
This work was performed under the auspices of the U.S. Department of Energy by	

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

Petascale	 Tools	 Workshop	 ◆	 August	 04,	 2014

Tools	 for	 visualizing	 communication,	
network	 traffic,	 and	 job	 placement

Abhinav	 Bhatele	
Center	 for	 Applied	 Scientific	 Computing

LLNL: Peer-Timo Bremer, Todd Gamblin,
Katherine E. Isaacs, Steven H. Langer,	

Martin Schulz 	

!
Davis: Dylan Wang, Dipak Ghosal	

!
Illinois: Nikhil Jain, Laxmikant V. Kale	

!
Utah: Aaditya G. Landge, Joshua A. Levine,
Valerio Pascucci

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���2

Performance analysis at extreme scale

• Large number of processes in an execution	

• Large amounts of data - impossible to analyze manually	

• Complex architectures and adaptive applications	

• Make attribution of problems to the real cause difficult	

• Traditional performance analysis tools leave a lot to
the user

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���3

Load balancing in SAMRAI

• Phase in which load
balancing decisions are
made	

• Three sub-phases:	

• Phase 1: Load distribution	

• Phase 2: Mapping
generation	

• Phase 3: Overlap update

!"!!!!!

!"!!!!!

!"!!!!#

!"!!!#!

$%& %#$ #' $' (')' #&' *$' &(' #$)'

+
,-
-./
-0
/1
.2
34
5.
65
7.
/5
--.
86
9,
25
.:
;<

=84>57.0?./075;

@ABCADE.+5,1.;/,-3FG

-0,9.>,-,F/5

groups. At the start of the algorithm, each process has some
load imbalance (excess or deficit load). The leaves, child 1
and child 2, send the imbalance information to the parent,
including any excess work. The parent places excess work
from itself and its children into a separate container des-
ignated as unassigned. It uses the unassigned work to fill
deficits where needed. If the parent has a deficit, it shifts
some unassigned work to itself. For each child that has a
deficit, it sends some unassigned work to that child After
shifting work to fill the deficits, no unassigned work remains
because the net imbalance at the parent is zero. This is true
here because the parent is the root of the entire tree. For
deeper trees, this will not be the case.

parent

child 1 child 2

Figure 4: Load balancing tree for partitioning three
processes. The parent partitions for all three nodes.

Figure 5 shows a deeper tree with seven processes. To
load balance this tree, parent 1, child 1 and child 2 apply
the above algorithm. Independently, parent 2, child 3 and
child 4 do the same. Because parents 1 and 2 are not at the
root of the tree, they may see an imbalance that represents
the imbalance of their subtree. To eliminate this imbalance,
they participate as children of the grandparent (see Figure
6) in another recursive instance of the same algorithm. For
deeper trees, the grandparents rely on their parents to cancel
their imbalances, and so on. The recursion stops at the root
of the tree, where the imbalances always cancel out.

grandparent

parent 1 parent 2

child 1 child 2 child 3 child 4

Figure 5: Load balancing tree of seven processes.

grandparent

parent 1 parent 2

Figure 6: Tree for partitioning seven processes. The
grandparent partitions for itself and the parents.

Once a process sends its excess boxes away, it loses track
of them. The mapping generation phase informs each pro-
cess of the final destinations of its boxes by sending this

information back to the original owner along the same path
the boxes took to their destinations. To each box in transit
within the tree, we attach metadata describing the path it
has taken. When a box is broken into smaller boxes, the
smaller boxes start with the path of the broken box and
build from there. Using this approach, we expect that no
box will travel more than O(logP) hops in the tree network.
We assume that the cost of shipping metadata around the
network is small compared to the cost of shipping appli-
cation compute data, which is much larger, so we do not
consider network bandwidth in this assessment.
At the end of load balancing, SAMRAI must compute

the overlaps between the new boxes and existing levels in
the hierarchy. A brute-force search for these overlaps would
cost at least O(N/P) in addition to an all-gather commu-
nication to acquire the boxes for searching. To avoid this,
SAMRAI uses the generated mapping to compute the over-
lap information for the pre-balance boxes and it then sends
this information along the network using the paths obtained
in the previous step.
One or more of these three load balancing sub-phases is

responsible for the scalability problems that we see in the
timing plot. In the next section, we describe the techniques
we used to isolate the specific sub-phase and root cause.

4. PERFORMANCE VISUALIZATIONS
We now present a succession of unsuccessful and successful

attempts at discovering the scalability issues in SAMRAI
through visualization of performance data projected among
the three HAC domains. Based on the scaling behavior of
particular phases in SAMRAI, we identified in Section 3 that
the problem lies within the load balancing phase. However,
this is not su⇤cient to point us to the root cause of the
problem. Hence, the rest of the paper discusses performance
data and its visualization specifically for the load balancing
phase. As we discuss our projections and visualizations, we
also highlight various tools that were used to obtain the
performance data and create the visualizations.

4.1 Unhelpful Visualizations
Timing information obtained from running SAMRAI tells

us that the load balancing phase, specifically the commu-
nication in that phase, does not scale well as we increase
the number of processors. Hence, we started with measur-
ing the communication characteristics for the load balancing
phase. In order to obtain this data, we use the communi-
cation matrix module in PNMPI [16] to intercept MPI calls
and record a communication matrix. We use yEd, a graph
editor, to visualize the Graph Modeling Language (GML)
files output by this PNMPI module.
Figure 7 shows two visualizations of the communication

graph for 256 processes during the load balancing phase of
SAMRAI. The graph was obtained by profiling the LinAdv
benchmark on Blue Gene/P. On the left, the communication
is presented in the form of a matrix generating using mat-
plotlib. We can deduce that the communication is sparse
but we can’t see any trends that would a�ect the perfor-
mance. On the right, the 256 processes are laid out in a
di�erent fashion and connected by edges based on the com-
munication matrix. This visualization also does not con-
vey any meaningful information. It can be deduced that
the communication is not near-neighbor but many-to-many,
however, no inferences can be drawn about its e⇤ciency.

Abhinav Bhatele et al. Novel views of performance data to
analyze large-scale adaptive applications. In Proceedings of
the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC '12. November 2012. LLNL-CONF-554552.

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���4

Traditional performance analysis
product of Blue Gene/P, even for the largest runs, which
argues against a bandwidth limitation. This leaves potential
contention on the network as a possible issue. Tools such as the
communication matrix module in PNMPI [5] (which we used),
TAU [6], and Vampir [7] allow one to record the complete
communication matrix showing traffic between all node pairs.
However, a matrix plot of the communication matrix, as shown
in Fig. 5, reveals no obvious patterns. Further, since the load
balancing algorithm sends only few point-to-point messages
contention seems unlikely.

Fig. 5. Communication matrix of 256 processes during the load balancing
phase of SAMRAI, color mapped by the number of bytes exchanged.

B. Per-phase data

Going beyond aggregated results in the form of global exe-
cution times or the communication matrix, profiling tools can
obtain detailed information about the time spent in computa-
tion and communication on each process. Many tools offer the
ability to obtain MPI profiles, including Open|SpeedShop [8],
TAU [6], and Scalasca [9]. For the following experiments, we
used mpiP [10], which provides information such as total time
spent in MPI calls versus total application time and also the
top MPI calls and their respective call sites where most of
the time was spent. mpiP can be used to selectively profile
a code region, and as most tools, it relies on the use of
MPI_Pcontrol calls for this feature. In our case, we use it
to focus on the details of the three phases of the load balancing
algorithm with the intent to assign blame to specific phases.

However, a common drawback of the MPI_Pcontrol
mechanism is that we can only turn profiling on or off in
mpiP. There is no mechanism to generate distinct profiles for
different code regions within a single run without significant
and complex changes to the profiler itself. We use PNMPI [11]
to virtualize mpiP so that multiple code regions can be profiled
at once, using multiple, unmodified instances of mpiP.

Fig. 6 shows the sum of times spent by all MPI processes in
the three phases of load balancing: load distribution, mapping,

and overlap generation for different core counts. From the
aggregated data it appears that the overlap generation (phase
3) is the main problem. However, as discussed in Section III,
load balancing is done in an asynchronous manner which may
distort the results when one processor waits in a later phase
for other processors to finish an earlier phase.

Fig. 6. Sum of times spent by all MPI processes in different load balancing
sub-phases. This plot seems to indicate that phase 3, overlap generation, is the
main problem. However, due to the asynchronous fashion in which SAMRAI
does load balancing, processors in a later phase may be waiting on processors
which have not finished an earlier one.

C. Per-core, per-phase data
Since the per-phase data of Fig. 6 is inconclusive, the next

step is to further refine the attribution and analyze the MPI
profiles on a per-core as well as a per-phase basis. This
is typically the finest scale data the tools discussed above
provide. Fig. 7 shows this data with respect to the MPI rank
space for a small 256 core run of SAMRAI. It is apparent that
some processes indeed spend significant time in phase 1 of
load balancing thus likely causing long waits in other phases.
However, since the rank order is not immediately related to
the underlying dependencies, the cause of this anomaly is still
unclear. Furthermore, this graph is for a small test case which
may or may not actually exhibit the same behavior as large
scale runs. Indeed, as will be discussed in Section V, this plot
includes several artifacts of the same magnitude as the problem
we are trying to detect. Unfortunately, creating similar graphs
for much larger core counts is futile as one would no longer be
able to distinguish neighboring ranks for the lack of resolution.

Additional performance data can be gathered through trace
visualization tools, such as Vampir [7] or JumpShot [12],
but the resulting data is often overwhelming in its detail
and hard to interpret when looking for general patterns. A
hybrid approach between full tracing and profiling is call path
tracing [13], which provides and visualizes per process traces
of sampled call paths. However, this technique is limited to
MPI rank space and does not work well for adaptive codes.

Tallent et al. have investigated automatic discovery of scal-
ability bottlenecks at particular phases of program execution,
also based on call paths [14]. This work complements our
work by providing automatic detection of the initial scalability

��

���

���

���

���

����

����

����

����

��� ��� ���� ���� ��	� ��	� ��
��

��
�
��
��
��
��
��
�

�������������

���������������������������������

������
������
�����

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 50 100 150 200 250

T
im

e
(s

)

MPI rank

Different phases of load balancing (256 cores)

phase 1
phase 2
phase 3

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���5

Projections on the communication
domain

Phase 1 (load
distribution)
timing data

512 cores of
Blue Gene/P

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���6

Scalable view of the comm. graph

Phase 1 (load
distribution)
timing data

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���6

Scalable view of the comm. graph

Phase 1 (load
distribution)
timing data

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���6

Scalable view of the comm. graph

Phase 1 (load
distribution)
timing data

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���6

Scalable view of the comm. graph

Phase 1 (load
distribution)
timing data

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���7

Phase 1 timings for each processor

Phase 1 (load
distribution)
timing data

512 cores of
Blue Gene/P

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���8

Load on each processor

Number of cells
on each

processor

512 cores of
Blue Gene/P

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���9

Phase 1 timings for each processor

Phase 1 (load
distribution)
timing data

512 cores of
Blue Gene/P

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���9

Phase 1 timings for each processor

Phase 1 (load
distribution)
timing data

512 cores of
Blue Gene/P

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

TASK MAPPING

���10

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Topology aware task mapping
• What is mapping - layout/placement of tasks/processes in an application on the

physical interconnect	

• Does not require any changes to the application

���11

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Topology aware task mapping
• What is mapping - layout/placement of tasks/processes in an application on the

physical interconnect	

• Does not require any changes to the application

���11

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Topology aware task mapping
• What is mapping - layout/placement of tasks/processes in an application on the

physical interconnect	

• Does not require any changes to the application

���11

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Topology aware task mapping
• What is mapping - layout/placement of tasks/processes in an application on the

physical interconnect	

• Does not require any changes to the application

���11

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Topology aware task mapping
• What is mapping - layout/placement of tasks/processes in an application on the

physical interconnect	

• Does not require any changes to the application

���11

• Goals:	

• Balance computational load	

• Minimize contention (optimize latency or bandwidth)

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Maximize bandwidth?

• Traditionally, research has focused on bringing tasks
closer to reduce the number of hops	

• Minimizes latency, but more importantly link contention	

• For applications that send large messages this might
not be optimal

���12

1D

2D

3D 4D

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Maximize bandwidth?

• Traditionally, research has focused on bringing tasks
closer to reduce the number of hops	

• Minimizes latency, but more importantly link contention	

• For applications that send large messages this might
not be optimal

���12

1D

2D

3D 4D1D

2D

3D 4D

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Maximize bandwidth?

• Traditionally, research has focused on bringing tasks
closer to reduce the number of hops	

• Minimizes latency, but more importantly link contention	

• For applications that send large messages this might
not be optimal

���12

1D

2D

3D 4D1D

2D

3D 4D1D

2D

3D 4D

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Maximize bandwidth?

• Traditionally, research has focused on bringing tasks
closer to reduce the number of hops	

• Minimizes latency, but more importantly link contention	

• For applications that send large messages this might
not be optimal

���12

1D

2D

3D 4D1D

2D

3D 4D1D

2D

3D 4D1D

2D

3D 4D

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Rubik

• We have developed a mapping tool focusing on:	

• structured applications that are bandwidth-bound, use collectives
over sub-communicators	

• built-in operations that can increase effective bandwidth on torus
networks based on heuristics	

• Input:	

• Application topology with subsets identified	

• Processor topology	

• Set of operations to perform	

• Output: map file for job launcher

���13

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Application example

���14

app = box([9,3,8]) # Create app partition tree of 27-task planes	
app.tile([9,3,1])	
!
network = box([6,6,6]) # Create network partition tree of 27-processor cubes	
network.tile([3,3,3])	
!
network.map(app) # Map task planes into cubes

1 # Create app partition tree of 27-task planes
2 app = box([9,3,8])
3 app.tile([9,3,1])
4

5 # Create network partition tree of 27-processor
cubes

6 network = box([6,6,6])
7 network.tile([3,3,3])
8

9 network.map(app) # Map task planes into cubes

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Fig. 6: Mapping a partition tree from the application to network domain using Rubik

(a) tilt(Z,*,*) (b) tilt(Z,X,*) (c) tilt(Z,Y,*) (d) zigzag(Z,X,*) (e) zigzag(Z,X,*)

Fig. 7: tilt and zigzag operations for the Z plane of a three-dimensional box (a). The first operand of both operations selects the planes to modify; the
second selects the directions along which increasing (tilt) or alternating (zigzag) shifts are applied.

the plane’s tasks to a higher dimensional space allows more
bandwidth to be exploited. Rubik makes this easy by facilitat-
ing mapping for arbitrary number of dimensions.

Fig. 6 shows two boxes of 216 objects subdivided into
eight 27-object groups. The first box’s children are planes,
and the second box’s children are cubes. Regardless of the
particular structure, the number of leaves in the two partition
trees is the same and each is of the same size. Such trees are
considered compatible. Two compatible trees can be mapped
by performing a simple breadth-first traversal of their leaves
and pairing off successive child boxes. The arrows in the figure
show these pairings for the example. For each pair, we take
the tasks in the child boxes in the application domain and copy
them into the corresponding boxes in the network domain.

The Rubik map operation reduces the burden of mapping
multi-dimensional spaces by allowing the user to think only
in terms of group sizes. The particular shapes of groups are
specified separately using the simple partitioning operations
discussed above. All that is required for a map is tree
compatibility. Indeed, despite their drastically different shapes,
map can be applied to any two partition trees shown in Fig. 5,
because their leaves are all the same size. They could also
be mapped to the tree in Fig. 4c, even though it has more
levels. These partitions could even be mapped to four- or five-
dimensional boxes, as long as their leaves are compatible.

D. Permuting operations

By default, the Rubik map operation copies ranks between
Cartesian spaces in scan-line order, with the highest-indexed
dimension varying fastest. While this is an intuitive default
order, a user may want to permute ranks within groups to
target bandwidth or latency optimizations. Rubik has several

operations that allow tasks to be permuted to exploit properties
of the physical network: tilt, zigzag, and zorder.

Tilt. The tilt operation can increase the number of links
available for messaging on nD Cartesian networks. Fig. 7b
and 7c show illustrations of two tilts applied to a 3D box.
Conceptually, tilt(op1,op2,op3) selects one hyperplane
(denoted by op1) and a direction (op2) along which an
increasing number (op3) of shifts are applied normal to the
direction of the hyperplane. Shifts are applied in a circular
fashion to all parallel hyperplanes resulting in a permutation
that “tilts” each hyperplane. Fig. 8 shows multiple, successive
applications of the tilt operation to a 4�4�4 box. On the left
is an untilted box, with tasks colored by identity (MPI rank)
from lightest to darkest. In the center, we see the same tasks
after permutation by one tilt, and on the right is the same box
after two tilts have been applied.

1 Z, Y, X = 0, 1, 2 # Assign names to dimensions
2 net = box([4,4,4]) # Create a box
3 net.tilt(Z, X, 1) # Tilt Z (XY) planes along X
4 net.tilt(X, Y, 1) # Tilt X (YZ) planes along Y

Fig. 8: Untilted, once-tilted, and twice-tilted 3D boxes

tilt uses the insights described in Section II to increase
the available links for communication between neighbor tasks

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Mapping pF3D
• A laser-plasma interaction code used at the

National Ignition Facility (NIF) at LLNL	

• Three communication phases over a 3D virtual
topology:	

• Wave propagation and coupling: 2D FFTs within XY planes	

• Light advection: Send-recv between consecutive XY planes	

• Hydrodynamic equations: 3D near-neighbor exchange

���15

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Mapping pF3D
• A laser-plasma interaction code used at the

National Ignition Facility (NIF) at LLNL	

• Three communication phases over a 3D virtual
topology:	

• Wave propagation and coupling: 2D FFTs within XY planes	

• Light advection: Send-recv between consecutive XY planes	

• Hydrodynamic equations: 3D near-neighbor exchange

���15

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Mapping pF3D
• A laser-plasma interaction code used at the

National Ignition Facility (NIF) at LLNL	

• Three communication phases over a 3D virtual
topology:	

• Wave propagation and coupling: 2D FFTs within XY planes	

• Light advection: Send-recv between consecutive XY planes	

• Hydrodynamic equations: 3D near-neighbor exchange

���15

into nx columns and ny rows resulting in nx � ny � nz sub-
domains. Within each plane, rows and columns are arranged
into sub-communicators for the all-to-all’s discussed above.
For the test problem used in this paper, pF3D uses nx =
16, ny = 8 and nz is calculated according to the number of
processors available. In particular, for weak scaling the mesh
is refined along the Z-direction, adding more XY planes and
thus using more processors.

Table I lists the percentage of time spent in the top three
MPI routines in pF3D when running on 2,048 and 16,384
cores of BG/P. A significant amount of the time is spent in
MPI Send (communication between adjacent XY planes) and
in MPI Alltoall over X and Y sub-communicators. The point-
to-point messages are 320 and 480 KB in size whereas the
all-to-all messages are 20 KB in size. Therefore, if we can
map the XY planes such that we optimize the point-to-point
sends between the planes while simultaneously improving the
collective communication for the X and Y FFTs, we can
expect performance improvements.

2048 cores 16384 cores
MPI call Total % MPI % Total % MPI %

Send 4.90 28.45 23.10 57.21
Alltoall 8.10 46.94 7.30 18.07
Barrier 2.78 16.10 8.13 20.15

TABLE I: Breakdown of the time spent in different MPI calls for pF3D
running on 2,048 and 16,384 cores of Blue Gene/P (for the TXYZ mapping)

B. Baseline performance

To establish a baseline performance, we ran pF3D with the
default mapping on BG/P. The default mapping, referred to as
TXYZ, takes the MPI processes in rank order and assigns them
to cores within a node first (the T dimension), then moving
along the X direction of the torus, then Y , and finally the Z
direction. The times spent in computation and communication
are shown as a stacked bar chart in Fig. 10.

Fig. 10: Weak scaling performance of pF3D on Blue Gene/P for the default
TXYZ mapping

The trend suggests that as more processors are used, com-
munication takes up an increasing fraction of the total runtime,

culminating in 35% for 65,536 cores. For applications with
near-neighbor communication, the TXYZ mapping typically
represents a decent default as processes that are close in MPI
rank space are generally placed close on the torus network.
Further, since both the application domain as well as the
mapping are XYZ-ordered, while not optimal, it is a scalable
mapping. However, considering the results of Section II and
the large message sizes of pF3D’s point-to-point communica-
tions, a slightly higher latency in exchange for more effective
bandwidth may be beneficial. In the next section, we explore
mappings that aim at further improving the performance.

C. Mapping on 2,048 cores
Based on the understanding of the communication structure

of pF3D, one can use Rubik to generate mappings aimed at
optimizing both its point-to-point and collective communica-
tion. Here, we use mappings for 2048 cores (512 nodes) as
an example to explain the process of using Rubik as well as
to explore why certain mappings perform better than others.
At 2048 cores, the BG/P partition is a 8 � 8 � 8 torus with
four cores per node and the pF3D process grid is 16�8�16.
Following the discussion above, the goal is to place all MPI
processes within a pF3D plane close on the network. The
corresponding Rubik code (below) first tiles the application
domain (line 2) into 16�8 planes and the torus into 8�8�2
slabs (line 5) as shown below. In the rest of the paper, we
refer to this basic mapping as tiled. Subsequently, we tilt the
planes along the X (line 8) and Y (line 9) directions. These
mappings are referred to as tiltX and tiltXY respectively.

1 app = box([16, 8, 16])
2 app.tile([16, 8, 1])
3

4 torus = box([8, 8, 8, 4])
5 torus.tile([8, 8, 2, 1])
6

7 torus.map(app)
8 torus.tilt(Z, X, 1) # tilt XY planes along X
9 torus.tilt(Z, Y, 1) # tilt XY planes along Y

10

11 torus.write_map_file(f)

Fig. 11 shows the reduction in the time spent in the top
four MPI routines using each of the optimized mappings –
XYZT, tile, tiltX and tiltXY. The XYZT mapping reduces
the time spent in MPI Sends significantly because compared
to the TXYZ mapping, there is less contention for links
during message exchanges between pF3D planes. In the TXYZ
mapping, four cores on each node and also nodes with the
same X coordinate contend for Y direction links. This is
avoided in the XYZT mapping by spreading each pF3D plane
to two torus planes and hence using more links (in Z) for the
inter-plane communication. In the tiled mapping, four adjacent
pF3D planes are placed on the four cores of each node of two
adjacent XY -planes of the torus network. As shown in Fig. 11,
this provides a good and scalable mapping which outperforms
the XYZT mapping also. Inter-plane communication is now
confined within a node to the extent possible.

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Performance benefits

���16

 0

 5

 10

 15

 20

TXYZ XYZT tile tiltX tiltXY

T
im

e
(s

)

Mapping

Comparison of different mappings on 2,048 cores

Barrier
All-to-all

Send
Receive

A. Bhatele et al. Mapping applications with collectives over sub-communicators on torus networks. In Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’12. November 2012. LLNL-CONF-556491.

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Performance benefits

���16

 0

 5

 10

 15

 20

TXYZ XYZT tile tiltX tiltXY

T
im

e
(s

)

Mapping

Comparison of different mappings on 2,048 cores

Barrier
All-to-all

Send
Receive

A. Bhatele et al. Mapping applications with collectives over sub-communicators on torus networks. In Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’12. November 2012. LLNL-CONF-556491.

 0

 200

 400

 600

 800

 1000

2048 4096 8192 16384 32768 65536

T
im

e
pe

r
ite

ra
tio

n
(s

)

Number of cores

Execution time for different mappings of pF3D

Default Map
Best Map

60%

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Visualizing network traffic using
Boxfish

���17

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Visualize sub-communicators

���18

(a)

(b)

Fig. 7. (a) We explore the behavior of five different communicator layouts, from left to right we show an individual x-phase communicator in the
TXYZ (default), XYZT, Tile, TiltZ, and TiltZY mapping strategies. (b) Nodes of a single xy-slab highlighted for the different mappings.

and 8(b) (1,024 nodes). By using an interactive slider that controls all
five views simultaneously we can provide potential explanations for
the performance measurements in Table 1. In particular, the TXYZ
mapping entirely excludes communication in the z-direction, strongly
clustering communication in the other two as only half planes com-
municate. Instead, the XYZT mapping spreads out the nodes more
and utilizes some z-links within a slab. The minimaps clearly show a
more even distribution of communication load even though the same
patterns as the TXYZ mappings are apparent. This provides a sig-
nificant boost in performance by more than doubling the total band-
width. The tile mapping acts roughly like a rotated XYZT mapping
and shows very similar behavior and performance. The TiltZ map-
ping however further balances the communication. In particular, note
how both the top and bottom minimap indicate (relative) increases in
x communication. Since the total amount of communication is in-
dependent of the mapping, this increase actually indicates a further
balancing of the communication. The better distribution of traffic is
correlated with higher performance. Finally, the TiltZY follows the
same trend: The minimaps, especially the topmost, indicate much
more evenly distributed network traffic and the bandwidth indicates
better performance.

These experiments strongly suggest that evenly distributing the traf-
fic leads to better bandwidth usage. Part of the current hypothesis
is that increasing the effective bounding box sizes of the slabs and
evening out their aspect ratios drastically increases the number of po-
tential routes a packet can choose. Coupled with the dynamic routing
of the BG/P system, this may be the cause for the increase in aggregate
bandwidth. Note that the fact that providing more routes increases the
potential bandwidth is expected. However, under the current think-
ing pF3D is not bandwidth limited thus the fact that increasing the
available bandwidth caused increased traffic rates was a novel finding.
Additionally, the best mappings clearly increase the distance packets
must travel which, however, does not seem to have a negative effect.
This is especially surprising for the default mapping as much of its
x communication is restricted to intra-node communication which is
expected to be significantly faster than any inter-node messaging. By
providing an intuitive way to explore and illustrate the network traf-
fic our tool has been instrumental in better understanding this unex-
pected network behavior, overturning assumptions, and forming new
hypotheses.

(a)

(b)

Fig. 8. Comparison of five different node mappings for a simulation run
of (a) 512 and (b) 1,024 node. The x and y phases of simulation are
shown in the top and bottom, respectively.

(a)

(b)

Fig. 7. (a) We explore the behavior of five different communicator layouts, from left to right we show an individual x-phase communicator in the
TXYZ (default), XYZT, Tile, TiltZ, and TiltZY mapping strategies. (b) Nodes of a single xy-slab highlighted for the different mappings.

and 8(b) (1,024 nodes). By using an interactive slider that controls all
five views simultaneously we can provide potential explanations for
the performance measurements in Table 1. In particular, the TXYZ
mapping entirely excludes communication in the z-direction, strongly
clustering communication in the other two as only half planes com-
municate. Instead, the XYZT mapping spreads out the nodes more
and utilizes some z-links within a slab. The minimaps clearly show a
more even distribution of communication load even though the same
patterns as the TXYZ mappings are apparent. This provides a sig-
nificant boost in performance by more than doubling the total band-
width. The tile mapping acts roughly like a rotated XYZT mapping
and shows very similar behavior and performance. The TiltZ map-
ping however further balances the communication. In particular, note
how both the top and bottom minimap indicate (relative) increases in
x communication. Since the total amount of communication is in-
dependent of the mapping, this increase actually indicates a further
balancing of the communication. The better distribution of traffic is
correlated with higher performance. Finally, the TiltZY follows the
same trend: The minimaps, especially the topmost, indicate much
more evenly distributed network traffic and the bandwidth indicates
better performance.

These experiments strongly suggest that evenly distributing the traf-
fic leads to better bandwidth usage. Part of the current hypothesis
is that increasing the effective bounding box sizes of the slabs and
evening out their aspect ratios drastically increases the number of po-
tential routes a packet can choose. Coupled with the dynamic routing
of the BG/P system, this may be the cause for the increase in aggregate
bandwidth. Note that the fact that providing more routes increases the
potential bandwidth is expected. However, under the current think-
ing pF3D is not bandwidth limited thus the fact that increasing the
available bandwidth caused increased traffic rates was a novel finding.
Additionally, the best mappings clearly increase the distance packets
must travel which, however, does not seem to have a negative effect.
This is especially surprising for the default mapping as much of its
x communication is restricted to intra-node communication which is
expected to be significantly faster than any inter-node messaging. By
providing an intuitive way to explore and illustrate the network traf-
fic our tool has been instrumental in better understanding this unex-
pected network behavior, overturning assumptions, and forming new
hypotheses.

(a)

(b)

Fig. 8. Comparison of five different node mappings for a simulation run
of (a) 512 and (b) 1,024 node. The x and y phases of simulation are
shown in the top and bottom, respectively.

TXYZ XYZT Tile TiltZ TiltZY

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Detailed 2D and 3D views

���19

(a) TXYZ mapping, x (top) and y (bottom) phases (b) XYZT mapping, x (top) and y (bottom) phases

(c)

Fig. 9. Minimap summary of pF3D at different size runs for the (a) TXYZ and (b) XYZT node mappings at both the x and y phase of communication
(top and bottom, respectively). (c) The 2D projection of communication for the 16,384 node run (with a plane selected in the 3D view) of pF3D in
the y phase of communication with the XYZT mapping. In the 3D view, nodes lying in the same y communicator are given the same color. We
can see that there is no communication in the z direction (in the middle and bottom minimap and 3D view) as communication does not take place
across communicators.We observe similar patterns at all scales of pF3D.

5.3 Visualizing the Behavior of pF3D at Scale
Our final experiment in the case study is to observe the communica-
tion behavior of pF3D as the size of the problem scaled to larger runs
on BG/P. Fig. 9 shows a summary of the different aspects of this visu-
alization. By loading each run simultaneously, we were again able to
visualize the data from each run using a shared color scale. One ob-
servation we can draw from the combined minimap views in Figs. 9(a)
and 9(b) is that, despite the problem size, the amount of communica-
tion that happens on each link stays roughly the same across scales.

Moreover, even when the network topology changes from a cube to
a rectangular-prism, generic communication trends in each direction
stay relatively fixed. These two observations help explain why pF3D
scales well to larger sizes and corroborate well with the scientists’ ex-
periences running pF3D on larger scales.

5.4 Exploring Fine-Grained Network Behavior
For one of our simulation runs (1,024 nodes, using an XYZT node
mapping described in Section 5.2) the tool immediately highlighted

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

MILC on Blue Gene/Q

���20

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

MILC on Blue Gene/Q

���20

A. Bhatele et al. Improving application performance via task mapping on IBM Blue Gene/Q.
In Proceedings of IEEE International Conference on High Performance Computing (to
appear), HiPC '14. December 2014. LLNL-CONF-655465.

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop ���21

JOB PLACEMENT & ROUTING

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Performance variability

���22

Average messaging rates for batch jobs running a laser-plasma interaction code

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Performance variability

���22

Average messaging rates for batch jobs running a laser-plasma interaction code

Total number of bytes sent on the network

Time spent sending the messages

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

pF3D characterization

���23

 0
 10
 20
 30
 40
 50
 60
 70

T
im

e
(s

)

Time spent in communication and computation in pF3D

Communication

 0
 50

 100
 150
 200
 250

Hopper Intrepid Mira

T
im

e
(s

)

Computation

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

pF3D characterization

���23

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Hopper Intrepid Mira

T
im

e
(s

)

Time spent in MPI calls on 512 nodes

Alltoall
Barrier

Send
Recv

Probe

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Sources of variability

• Operating system noise (OS jitter)	

• OS daemons running on some cores of each node	

• Placement/location of the allocated nodes for the job
(Allocation shape)	

• Contention for shared resources (Inter-job
contention)	

• Sharing network links with other jobs

���24

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

4x8x8-shaped pF3D job

���25

April 11 16

April 11 April 16

https://scalability.llnl.gov/performance-analysis-through-visualization/software.php

https://scalability.llnl.gov/performance-analysis-through-visualization/software.php

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

4x8x8-shaped pF3D job

���25

April 11 16

April 11 April 16
MILC job in green 25% higher messaging rate

https://scalability.llnl.gov/performance-analysis-through-visualization/software.php

https://scalability.llnl.gov/performance-analysis-through-visualization/software.php

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

4x8x8-shaped pF3D job

���26

April 11 April 16b

April 11 16

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

4x8x8-shaped pF3D job

���26

April 11 April 16b

April 11 16

MILC job in green 27.8% higher messaging rate,	

LSMS is not communication-heavy

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Slowest vs. fastest job

���27

March 15 April 04

March 15 April 04

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Slowest vs. fastest job

���27

March 15 April 04

March 15 April 04

Three conflicting
jobs, two MILC

2.29X higher messaging rate

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Effect of MILC on pF3D

���28

 0

 5

 10

 15

 20

 25

35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90

N
um

be
r

of
 r

un
s

Bin sizes (Total messaging rate)

Comparing pF3D runs w/ and w/o MILC

w/ MILC
w/o MILC

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Effect of MILC on pF3D

���28

 0

 5

 10

 15

 20

 25

35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90

N
um

be
r

of
 r

un
s

Bin sizes (Total messaging rate)

Comparing pF3D runs w/ and w/o MILC

w/ MILC
w/o MILC

avg = 58 MB/s	

σ = 9.12 MB/s

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Effect of MILC on pF3D

���28

 0

 5

 10

 15

 20

 25

35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90

N
um

be
r

of
 r

un
s

Bin sizes (Total messaging rate)

Comparing pF3D runs w/ and w/o MILC

w/ MILC
w/o MILC

avg = 66 MB/s	

σ = 8.69 MB/s

avg = 58 MB/s	

σ = 9.12 MB/s

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Modeling job placements and
message routing

• Dragonfly topology: a two-level hierarchical topology	

• Routing choices: static (deterministic) vs. dynamic
(adaptive), direct vs. indirect (random jumps)	

• Placement options: random, round-robin, blocked

���29

All-to-all network
in columns: Level 1

Network Ports

Processor
Ports

Level-1 network

Level-2 network

A GROUP WITH 96 ROUTERS

Compute Nodes

A DRAGONFLY ROUTER

Chassis (All-to-all network
in rows: Level 1)

Level-2 all-to-all network
(not all groups or links are

shown)

THE DRAGONFLY TOPOLOGY

Fig. 1: The structure of a dragonfly network

Two prominent implementations of multi-level direct net-
works are the PERCS interconnect by IBM [3] and the Cascade
system by Cray [4]. We focus on the Cascade system which
is based on the dragonfly topology designed by Kim et al. [1].
The Cascade (Cray XC30) system uses the Aries router as
its building block and has been used in supercomputers such
as Edison at NERSC, Lawrence Berkeley National Laboratory
and Piz Daint at the Swiss National Supercomputing Centre.

In this paper, we use the dragonfly topology to build a
prospective 100+ Petaflop/s system. The parameters for this
prototype machine are inspired by the Cray Cascade system.
We have, however, simplified the router and link bandwidths
for ease of modeling. The building block is a network router
with 30 network ports and 4 processor ports (Figure 1). Each
network router is connected to four compute nodes (of 24 cores
each) through the processor ports. Sixteen such routers form
a chassis and six chassis are combined together to form a
group (16 ⇥ 6 = 96 routers in total). Each network router is
connected to all other routers in its chassis (15 ports) and to
the corresponding routers in five other chassis (5 ports). These
links along rows and columns in the group are called level 1
(L1) links in this paper. The remaining 10 ports are used to
connect to network routers in other groups. These inter-group
links form the second level (L2) of the network. L1 and L2
links together form a two-level direct network.

We take 960 such groups comprised of 96 routers (384
nodes) each to build a very large dragonfly system. This
machine has 8,847,360 cores (8.8 million) and extrapolating
the Edison system — a peak performance of 164.5 Petaflop/s.
Two major differences between the prototype machine used in
the paper and the Cray Cascade system are: 1. There is only
one L1 link between each pair of routers along the column
whereas the Cascade machine has three such links leading
to three times the bandwidth in that dimension, 2. Cray only
allows for 240 groups which leads to 4 links connecting each
pair of groups and hence much higher bandwidth.

Related Work: Formal models such as LogP [8] and
LogGP [9] have been used to analyze the communication in
parallel applications for a long time. Subsequently, based on
the LogP model, models such as LoPC [10], LoGPC [11],
LoGPG [12], LogGPO [13], and LoOgGP [14] were developed
to account for network congestion. Unlike the model in this
paper, these models do not consider routing protocols to model
congestion and do not model the traffic on individual links.
Simulators based on these models, e.g. LogGOPSim [15],
simulate application traces and are closer to our work.

Hoefler et al. [16] developed models for the traffic on
individual links in the presence of congestion for three different

network topologies – 3D torus, PERCS and Infiniband. Bhatele
et al. used BigSim [17], a discrete-event simulator to study
application performance under different task mappings and
routings on an IBM PERCS machine [5]. The unusually long
time spent in each BigSim simulation prompted the authors to
use analytical modeling in this paper. Chakaravarthy et al. [18]
present a formal analysis of the mappings proposed in our
previous publication [5] and some new mappings.

Three things distinguish this work from the previous com-
munication and congestion modeling work. First, we consider
different alternative routings with adaptivity and study their
impact on network throughput. Second, we consider repre-
sentative job workloads at supercomputing sites and simulate
different routings and job placement strategies for these work-
loads. Third, this paper presents analysis for the dragonfly
network at an unprecedented scale (8.8 million cores).

III. PREDICTION METHODOLOGY FOR LINK UTILIZATION

Modeling is a powerful tool to explore design choices for
future systems; it is also useful for analyzing scenarios that
are challenging or expensive to deploy on existing systems.
We present a model and its implementation to predict network
throughput for dragonfly networks.

A. Prediction Model

In order to compare the relative benefits of different job
placement policies and routing strategies, we have developed
a model that generates the traffic distribution for all network
links given a parallel communication trace. Our hypothesis
is that the traffic distribution is indicative of the network
throughput we can expect for a given scenario. The inputs
to this model are:
— A network graph among dragonfly routers, N = (V,E).
— An application communication graph for one time step or
phase in terms of MPI ranks, AC = (V C , EC).
— A job placement/mapping of MPI ranks to physical cores.
— A routing strategy, <.

The model accounts for contention on network links and
outputs the expected traffic on all network links for each phase
of the application. All communication in one time step or phase
is assumed to be occurring simultaneously on the network
and all messages for the phase are considered to be in flight.
For each phase, an iterative solve is performed to get the
probabilistic traffic distribution on the links. Only one iteration
may be needed for simple cases, such as the direct routing. The
iterative solve in the model is described below.

2

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Single jobs

• All-to-all over sub-
communicators	

• Various traffic metrics

���30

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Adaptive Direct Static Indirect Adaptive Indirect Adaptive Hybrid

Many to Many Pattern (All Links)

Median Average Lowest maximum

Fig. 6: Many to many pattern (M2M): direct routing with randomized placement has lower average and maximum traffic.

on near-by physical cores, such communication pattern arise.
Figure 4 (bottom) shows the expected distribution of traffic for
execution of Spread on the full system.

The first thing to observe is that almost all links are utilized
irrespective of the job placement and the routing. This is
a direct impact of the spread of the communicating pairs
that the benchmark provides. Another effect of the spread
is the minimal impact of the job placement on the load
distribution. Next, we note that while the average quality of the
distribution has improved, the gap between the maximum and
other data points (average, median and quartiles) has increase
significantly for indirect routings. Similar observation can be
made for direct routing with randomized placement if we
compare with the results for M2M. Further analysis of L1
and L2 links traffic distribution shows that such a skewness is
caused by overloading of certain L1 links. We believe this
is caused by non-uniformity in the communication pattern
— randomization of communication patterns is probably not
uniformly distributing them.

The next important observation from the Figure 4 (bottom)
is the lower values of all data points (minimum, quartiles,
average, and maximum) for direct routing in comparison to
the indirect routing. This result is similar to what we described
in M2M — given a sufficiently distributed communication
pattern, indirect routing only adds extra traffic because of the
extra hops it takes. Finally, we note that the adaptive versions
of the routings reduce the maximum traffic by up to 10%.
Other than that, they provide a very similar distribution. As we
saw in M2M, the AH routing provides a distribution similar
to AI with lower maximum traffic due to use of direct routes.

F. Summary of Full System Predictions

Based on the analysis so far, we list the following summa-
rizing points for single jobs executed on full systems:

— For patterns with many communicating nearby MPI ranks,
blocking may reduce the average and quartiles (UMesh).
— Direct routing may overload a few links, especially L2 links,
if the communication is distribute evenly (4D Stencil, M2M).
— Randomized placement spreads traffic for patterns with
non-uniform distribution of traffic (4D Stencil, M2M).
— Indirect routing is helpful in improving the distribution of
traffic, but typically increases the average traffic (all patterns).
— If the communication pattern and job placement spreads
the communication uniformly, indirect routing may increase
the quartiles and the maximum traffic (M2M, Spread).
— Adaptive routing typically provides a similar traffic distribu-
tion, but may lower the maximum traffic significantly. Thus,
in order to save space, we avoid showing results for static
routings in the rest of the paper.
— Adaptive hybrid provides a traffic distribution similar to AI,
but may provide a higher or lower maximum traffic depending
on the relative performance of AD and AI.

G. Variations in Job Size

We now present a case study in which one of the patterns,
M2M, is executed in isolation on the full system, but occupies
only a fraction of the cores. For comparison, we use M2M
predictions on the full system from Figure 6 (top) and traffic
distributions presented in Figure 7 for predictions using 66%
and 33% of cores in isolation.

We observe very similar trends in traffic distribution across
job placements and routings as we move from predictions

8

input parameters were provided: 1) communication pattern
based on MPI ranks, 2) mapping of MPI ranks to physical
cores, 3) system configuration including the routing strategy.
Depending on the communication pattern and the routing,
different core counts were used for runs. Typically, for SD
and AD routing schemes, 512 cores were used to complete
the simulation in ⇡ 5 minutes. For the remaining routings,
2, 048 cores were used to simulate the lighter communication
patterns, such as structured grid, in up to ⇡ 30 minutes. For
heavy communication patterns, e.g. many to many, 4096�8192
cores were required to finish the runs in up to two hours.

V. PREDICTIONS FOR SINGLE JOBS

The first half of the experiments are focused on under-
standing network throughput for single job execution on the
dragonfly interconnect. We begin this section with a brief guide
on how to analyze the box plots presented in the rest of the
paper. Following it, the four communication patters are studied
in detail. Finally, we present prediction results for the case in
which the many-to-many pattern is executed in isolation on
the system with variation in the number of cores used by it.

A. Description of the Plots

Figure 2 shows a typical box plot used in this paper. The
x-axis contains combinations of routing strategies and job
placement policies, which are grouped based on the routing
strategy. The log scale based y-axis is the amount of traffic
flowing on links in megabytes. For each combination of job
placement and routing, six data points are shown — the
minimum traffic on any link, the first quartile – 25% of links
have lesser traffic than it, the median traffic, the average traffic
on all the links, the third quartile – 75% of links have lesser
traffic than it, and the maximum traffic on any link. The plot
also shows a horizontal dotted blue line that indicates the
lowest maximum traffic among all the combinations.

1

10

1E2

P1 P2

Li
nk

 U
sa

ge
 (

M
B)

Job placements grouped based on Routing

Example Plot

minimum
1st quartile

average

median
3rd quartile
maximum

minimum and 1st quartile are same

Lowest maximum

Fig. 2: Example to explain the data displayed in the plots.

Very high value of maximum traffic relative to other
data point indicates network hotspots . Hence, it is a good
measure to identify scenarios whose throughput is impacted
by bottleneck link(s). The average traffic is an indicator of
the overall load on the interconnect. It is helpful in finding
scenarios that reduce total traffic and hops taken by the
messages. Comparing the average with median is valuable for
estimating the distribution. If average is significantly higher
than the median (P1 in Figure 2), the distribution is skewed
to the right — most of the links have relatively low traffic,
but a long tail stretches to the right. In contrast, if median

is higher than the average, the distribution is skewed to the
left — most of the links have more traffic than the average,
but a long tail stretches to the left. Finally, the quartiles can
be used to find more information about how much fraction
of the links had what volume of traffic flowing through them.
Overall, we suggest that a distribution with closer values of
these data points is good for network throughput. In case of
similar distributions, lower values are better for throughput.

B. Unstructured Mesh Pattern (UMesh)

In this pattern, each MPI rank r communicates with 6 �
20 other MPI ranks in its neighborhood (within range [r-30,
r+30]). Such a pattern is representative of unstructured mesh
based and particle in cell (PIC) codes with space filling curve
based mapping of MPI ranks (e.g. morton ordering).

Effect of Job Placement: Figure 3 (top) presents the expected
link utilization when UMesh is executed on the full system. It
can be seen that as we increase the blocking in job placement,
the maximum, the average, and the quartiles decrease signif-
icantly. For UMesh with many communicating nearby MPI
ranks, this trend is observed because increasing blocking from
nodes to router avoids network communication. Additionally, it
may also decrease the number of hops traversed by messages,
since it places most communicating MPI ranks within a chassis
or a group (as we move from RDR to RDC and RDG).

Effect of Indirect Routing: Comparison among routings
shows that the use of any form of indirect routing leads to an
increase in average traffic on the links, a trend that is seen in all
results presented in this paper. This is expected since indirect
routing forces use of extra hops. However, indirect routing
also leads to a more uniform distribution of loads on the links
which is demonstrated by the closes values of the quartiles.
Also, the median for most of indirect routing is close to the
average for indirect routing, in contrast with direct routing for
which median is mostly zero (indicating a distribution skewed
to the left). Note that although indirect routing increases the
average, owing to a better distribution, the maximum is never
worse than the direct routings for a given job placement. These
characteristics indicate better network throughput for indirect
routing in comparison to direct routing.

We also observe that for direct routing with RRN and RRR
placements (shown for SD in Figure 3 (bottom)), only a few
L2 links are being used heavily, thus increasing the overall
maximum. These are the L2 links that connect the consecutive
groups which are used by the communication among nearby
MPI ranks mapped to the nodes and routers placed in a
round-robin manner. Indirect routing offloads these L2 links
by distributing the traffic to other unused L2 links.

Effect of Adaptivity: We observe that the expected traffic for
adaptive versions of the routing schemes have very similar
distribution to the static version with similar or lesser corre-
sponding values for the data points of interest. In particular, for
RDC and RDG, the AI routing scheme reduces the maximum
traffic by 50% in comparison to its static counterpart, SI.
We attribute this improvement to unloading of overloaded
L1 links. As shown in Figure 3 (bottom), comparison of the
average suggests that the L1 links are more loaded which is
expected given the dominant nearby MPI rank communication
in UMesh. For RDC and RDG, the AI routing is able to

5

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Edison @ NERSC

���31

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Edison @ NERSC

���31

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Edison @ NERSC

���31

LLNL-PRES-659275

Abhinav Bhatele @ Petascale Tools Workshop

Summary

• Projecting information to non-traditional domains
can help	

• Rubik: Python-based tool for task mappings	

• Boxfish:	

• Visualize network traffic over links	

• Visualize placement of jobs on the nodes

���32

This work was performed under the auspices of the U.S. Department of Energy by	

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

Petascale	 Tools	 Workshop	 ◆	 August	 04,	 2014

http://computation-‐rnd.llnl.gov/extreme-‐computing/
interconnection-‐networks.php

This	 work	 was	 funded	 by	 the	 Laboratory	 Directed	 Research	 and	
Development	 Program	 at	 LLNL	 under	 project	 tracking	 code	 13-‐ERD-‐055:	
STATE	 -‐	 Scalable	 Topology	 Aware	 Task	 Embedding.

LLNL: Abhinav Bhatele,	

Peer-Timo Bremer, Todd Gamblin,	

Katherine E. Isaacs, Steven H. Langer,	

Kathryn Mohror, Martin Schulz 	

!
Illinois: Ronak Buch, Nikhil Jain,	

Harshitha Menon, Laxmikant V. Kale,	

Michael Robson	

!
Utah: Amey Desai, Aaditya G. Landge,	

Valerio Pascucci	

!
Purdue: Ahmed Abdel-Gawad,	

Mithuna Thottethodi	

!
LBL: Brian Austin, Nicholas J. Wright

http://computation-rnd.llnl.gov/extreme-computing/interconnection-networks.php

