Tools for visualizing communication, network traffic, and job placement

Abhinav Bhatele Center for Applied Scientific Computing

LLNL: Peer-Timo Bremer, Todd Gamblin, Katherine E. Isaacs, Steven H. Langer, Martin Schulz

Davis: Dylan Wang, Dipak Ghosal

Illinois: Nikhil Jain, Laxmikant V. Kale

Utah: Aaditya G. Landge, Joshua A. Levine, Valerio Pascucci

wrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Petascale Tools Workshop August 04, 2014

Performance analysis at extreme scale

- Large number of processes in an execution
 - Large amounts of data impossible to analyze manually
- Complex architectures and adaptive applications
 - Make attribution of problems to the real cause difficult
- Traditional performance analysis tools leave a lot to the user

Load balancing in SAMRAI

- Phase in which load balancing decisions are made
- Three sub-phases:
 - Phase I: Load distribution
 - Phase 2: Mapping generation
 - Phase 3: Overlap update

Abhinav Bhatele et al. Novel views of performance data to analyze large-scale adaptive applications. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '12. November 2012. LLNL-CONF-554552.

Traditional performance analysis

Different phases of load balancing

Different phases of load balancing (256 cores)

Abhinav Bhatele @ Petascale Tools Workshop

Projections on the communication domain

Phase I (load distribution) timing data

Phase I (load distribution) timing data

Phase I (load distribution) timing data

Phase I timings for each processor

Load on each processor

Phase I timings for each processor

Phase I timings for each processor

COMPUTATION

TASK MAPPING

- What is mapping layout/placement of tasks/processes in an application on the physical interconnect
- Does not require any changes to the application

- What is mapping layout/placement of tasks/processes in an application on the physical interconnect
- Does not require any changes to the application

- What is mapping layout/placement of tasks/processes in an application on the physical interconnect
- Does not require any changes to the application

- What is mapping layout/placement of tasks/processes in an application on the physical interconnect
- Does not require any changes to the application

- What is mapping layout/placement of tasks/processes in an application on the physical interconnect
- Does not require any changes to the application

- Goals:
 - Balance computational load
 - Minimize contention (optimize latency or bandwidth)

- Traditionally, research has focused on bringing tasks closer to reduce the number of hops
 - Minimizes latency, but more importantly link contention
- For applications that send large messages this might not be optimal

- Traditionally, research has focused on bringing tasks closer to reduce the number of hops
 - Minimizes latency, but more importantly link contention
- For applications that send large messages this might not be optimal

- Traditionally, research has focused on bringing tasks closer to reduce the number of hops
 - Minimizes latency, but more importantly link contention
- For applications that send large messages this might not be optimal

- Traditionally, research has focused on bringing tasks closer to reduce the number of hops
 - Minimizes latency, but more importantly link contention
- For applications that send large messages this might not be optimal

Rubik

- We have developed a mapping tool focusing on:
 - structured applications that are bandwidth-bound, use collectives over sub-communicators
 - built-in operations that can increase effective bandwidth on torus networks based on heuristics
- Input:
 - Application topology with subsets identified
 - Processor topology
 - Set of operations to perform
- Output: map file for job launcher

Application example

app = box([9,3,8]) # Create app partition tree of 27-task planes
app.tile([9,3,1])

network = box([6,6,6]) # Create network partition tree of 27-processor cubes
network.tile([3,3,3])

network.map(app) # Map task planes into cubes

Mapping pF3D

- A laser-plasma interaction code used at the National Ignition Facility (NIF) at LLNL
- Three communication phases over a 3D virtual topology:
 - Wave propagation and coupling: 2D FFTs within XY planes
 - Light advection: Send-recv between consecutive XY planes
 - Hydrodynamic equations: 3D near-neighbor exchange

Mapping pF3D

- A laser-plasma interaction code used at the National Ignition Facility (NIF) at LLNL
- Three communication phases over a 3D virtual topology:
 - Wave propagation and coupling: 2D FFTs within XY planes
 - Light advection: Send-recv between consecutive XY planes
 - Hydrodynamic equations: 3D near-neighbor exchange

Mapping pF3D

- A laser-plasma interaction code used at the National Ignition Facility (NIF) at LLNL
- Three communication phases over a 3D virtual topology:
 - Wave propagation and coupling: 2D FFTs within XY planes
 - Light advection: Send-recv between consecutive XY planes
 - Hydrodynamic equations: 3D near-neighbor exchange

	2048 cores		16384 cores	
MPI call	Total %	MPI %	Total %	MPI %
Send	4.90	28.45	23.10	57.21
Alltoall	8.10	46.94	7.30	18.07
Barrier	2.78	16.10	8.13	20.15

Performance benefits

A. Bhatele et al. Mapping applications with collectives over sub-communicators on torus networks. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '12. November 2012. LLNL-CONF-556491.

L,

Performance benefits

A. Bhatele et al. Mapping applications with collectives over sub-communicators on torus networks. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '12. November 2012. LLNL-CONF-556491.

Visualizing network traffic using Boxfish

MAX=38176009.0

Visualize sub-communicators

Detailed 2D and 3D views

MILC on Blue Gene/Q

COMPUTATION

MILC on Blue Gene/Q

COMPUTATION

JOB PLACEMENT & ROUTING

Performance variability

Average messaging rates for batch jobs running a laser-plasma interaction code

Abhinav Bhatele @ Petascale Tools Workshop

Performance variability

Average messaging rates for batch jobs running a laser-plasma interaction code

Total number of bytes sent on the network

Time spent sending the messages

pF3D characterization

Time spent in communication and computation in pF3D

Abhinav Bhatele @ Petascale Tools Workshop

pF3D characterization

Sources of variability

• Operating system noise (OS jitter)

- OS daemons running on some cores of each node
- Placement/location of the allocated nodes for the job (Allocation shape)
- Contention for shared resources (Inter-job contention)
 - Sharing network links with other jobs

April I I 6

April II

April 16

https://scalability.llnl.gov/performance-analysis-through-visualization/software.php

April I I 6

April I I MILC job in green

April 16 25% higher messaging rate

https://scalability.llnl.gov/performance-analysis-through-visualization/software.php

2!

April I l 6

April II

April 16b

April I 16

April I I MILC job in green

April 16b

27.8% higher messaging rate, LSMS is not communication-heavy

March 15 April 04

March 15

April 04

March 15 April 04

March 15

Three conflicting jobs, two MILC

LUNL-PRES-659275

April 04

2.29X higher messaging rate

Effect of MILC on pF3D

Effect of MILC on pF3D

Effect of MILC on pF3D

Modeling job placements and message routing

- Dragonfly topology: a two-level hierarchical topology
- Routing choices: static (deterministic) vs. dynamic (adaptive), direct vs. indirect (random jumps)
- Placement options: random, round-robin, blocked

Single jobs

Job placements grouped based on Routing

Edison @ NERSC

6 O O Editori Dragonfly						

Edison @ NERSC

Edison @ NERSC

Summary

- Projecting information to non-traditional domains can help
- Rubik: Python-based tool for task mappings
- Boxfish:
 - Visualize network traffic over links
 - Visualize placement of jobs on the nodes

http://computation-rnd.llnl.gov/extreme-computing/ interconnection-networks.php

This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 13-ERD-055: STATE - **S**calable **T**opology **A**ware **T**ask **E**mbedding.

LLNL: Abhinav Bhatele, Peer-Timo Bremer, Todd Gamblin, Katherine E. Isaacs, Steven H. Langer, Kathryn Mohror, Martin Schulz

Illinois: Ronak Buch, Nikhil Jain, Harshitha Menon, Laxmikant V. Kale, Michael Robson

Utah: Amey Desai, Aaditya G. Landge, Valerio Pascucci

Purdue: Ahmed Abdel-Gawad, Mithuna Thottethodi

LBL: Brian Austin, Nicholas J.Wright

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Petascale Tools Workshop August 04, 2014

