Goal

 Identify task dependency induced performance loss

■ Analysis of the task dependency graph

 Point to causes

 Automatic search over full program run

 Present the analysis result in a small high-level report

■ Manual scan through large number of tasks (e.g., in a time-line view) is

tedious

■ The effects may be obscured by other task chains

Performance issue detection

 Determine critical path

■ Chain with the longest wall-clock time

 Calculate ideal execution time

■ Sum of execution time of all tasks divided by the number of threads

 If critical path is not significantly longer than ideal execution time

■ No problem

 Else

■ Suspension time on the critical path is always a problem

■ Compare execution time of critical path with ideal execution time and

determine imbalance

Bad scheduling

T T

Thread 1

Thread 2

Thread 3

Thread 4 T T1

T2

T3

T4

Critical path
suspension time

T1 T2 T3 T4

T T T

T T T

T T T

T1 T2 T3 T4

Critical path wallclock time

Ideal execution time

Critical path suspension time

Critical path profile

Critical path imbalance

Thread 1

Thread 2

Thread 3

Thread 4

Critical path

Ideal execution time

Imbalance impact

Critical path profile

Presentation ideas

 Output on task instance level is too detailed.

■ Output information at an abstract level

■ Map to source code

 Goal: Add information to a profile

Execution time profile

T

Thread 2

Thread 1 T T1

T2 T T

T T1 T2

ti
m

e

Execution time

■ Aggregates statistics for all visits of a

code region / task region

■ Does not show that T1 and T2 are the

important tasks to improve

Profile with critical path execution time

T

Thread 2

Thread 1 T T1

T2 T T

T T1 T2

ti
m

e

Execution time

Critical path execution time

■ Add the time spent on the critical path

■ Shows that T1 and T2 are the limiting

tasks

■ But where does the wall clock time come

from if the critical path is so short?

Profile with critical path suspension time

T

Thread 2

Thread 1 T T1

T2 T T

T T1 T2

ti
m

e

Execution time

Critical path execution time

Critical path suspension time

Critical path delaying time

■ Add the critical path suspension time to

T1

■ Blame T for the time it delays the

execution of the critical path

T2

Execution time profile

T1

T

T

T

T

T

T

T2

T T1 T2

ti
m

e

Execution time

Idle time

■ The execution time does not provide the

right hint

■ What causes the idle time?

T2

Profile with critical path execution time

T1

T

T

T

T

T

T

T2

T T1 T2

ti
m

e

Execution time

Idle time

Critical path execution time

■ Adding the critical path metric shows

which tasks determine the execution time

much better.

T2

Profile with imbalance impact

T1

T

T

T

T

T

T

T2

T T1 T2

ti
m

e

Execution time

Idle time

Critical path execution time

Imbalance impact

■ The imbalance impact pin points where

to optimize

■ Show optimization potential

How to tell task instances apart?

 The profile aggregates all tasks of the same source code region.

 Sometimes all tasks stem from the same region, but behave different

■ Caused by different internal execution path

■ Can be distinguished in a profile by providing

■ Task-internal call-path data

■ Parameter data

T

T

T

T

T

T
T T T

T T T

T

Tell critical path imbalance impact apart

T

T

T

T

T

T

ti
m

e

Execution time

Idle time

Critical path execution time

Imbalance impact

■ Example task with conditional exection of

foo or bar

■ The total sum tells us that there is some

imbalance caused by T, but how?

#pragma omp task // T

{

 if (condition) foo();

 else bar();

}

bar

bar

T

Tell critical path imbalance impact apart

T

T

T

T

T

T T/foo T/bar

 t
im

e

Execution time

Idle time

Critical path execution time

Imbalance impact

■ T/foo does not contribute to the critical

path

■ The execution path through T/bar creates

the long tasks and the imbalance

bar

bar

Tell critical path suspension apart

T

Thread 2

Thread 1 T T

T T T

T

Execution time

Critical path execution time

Critical path suspension time

Critical path delaying time

■ The sum of all tasks T tells that

■ Some instances are part of the critical

path

■ The critical path is delayed by

instances of T

■ The delayed tasks are instances of T

ti
m

e

Tell critical path suspension apart

T

Thread 2

Thread 1 T T

T T T

T T/foo T/bar

Execution time

Critical path execution time

Critical path suspension time

Critical path delaying time

■ The sum of all tasks T tells that

■ Some instances are part of the critical

path

■ The critical path is delayed by

instances of T

■ The waiting delayed tasks are

instances of T

■ Separating the execution path reveals

which tasks.

ti
m

e

Current status

 Prototypical implementation by Youssef Hatem

■ Graph generation and analysis

■ Outputs dependency graph as intermediate result in CUBE format

■ Implementation produce more vertices and edges

■ Task creation divides the creator task in two nodes

 Complexity tests with BOTS benchmark suite

■ Preliminary results

 Missing

■ Mapping to call-path profile

Preliminary: Event, vertices and edge count

Figure from Youssef Hatem: “Critical pat Analysis of Parallel Applications Using OpenMP Tasks”

Preliminary: Analysis time

Figure from Youssef Hatem: “Critical pat Analysis of Parallel Applications Using OpenMP Tasks”

Preliminary: Number of events

Figure from Youssef Hatem: “Critical pat Analysis of Parallel Applications Using OpenMP Tasks”

Thanks for your attention

