
OMPT and OMPD:
Emerging Tool Interfaces for OpenMP

John Mellor-Crummey
Department of Computer Science

Rice University

Petascale Tools Workshop - Madison, WI - July 15, 2013

Acknowledgments

 OpenMP tools subcommittee
• Executive lead

– Martin Schulz - LLNL
• Technical leads

– Alexandre Eichenberger - IBM
– John Mellor-Crummey - Rice

• Active subcommittee members
– Nawal Copty - Oracle
– James Cownie - Intel
– John DelSignore - Rogue Wave
– Robert Dietrich - TU Dresden
– Xu Liu - Rice
– Eugene Loh - Oracle
– Daniel Lorenz - Juelich

2

Motivation

• Highly-threaded multicore and manycore processors
– Blue Gene/Q - 16 compute cores x 4-way SMT
– Intel Xeon Phi - 60 compute cores x 4-way SMT

• OpenMP: important HPC threaded programming model for nodes
– MPI + OpenMP increasingly common

• Large gap between source and implementation
– tools must bridge this gap

3

Gap Between Source and Implementation

4

main→fn.0→fn.1→fn.2

...

Problem: calling context
for parallel regions and
tasks is not readily
available to tools

Calling Context Distributed Across OpenMP Threads

5

regions in gray
have

distributed
calling contexts

Obstacles for Runtime-independent Tools

• No standard API for OpenMP tools
• Principal prior efforts

– POMP - Mohr, Malony, Shende, Wolf
– collector API - Itzkowitz, Mazurov, Copty, Lin

• Differences in OpenMP implementations
– shepherd thread
– cactus stack
– ...

• Lack of standard hooks

6

Outline

• OMPT - emerging performance tool API for OpenMP
– overview and goals
– state tracking
– event notification
– API

• OMPD - emerging debugger interface for OpenMP
– motivation
– state inspection
– control

• Status and next steps

7

OMPT Performance Tools API

 Overview and Goals
• Create a standardized performance tool interface for OpenMP

– prerequisite for portable performance tools
– goal: inclusion in the OpenMP standard
– role model: PMPI and MPI_T

• Focus on minimal set of functionality
– provide essential support for sampling-based tools
– only require support for tools attached at link-time or program launch

• Minimize runtime cost
– reduce cost in runtime and tool where possible
– enable integration into optimized runtimes
– make support for higher-overhead features optional

• callbacks for blame shifting
• callbacks for full-featured tracing tools

8

Major OMPT Functionality

• State tracking
– have runtime track keep track of its own state
– allow tools to query this state at any time (async signal safe)
– provide (limited) persistent storage for tool data in runtime system

• Call stack interpretation
– provide hooks to enable recovery of complete calling context

for computations in worker threads
• hooks to support reconstruction of application-level call stacks

– support identification of OpenMP runtime stack frames
• Event notification

– provide callback mechanism for predefined events
– support a few mandatory notifications and many optional ones

9

Runtime State Tracking

• OpenMP runtime keeps track of its own state
– predefined states on next slide

• Query routine
– ompt_state_t ompt_get_state(ompt_wait_id_t *wait_id)
– routine must be async signal safe

• Wait IDs
– only available for states that signify waiting
– identifies the cause for waiting

• e.g., address of a user lock or implicit lock for a critical region/atomic

10

Predefined States

11

OMPT Event Notifications

• Mandatory events
• Blame-shifting events (optional)
• Trace events (optional)

12

Mandatory Events

 Essential support for any performance tool
• Threads
• Parallel regions
• Tasks
• Runtime shutdown
• User-level control API

– e.g., support tool start/stop

13

create/exit event pairs

Blame-shifting Events (Optional)

 Support designed for sampling-based performance tools
• Idle
• Wait

– barrier
– taskwait
– taskgroup wait

• Release
– lock
– nest lock
– critical
– atomic
– ordered section

14

begin/end event pairs

Directed Blame Shifting

• Example:
– threads waiting at a lock are the symptom
– the cause is the lock holder

• Approach: blame lock waiting on lock holder

15

J
o
i
n

F
o
r
k

lockwait

acquire lock release lock

accumulate
samples in a global
hash table indexed
by the lock address

lock holder
accepts these

samples when it
releases the lock

Example: Directed Blame Shifting for Locks
 Blame a lock holder

 for delaying waiting
 threads

• Charge all samples
that threads receive
while awaiting a lock
to the lock itself

• When releasing
a lock, accept
blame at
the lock

16

all of
the
waiting
occurs
here
(symptom)

almost all blame
for the waiting is
attributed here
(cause)

Trace Events (Optional)

17

Thread State/Data & Query Functions

• Runtime maintains some state for a tool
– persists between entry/exit events
– lifetime equals that of associated thread or region
– support for a single tool / single data item

• Data structure
 typedef union ompt_data_t {
 long long value;
 void *ptr;
 } ompt_data_t;
– suitable for holding a pointer or an integer

• Query thread data
– routine: ompt_data_t *ompt_get_thread_data()
– async signal safe

18

Parallel Region IDs

• Each parallel region instance has a unique ID
– region IDs are not required to be consecutive

• Ability to query parallel region IDs
– ompt_parallel_id_t ompt_get_parallel_id(int ancestor_level)
– async signal safe
– current region: ancestor_level = 0
– query IDs of ancestor regions using higher ancestor levels

• Query function pointer of current and parent functions
– void *ompt_get_parallel_function(int ancestor_level)
– async signal safe

19

Call Stack Interpretation

• Tool saves some frame information to support stack unwinding
 typedef struct ompt_frame_t {
 void *reenter_runtime_frame;
 void *exit_runtime_frame;
 } ompt_frame_t;

– per task; lifetime: duration of task
– ompt_frame_t *ompt_get_task_frame(int ancestor_level)
– async signal safe

• Reenter_runtime_frame
– set each time a current task enters the runtime to create a new task
– points to the stack above the return address of the last user frame

• Exit_runtime_frame
– set when a task exits the runtime to execute user code
– points to the stack above the return address of the last runtime frame

20

Call Stack Interpretation Example

21

Task Inquiry Functions

 Inquiry functions async signal safe
• Query task function

– void *ompt_get_task_function(int ancestor_level)
• Query task data

– ompt_data_t *ompt_get_task_data(int ancestor_level)

22

Miscellaneous API Features

• Tool-facing API functions
– initialization

• int ompt_initialize(void)
• int ompt_set_callback(ompt_event_t e, ompt_callback_t cb)

– tool support version inquiry
• int ompt_get_ompt_version(void)

– state enumeration
• int ompt_enumerate_state(int current_state, int *next_state,

 const char **next_state_name)
• User-facing API functions

– version inquiry
• int ompt_get_runtime_version(char *buffer, int length)

– tool control
• void ompt_control(uint64_t command, uint64_t modifier)

• OMPD debugger support shared-library locations
– char **ompd_dll_locations

• argv-style list of filename strings

23

Outline

• OMPT - emerging performance tool API for OpenMP
– overview and goals
– state tracking
– event notification
– API

• OMPD - emerging debugger interface for OpenMP
– motivation
– state inspection
– control

• Status and next steps

24

OMPD Debugger Support Library

• A standard plug-in library to be dynamically-loaded by debuggers
– enable a debugger to interact with any OpenMP runtime

• Strategy used for pthreads and MPI
• Historical precedent for OpenMP

–

25

Unimplemented Design

OMPD Design Objectives

• Enable a debugger to inspect state of live process or core file
– provide debugger with third-party versions of OpenMP runtime

functions
– provide debugger with third-party versions of OMPT inquiry functions

• Facilitate interactive control of a live process
– help debugger place breakpoints

• intercept enter/exit of parallel regions
• intercept first instruction in a parallel region or task region

• API should not impose an unreasonable development burden
– runtime implementers
– tool implementers

26

OMPD Initialization

• ompd_rc_t ompd_initialize(ompd_callbacks_t *cb)
– debugger informs ompd library about debugger entry points

27

OMPD Handle Management

• Each OMPD call that is dependent on a context must provide that
context as a handle

• Handle types
– target process
– threads
– parallel regions
– tasks

28

OMPD Handle Inquiry Operations

• Threads
– retrieve array of handles for all OpenMP threads
– retrieve array of handles for OpenMP threads in a parallel region

• Parallel regions
– retrieve handle for innermost parallel region for an OpenMP thread
– retrieve handle for enclosing parallel region

• Tasks
– retrieve handle for innermost task for an OpenMP thread
– retrieve handle for enclosing task
– retrieve implicit task handle for parallel region

29

OMPD Setting Inquiry Operations

• Process
– OMP info

• thread limit
• number of procs

• Parallel regions
– OMP info

• number of threads
• depth of a parallel region instance
• number of enclosing active parallel regions

– OMPT info
• parallel id
• parallel function

• OS thread inquiry
– thread handle ⟷ OS thread
– OMPT info

• thread state

30

OMPD Task Inquiry Operations

• OMP API analogues
– get max threads
– get thread num
– in parallel
– in final
– get dynamic
– get nested
– get max active levels
– get schedule
– get proc bind

• OMPT analogues
– get task frame
– get task function

31

Note: no OMP API counterparts in
OMPT interface because OMPT can
call OMP runtime functions directly

OMPD Breakpoint Interface

• Neither a debugger nor OpenMP runtime knows what application
code a program will launch in a parallel region or task until a code
address is provided as an argument to an OpenMP runtime call

• Inform debugger where breakpoints can be placed to intercept
parallel regions and tasks

32

Breakpoints in Parallel Region and Task Code

• Parallel regions
– debugger gains control with trap at pre_execute
– debugger maps OS thread to OpenMP thread using OMPD
– inquires about top parallel region
– inquires about user function executed by parallel region

• Tasks
– similar to above

33

Miscellaneous API Operations
• Function to inquire about control variable settings
• Function to enable/disable performance tool support at next clean

point (if possible)

34

Outline

• OMPT - emerging performance tool API for OpenMP
– overview and goals
– state tracking
– event notification
– API

• OMPD - emerging debugger interface for OpenMP
– motivation
– state inspection
– control

• Status and next steps

35

Status Next Steps

• Specifications
– OMPT

• apply last bit of polish to API
– nits with barriers
– worker idle frame

• submit it to OpenMP language committee for comment
• turn it into an official OpenMP TR

– OMPD
• will anyone implement it?

• Runtime implementations
– IBM will release OMPT interface on BG/Q and Power
– Rice and Oregon will finish draft of OMPT in Intel runtime

• Tools
– HPCToolkit OpenMP branch will be folded into trunk

36

Additional Details

37

Supplemental Material

• A few examples of OMPT implementation issues in Intel Runtime
• HPCToolkit capabilities using OMPT

38

OMPT Callbacks in Intel OpenMP Runtime

• Add callbacks for
blame shifting
– if action warrants
– if tracking enabled
– if callback provided

• Example
– release nested lock

• if outer release
• and tool callbacks

enabled
• and callback

provided
• make the callback

and pass a
“wait id”

39

OMPT Frame Tracking in Intel OpenMP Runtime

• Add frame tracking to
enable reconstruction
of application-level call
stacks

• Support:
– __kmpc_fork_call

• record frame address
• the call in user code is

below this point
– __kmp_invoke_microtask

• record “exit” SP location
above return address for
call

40

...

...

State Tracking, Callbacks, Frames, & More

• __kmp_fork_call
• Shown: handling for

degenerate case with
singleton team
– need a lightweight

team record on the
stack to maintain
OMPT info

– state changes from
overhead to
“parallel work” when
invoking microtask

– returns to overhead
afterward

– create/exit callbacks
for parallel region

– after microtask,
clear exit_frame 41

Supplemental Material

• A few examples of OMPT implementation issues in Intel Runtime
• HPCToolkit capabilities using OMPT

42

Assembly of Nested Regions with HPCToolkit

43

Integrated View of MPI+OpenMP with OMPT
LLNL’s luleshMPI_OMP (8 MPI x 3 OMP), 30, REALTIME@1000

44

source view

thread view

metric view

LLNL’s luleshMPI_OMP (8 MPI x 3 OMP), 30, REALTIME@1000

Integrated View of MPI+OpenMP with OMPT

45

MPI
ranks

OMP
worker

time-centric
view

