
Google Confidential and Proprietary

Linux perf_events status
update
Stephane Eranian
Google
Petascale Tools Workshop 2014

Google Confidential and Proprietary

Agenda
● new features, updates
● upcoming features
● use case
● Q&A

Google Confidential and Proprietary

Miscellaneous progress
● Intel official event tables available online now!

○ https://download.01.org/perfmon/
○ Andi Kleen’s patches to use symbolic event names with perf

● IBM Power 8 branch stack sampling patches under LKML review
○ similar to Intel LBR sampling capabilities
○ seamless integration under perf_events branch stack abstraction

● Intel Haswell LBR call-stack patches under LKML review
○ LBR push/pop to collect call stack statistically (last 16 calls)
○ better call stack unwinding support: no framepointer, no dwarf

● Ability to sample interrupted machine state under LKML review
○ and includes the PEBS machine state in precise mode

● Intel IvyTown uncore PMU support since Linux 3.12

https://download.01.org/perfmon/
https://download.01.org/perfmon/

Google Confidential and Proprietary

perf: monitoring power consumption (RAPL)

● Intel Running Average Power Limit (RAPL) counters
○ power limiting, energy consumption in Joules
○ available in SNB*, IVB*, HSW*
○ consumption also reported by turbostat tool

● Integration in perf_events with Linux 3.14
○ new separate uncore PMU: power
○ system-wide mode counting only
○ package-level consumption only
○ new events: power/energy-cores/, power/energy-pkg/, power/energy-dram/,

power/energy-gpu/

perf stat -a -e power/energy-cores/,power/energy-pkg/ -I 1000 sleep 10
time counts unit events
 1.000119482 7.72 Joules power/energy-cores/
 1.000119482 12.67 Joules power/energy-pkg/

Google Confidential and Proprietary

perf: measuring memory bandwidth on client CPU

● Intel X86 client processors only (SNB/IVB/HSW)
○ using integrated memory controller (IMC)
○ PCI space, free running counters

● Integration in perf_events with Linux 3.15
○ separate uncore PMU: uncore_imc
○ system-wide, counting mode only
○ two events: uncore_imc/data_reads/, uncore_imc/data_writes/
○ counting full cache-line accesses only

perf stat -a -e uncore_imc/data_reads/,uncore_imc/data_writes/ -I 1000 sleep 2
time counts unit events
 1.000181288 13442.16 MiB uncore_imc/data_reads/
 1.000181288 4469.58 MiB uncore_imc/data_writes/
 2.000418548 13442.89 MiB uncore_imc/data_reads/
 2.000418548 4469.79 MiB uncore_imc/data_writes/

Google Confidential and Proprietary

Hyperthreading counter corruption bug
● Measuring memory events may corrupt events on sibling thread

MEM_LOAD_UOPS_RETIRED.*, MEM_UOPS_RETIRED.*
MEM_LOAD_UOPS_LLC_HIT_RETIRED.*
MEM_LOAD_UOPS_LLC_MISS_RETIRED.*
Example:
THREAD0: counter0=MEM_LOAD_UOPS_RETIRED:L3_MISS
THREAD1: counter0 may be corrupted regardless of measured event

● Impacted CPUs: SNB*, IVB*, HSW*

● No workaround in firmware
○ disable HT or measure only one thread/core (but clashes with NMI watchdog)

● Linux 3.11
○ blacklisting events on IVB even if HT is off (may add SNB, HSW soon)

● Google working on modifications to event scheduler
○ enforce mutual exclusion on sibling counters when corrupting events used

2013 slide

Google Confidential and Proprietary

HT bug: Google workaround eliminates corruption
● Posted kernel patch series to eliminate corruption

○ still under LKML review
○ developed by M. Dimakopoulou (Google intern in Paris)

● Enforce mutual exclusion between HT at counter granularity
○ uses cache-coherency style protocol: Shared, Exclusive, Unused
○ leverages built-in event scheduler
○ adds dynamic event constraints based on sibling thread state

● No modifications to user tools or machine config

● All events can be measured safely

● Current limitations (work-in-progress):
○ no re-integration of leaked counts (can be huge > 3x)
○ PMU starvation: some events never scheduled because of other HT

Google Confidential and Proprietary

HT bug: XSU protocol

● Events
○ Non-Corrupting (N)
○ Corrupting (C)

● Counter States
○ Xclusive (X)
○ Shared (S)
○ Unused (U)

● Principles

○ event scheduling on one HT affects the state of the other HT
○ C events → allowed on counters only with U state
○ N events → allowed on counters only with U or S state

--
--
--

--
N
C

N
N
N

--
N
C

C
C
C

--
N
M

U
S
X

U
U
U

U
S

S
S

U X

✓
✗

✓

✓

✓
✓

✓
✗
✗

CPU0 CPU1 CPU0 CPU1 CPU0 CPU1

State0 State1 State0 State1 State0 State1

Google Confidential and Proprietary

upcoming features

Google Confidential and Proprietary

perf tool: profiling jitted code

● Many runtimes use jit-in-time (JIT) compilation
○ openJDK Java, V8, DART, ….

● perf report very limited support for symbolizing jitted code
○ runtime emits /tmp/perf-PID.map file: addr, size, symbol
○ no support for assembly view
○ no support for jit code cache reuse

Google Confidential and Proprietary

perf tool: current situation with OpenJDK Java
$ perf record java jnt/scimark/commandline

Samples: 125K of event 'cycles'
Event count (approx.): 102160463028
#
Ovh Cmd ShObj Symbol
.....
 2.16% java perf-17584.map [.] 0x00007fed17fdb9fd
 2.13% java perf-17584.map [.] 0x00007fed17fdb9f9
 2.00% java perf-17584.map [.] 0x00007fed17fdf3ab
 1.98% java perf-17584.map [.] 0x00007fed17fdb9ca
 1.76% java perf-17584.map [.] 0x00007fed17fdf395
 1.68% java perf-17584.map [.] 0x00007fed17fddfed
 1.51% java perf-17584.map [.] 0x00007fed17fd7dfe
 1.49% java perf-17584.map [.] 0x00007fed17fde058
 1.45% java perf-17584.map [.] 0x00007fed17fde029
 …
 0.01% java libjvm.so [.] PhaseLive::compute(unsigned int)
 0.01% java perf-17584.map [.] 0x00007fed17f94a3c

perf-PID.map is not emitted by runtime, no symbolization

Google Confidential and Proprietary

perf tool: Google adding full jitted code support
● Cooperation from runtime mandatory

○ must emit function mappings
○ must emit assembly code
○ must emit source line information
○ emitted info must be timestamped to correlate with samples
○ emitted file format must be runtime and arch agnostic

● Timestamps synchronized with perf_events timestamps
○ perf_events uses sched_clock() which is not exposed to users
○ using POSIX dynamic clocks to expose a sched_clock() to user

● No modification to perf_events kernel subsystem

● Minimize changes to perf tool
○ no changes to report and annotate commands

● Similar approach used by OProfile

Google Confidential and Proprietary

perf tool: full jit code support example

$ perf record java -agentpath:libjvmti.so jnt/scimark/commandline
$ perf inject -i perf.data -o perf.data.j -j ~/.debug/jit/XXqw/jit-1815.dump
$ perf report -i perf.data.j

Samples: 124K of event 'cycles'
Event count (approx.): 101762443128
#
Ovh Cmd ShObj Symbol
.....
#
 23.38% java j-1815-245 void class jnt.scimark2.SparseCompRow.matmult(double[], double[], int[],double[])
 18.96% java j-1815-231 void class jnt.scimark2.FFT.transform_internal(double[], int)
 17.99% java j-1815-241 void class jnt.scimark2.SOR.execute(double, double[][], int)
 17.94% java j-1815-250 int class jnt.scimark2.LU.factor(double[][], int[])
 17.89% java j-1815-243 double class jnt.scimark2.MonteCarlo.integrate(int)
 2.03% java j-1815-230 void class jnt.scimark2.FFT.bitreverse(double[])
 0.27% java j-1815-251 double class jnt.scimark2.kernel.measureLU(int, double, class jnt.scimark2.Random)
 0.22% java j-1815-18 Interpreter
 0.22% java j-1815-248 void class jnt.scimark2.kernel.CopyMatrix(double[][], double[][])

Google Confidential and Proprietary

perf tool: jit code assembly view

$ perf annotate -i perf.data.j
void class jnt.scimark2.SparseCompRow.matmult(double[], double[], int[], int[], double[], int)
 Ovh%
 . . .
 2,64 │13e: cmp %ecx,%r10d
 1,84 │141:┌──jge 1d2 <Ljnt/scimark2/SparseCompRow;matmult([D[D[I[I[DI)V+0x1d2>
 │147:│ data32 xchg %ax,%ax
 2,55 │14a:│ mov 0x10(%r8,%r10,4),%ebp
 0,00 │14f:│ cmp %esi,%ebp
 1,81 │151:│ jae 22d <Ljnt/scimark2/SparseCompRow;matmult([D[D[I[I[DI)V+0x22d>
 │157:│ vmovsd 0x10(%rdx,%r10,8),%xmm1
 2,78 │15e:│ vmulsd 0x10(%r9,%rbp,8),%xmm1,%xmm1
 │165:│ vaddsd %xmm0,%xmm1,%xmm0
 2,50 │169:│ movslq %r10d,%r14
 1,97 │16c:│ mov 0x14(%r8,%r14,4),%ebp
 2,07 │171:│ cmp %esi,%ebp
 0,04 │173:│ jae 224 <Ljnt/scimark2/SparseCompRow;matmult([D[D[I[I[DI)V+0x224>
 1,58 │179:│ vmovsd 0x18(%rdx,%r14,8),%xmm1
 0,90 │180:│ vmulsd 0x10(%r9,%rbp,8),%xmm1,%xmm1
 │187:│ mov 0x18(%r8,%r14,4),%ebp

Google Confidential and Proprietary

perf tool: cache line access analysis

● perf c2c: profile load/store, analyze accesses patterns
○ developed by Redhat

● using abstract load/store sampling feature of perf_events
○ leverages Intel SNB/IVB/HSW load latency, precise store sampling

● Very helpful to detect:
○ cache line false sharing
○ bad NUMA locality

● under LKML review

$ perf c2c record -a sleep 10
$ perf c2c report

Google Confidential and Proprietary

perf c2c: demo

Google Confidential and Proprietary

How does Google use all of this?

CPI2: monitor CPI

1. monitor Cycles Per Instruction (CPI)
2. learn normal and anomalous behaviors
3. identify a likely antagonist, and
4. throttle it to shield victims [optional]

● Experimental data shows CPI correlates well with
○ latency
○ throughput

● CPI is easy to collect with PMU
○ PMU events easily avail: unhalted_ref_cycles,

instructions_retired

CPI2: data collection architecture

agent
task
task
task

agent
task
task
task

agent

task

agent
task
task
task

agent
task
task
task

CPI sample-
aggregatorcluster scheduler

CPI
samples

smoothed,
averaged,
CPI_spec

machines

task

task

CPI2: architecture

agent
task
task
task

agent
task
task
task

agent

task

agent
task
task
task

agent
task
task
task

CPI sample-
aggregatorcluster scheduler

CPI
samples

smoothed,
averaged,
CPI_spec

antagonist

victim

CPI_specs

CPI2: dealing with antagonist

● Examine time-correlation
between victim's CPIs and
(suspected) antagonist's
CPU usages

● Highest positive correlation
signals most likely culprit

● Antagonist throttled via
CPU hard capping

throttling period

CPI2: results

● deployed to Google's fleet

● thousands of interference events/day

● simple and effective

● 37% CPI reduction

● only using very common PMU events in counting mode

Google Confidential and Proprietary

Conclusion: we are almost there!

● All major processor architectures supported

● All key hardware features are supported now
○ Intel X86: core, uncore, PEBS, LBR, ld/st sampling, offcore_rsp, PT
○ Only incremental hardware improvements from now on

● Tool vendors adopting perf_events interface or tool
○ no more custom drivers

● Systematic and continuous profiling implemented

● Need more high-level metric tools
○ core PMU cycles breakdown, leverage uncore PMU

Google Confidential and Proprietary

Looking for help!

● full-time software engineer to help with kernel and user tool
infrastructure developments

● requirements:
○ experience with Performance Monitoring Unit (PMU) technology
○ experience with Linux kernel development
○ some experience with Javascript development
○ strong interest in the field

Google Confidential and Proprietary

References
● HT counter corruption (SandyBridge: BJ122, IvyBridge: BV98,

Haswell: HSD29)
○ http://www.intel.

com/content/dam/www/public/us/en/documents/specification-updates/3rd-
gen-core-desktop-specification-update.pdf

● CPI^2: CPU performance isolation for shared compute clusters
○ Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, John Wilkes

● Andi Kleen’s patches for full symbolic event support in perf

● HT corruption workaround patches

● perf c2c LKML patches

http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specification-update.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Zhang_2.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Zhang_2.pdf
http://research.google.com/pubs/XiaoZhang.html
http://research.google.com/pubs/EricTune.html
http://research.google.com/pubs/JohnWilkes.html
http://research.google.com/pubs/XiaoZhang.html
https://lkml.org/lkml/2014/3/14/539
https://lkml.org/lkml/2014/3/14/539
https://lkml.org/lkml/2014/6/4/610
https://lkml.org/lkml/2014/6/4/610
https://lkml.org/lkml/2014/2/28/421
https://lkml.org/lkml/2014/2/28/421

