
 
Using Automated Performance Modeling to Find 
Scalability Bugs in Complex Codes 

 A. Calotoiu1, T. Hoefler2, M. Poke1, F. Wolf1 

1)  German Research School for Simulation Sciences 
2)  ETH Zurich 

July 15, 2013 



Felix Wolf 2 



Analytical performance modeling 

Disadvantages 
•  Time consuming 
•  Danger of overlooking unscalable code 

3 

Identify 
kernels 

•  Parts of the program that dominate its 
performance at larger scales 

•  Identified via small-scale tests and intuition 

Create 
models 

•  Laborious process  
•  Still confined to a small community of skilled 

experts 



Our approach 

Generate an empirical model for each part of the program automatically 
•  Run a manageable number of small-scale performance experiments 
•  Launch our tool 
•  Compare extrapolated performance to expectations 

 
 
Key ideas 
•  Exploit that space of function classes underlying such model is small 

enough to be searched by a computer program 
•  Abandon model accuracy as the primary success metric and rather 

focus on the binary notion of scalability bugs 
•  Create requirements models alongside execution-time models 

4 



Scalability bug detector 

Input 
•  Set of performance 

measurements (profiles) on 
different processor counts  
{p1, …, pmax} w/ weak scaling  

•  Individual measurement 
broken down by program 
region (call path) 

 

Output 
•  List of program regions 

(kernels) ranked by their 
predicted execution time at 
target scale pt > pmax  

•  Or ranked by growth function  
(pt → ∞) 

 

5 

•  Not 100% accurate but good enough to draw attention to right kernels 
•  False negatives when phenomenon at scale is not captured in data 
•  False positives possible but unlikely 

•  Can also model parameters other than p 
 
 



Workflow 

6 

Performance 
 measurements 

Performance 
profiles 

Model  
generation 

Scaling 
models 

Performance 
 extrapolation 

Ranking of 
kernels 

Statistical 
 quality control 

Model  
generation 

Accuracy 
 saturated? 

Model  
refinement 

Scaling 
models 

Yes 

No 
Kernel 

refinement 



Model generation 

Performance Model Normal Form (PMNF) 
 
 
 
 
 
 
•  Not exhaustive but works in most practical scenarios 
•  An assignment of n,  ik and jk is called model hypothesis 
•  ik and jk  are chosen from sets I,J ⊂ Q 
•  n, |I|, |J| don’t have to be arbitrarily large to achieve good fit 

Instead of deriving model through reasoning, make reasonable choices  
for n, I, J and try all assignment options one by one 
•  Select winner through cross-validation 

7 

f (p) = ck ! p
ik ! log2

jk (p)
k=1

n

"



Model refinement 

•  Start with coarse approximation 
•  Refine to the point of statistical 

shrinkage 
→ Protection against over-fitting 

8 

Hypothesis generation; 
 hypothesis size n  

Scaling model 

Input  data 

Hypothesis evaluation  
via cross-validation 

Computation of           
for best hypothesis 

No 

Yes 

n =1;R0
2
= !"

Rn
2

n++
Rn!1
2
" Rn

2
#

n = nmax



Requirements modeling 

9 

Program 

Computation Communication 

FLOPS Load Store P2P Collective … 

Time 

Disagreement may be indicative of wait states 



Evaluation 

We demonstrate that our tool 
 
•  identifies a scalability issue in a code that is known to have one 

•  does not identify a scalability issue in a code that is known to have 
none 

•  identifies two scalability issues in a code that was thought to have only 
one  

 

10 

I = {02 , 12 , 22 , 32 , 42 , 52 , 62}
J = {0,1, 2}
n = 5

Test platform: 
IBM Blue Gene/Q 
Juqueen in Jülich 



Sweep3D 

Solves neutron transport problem 
•  3D domain mapped onto 2D 

process grid 
•  Parallelism achieved through 

pipelined wave-front process 
 
 
 
 
LogGP model for communication 
developed by Hoisie et al. 

11 

tcomm = [2(px + py ! 2)+ 4(nsweep !1)]" tmsg
tcomm = c " p



Sweep3D (2) 

12 

Kernel Runtime[%] 
pt=262k 

Increase 
t(p=262k) 

t(p=64) 

Model [s] 
t = f(p) 
pi ≤ 8k 

Predictive 
error [%] 
pt=262k 

sweep → MPI_Recv 65.4 16.5 4.0√p 5.1 

sweep 20.9 0.2 582.2 0.01 

global_int_sum → 
MPI_Allreduce 

12.9 18.7 1.1√p + 
0.03√p�log(p) 

13.6 

sweep → MPI_Send 0.4 0.2 11.5 + 0.1√p�log(p) 15.4 

source 0.3 0.04 6.7 + 9.1�10-5log(p) 0.01 

#bytes = const. 
#msg = const. 



Sweep3D (3) 

13 

different for each model parameter. A major goal of this
tool is to provide a powerful “push-button”mechanism that
works without assuming prior experience in the field of per-
formance modeling, while providing all relevant levers for
control and steering of the process to advanced users who
wish to customize it.

4. EVALUATION

We illustrate the capabilities of our tool using three MPI
applications. Specifically, we demonstrate that our tool

• identifies a scalability issue in a code that is known to
have one,

• does not identify a scalability issue in a code that is
known to have none, and

• identifies two scalability issues in a code that was
thought to have only one.

In the first two cases, we find the models we generate au-
tomatically to be in good agreement with manually cre-
ated models previously reported in the literature. In the
third case, we are not aware of any pre-existing performance
model. In the second case, we further show that we can pro-
duce accurate models for model parameters other than the
number of processes.

We performed our experiments on the IBM BlueGene/Q
system Juqueen and the Sun cluster Juropa at the Jülich
Supercomputing Centre. Juqueen is a large leadership su-
percomputer with almost 500,000 cores, ranked 5th in the
TOP500 list as of November 2012. Each node features one
PowerPC A2 processor with 16 cores running at 1.6 GHz.
Juropa is a compute cluster composed of 2,208 nodes, each
equipped with two Intel Xeon X5570 (Nehalem-EP) quad-
core processors running at 2.93 GHz.

The search space for our model hypotheses is defined by the
sets I and J to draw from when choosing the exponents ik
and jk in the PMNF expression (Equation 1 in Section 2.3)
and the maximum number of terms n. For our evalua-
tion below we used the defaults I =

�
0
2 ,

1
2 ,

2
2 ,

3
2 ,

4
2 ,

5
2 ,

6
2

�
,

J = {0, 1, 2}, and n = 5. If information regarding the be-
havior of the application is already known, these sets can be
extended to provide more detail in a given range. For ex-
ample adding more rational exponents in the (0,1) interval
such as

�
1
4 ,

1
3 ,

2
3 ,

3
4

�
for applications where the goal is not to

find out whether they scale at all, but rather how well they
scale, is reasonable.

4.1 SWEEP3D

In this example, we show how our tool helps identify and
explain a scalability problem, providing a first impression
of the user experience. The Sweep3D benchmark [23] is a
compact application that solves a 1-group time-independent
discrete ordinates neutron transport problem. It was ex-
tracted from a real ASCI code. The program calculates the
flux of neutrons through a three-dimensional grid along sev-
eral angles of travel. To partition the problem, the code
maps the three-dimensional domain onto a two-dimensional
grid of processes. Parallelism is achieved through a pipelined

20

40

60

80

100

R
el
at
iv
e
er
ro
r
(%

)

26 27 28 29 210 211 212 213 214 215 216 217 218
0

500

1,000

1,500

2,000

2,500

Processes

T
im

e
(s
)

Model
Data

Prediction
Relative error

T
ra
in
in
g

P
re
d
ic
ti
on

Figure 3: Measured vs. predicted execution time of the
two receive operations involved in the wavefront process of
Sweep3D on Juqueen.

wavefront process that propagates data along diagonal lines
through the grid. The particular angle being processed at
a given moment determines the direction of the wavefront,
which can originate from any of the four grid corners. The
pipeline organization enables multiple wavefronts to follow
each other along the same direction. Although very effi-
cient as long as the pipeline is filled, parallel efficiency drops
whenever the pipeline has to be refilled after the direction
has changed. The consequences are wait states that materi-
alize in receive operations.

The literature mentions accurate models [19, 34] that de-
scribe the performance behavior of wavefront processes as
they occur in Sweep3D on various architectures. The LogGP
model reported in [19] characterizes the communication time
as follows:

tcomm = [2(px + py − 2) + 4(nsweep − 1)] · tmsg (2)

px and py denote the lengths of the process-grid edges,
nsweep the number of wavefronts to be computed, and tmsg

the time needed for a one-way nearest-neighbor communi-
cation. Given that both nsweep and tmsg are largely inde-
pendent of the number of processes p and that in our exper-
iments px = py and p = px · py, we can rewrite Equation (2)
as:

tcomm = c ·√p (3)

The (combined) model generated by our tool for the two
receive operations involved in the wavefront process (sweep
→ MPI Recv) is 3.99 ·√p and, thus, consistent with Equa-
tion (3). As Figure 3 illustrates, it also matches our mea-
surements on Juqueen quite accurately. The two receive
operations are modeled together because Scalasca’s default
instrumentation merges them into one call path. Note that
we need not large application runs to accurately determine
the model. The figure presents results based on only six
training and evaluation data points with the process counts
P1 =

�
26, 27, 28, 29, 210, 211

�
and we extrapolate up to 262k

processes. The difference between prediction and measure-
ment never exceeds 7%. When using more training and



MILC 

MILC/su3_rmd – code from MILC suite of QCD codes with performance 
model manually created by Hoefler et al.  
 
•  Time per process should remain constant except for a rather small 

logarithmic term caused by global convergence checks 
 
 

14 

Kernel 
Model [s] 

t=f(p) 
pi ≤ 16k 

Predictive 
Error [%] 

pt=64k 
compute_gen_staple_field 0.02 0.4 
g_vecdoublesum → MPI_Allreduce 
 

6.3 �10-6�log2p 0.01 

mult_adj_su3_fieldlink_lathwec 
 

0.004 0.04 



HOMME 

15 

Core of the Community Atmospheric Model (CAM) 
•  Spectral element dynamical core  

on a cubed sphere grid 
 

Kernel 
Model [s] 

t = f(p) 
pi≤15k 

Predictive error 
[%] 

pt = 130k 
Box_rearrange->MPI_Reduce 0.03 + 2.5�10-6p3/2  + 1.2�10-12p3 57.0 

Vlaplace_sphere_vk 49.5 99.3 

… 

Compute_and_apply_rhs 48.7 1.7 



HOMME 

16 

Core of the Community Atmospheric Model (CAM) 
•  Spectral element dynamical core  

on a cubed sphere grid 
 

Kernel 
Model [s] 

t = f(p) 
pi≤43k 

Predictive error 
[%] 

pt = 130k 
Box_rearrange->MPI_Reduce 3.6�10-6p3/2  + 7.2�10-13p3 30.3 

Vlaplace_sphere_vk 24.4 + 2.3�10-7p2 4.3 

… 

Compute_and_apply_rhs 49.1 0.8 



HOME (2) 

Two issues 
 
Number of iterations inside a subroutine grows with p2 

•  Ceiling for up to and including 15k 
•  Developers were aware of this issue and had developed work-around 

Growth of time spent in reduce function grows with p3 
•  Previously unknown 
•  Function invoked during initialization to funnel data to dedicated I/O 

processes 
•  Execution time at 183k ~ 2h, predictive error ~40% 

 

17 

The G8 Research Councils Initiative on Multilateral Research Funding 
Interdisciplinary Program on Application Software towards Exascale Computing for Global Scale Issues   



HOME (3) 

18 

Table 4: Models of the kernels of HOMME derived from smaller and larger-scale input configurations. The predictive error
refers to the target scale of pt = 130k.

Kernel
P4(pi ≤ 15, 000) P5(pi ≤ 43, 350)

Model [s] Predictive Model [s] Predictive
t = f(p) error [%] t = f(p) error [%]

box_rearrange → MPI_Reduce 0.026 + 2.53 · 10−6 · p√p + 1.24 · 10−12 · p3 57.02 3.63 · 10−6 · p√p + 7.21 · 10−13 · p3 30.34
vlaplace_sphere_wk 49.53 99.32 24.44 + 2.26 · 10−7 · p2 4.28
laplace_sphere_wk 44.08 99.32 21.84 + 1.96 · 10−7 · p2 2.34
biharmonic_wk 34.40 99.33 17.92 + 1.57 · 10−7 · p2 3.43
divergence_sphere_wk 16.88 99.31 8.02 + 7.56 · 10−8 · p2 4.25
vorticity_sphere 9.74 99.55 6.51 + 7.09 · 10−8 · p2 8.66
divergence_sphere 15.36 99.33 7.74 + 6.91 · 10−8 · p2 0.95
gradient_sphere 14.77 99.33 6.33 + 6.88 · 10−8 · p2 5.17
advance_hypervis 9.76 99.25 5.5 + 3.91 · 10−8 · p2 1.47
compute_and_apply_rhs 48.68 1.65 49.09 0.83
euler_step 28.08 0.51 28.13 0.33

kernels. Obviously, the enlarged set exposes a phenomenon
not visible in the smaller set. With the number of processes
chosen large enough, both the quadratic and the cubic terms
will turn into serious bottlenecks, contradicting our initial
expectation the code would scale well. The table also shows
the predictive error, which characterizes the deviation of the
prediction from measurement at the taget scale pt = 130k,
highlighting the benefits of including the extra data points.

After looking at the number of times any of the quadratic
kernels was visited at runtime, a metric we measure and
model as well, the quadratic growth was found to be the
consequence of an increasing number of iterations inside a
particular subroutine. Interestingly, the formula by which
the number of iterations is computed contained a ceiling
term that limits the number of iterations to one for up to and
including 15k processes. Beyond this threshold, a term de-
pending quadratically on the process count causes the num-
ber of iterations being executed to grow rapidly, causing a
significant drop in performance. It turned out, the devel-
opers were aware of this issue and had already developed a
temporary solution, involving manual adjustments of their
production code configurations. Specifically, they fix the
number of iterations and carefully tune other configuration
parameters to ensure numerical stability. Nevertheless, the
issue was correctly detected by our tool. Given the tuning
necessary to ensure numerical stability, a weak scaling anal-
ysis of the workaround is beyond the scope of this paper.

In contrast to the previous problem, the cubic growth of the
time spent in the reduce function was previously unknown.
The reduce is needed to funnel data to dedicated I/O pro-
cesses. The coefficient of the dominant term at scale is very
small (i.e., in the order of 10−13). While not being visible
at smaller scales, it will have an explosive effect on perfor-
mance at larger scales, becoming significant even if executed
just once. The reason why this phenomenon remained un-
noticed until today is that it belongs to the initialization
phase of the code that was not assumed to be performance
relevant in larger production runs. While still not yet crip-
pling in terms of the overall runtime, which is in the order of
days for production runs, the issue costed already more than
one hour in the large-scale experiments we conducted. The
problem was reported back to the developers at NCAR, who
are currently working on a solution. The example demon-

strates the advantage of modeling the entire application vs.
only selected candidate kernels expected to be time inten-
sive. Some problems simply might escape attention because
non-linear relationships make our intuition less reliable at
larger scales.

Figure 4 summarizes our two findings and compares our pre-
dictions with actual measurements. While the growing iter-
ation count seems to be more urgent now, the reduce might
become the more serious issue in the future.

5. RELATED WORK

Analytic performance modeling techniques have been used
to model the performance of numerous important applica-
tions manually [21, 25]. It is well understood that analytic
models have the potential of providing important insights
into complex behaviors [29]. Performance models also offer
insight into different parts of the system. For example, Boyd
et al. used performance models to assess the quality of a tool
chain, such as a compiler or runtime system [6]. In general,
there is consensus that performance modeling is a powerful

210 212 214 216 218 220 222

0.01

1

102

104

106

108

Processes

T
im

e
(s
)

MPI_Reduce

vlaplace_sphere_wk

compute_and_apply_rhs

T
ra
in
in
g

P
re
d
ic
ti
on

Figure 4: Runtime of selected kernels in HOMME as a func-
tion of the number of processes. The graph compares predic-
tions (dashed or contiguous lines) to measurements (small
triangles, squares, and circles).



Conclusion 

Automated performance modeling is feasible 
 
Generated models accurate enough to identify scalability bugs or show 
their absence with high probability 
 
Advantages of mass production also performance models 
•  Approximate models are acceptable as long as the effort to create them 

is low and they do not mislead the user 
•  Code coverage is as important as model accuracy 

Future work 
•  Study influence of further hardware parameters 
•  More efficient traversal of search space (allows more model 

parameters) 
•  Integration into Scalasca 

 

19 



Acknowledgement 

20 


