Linux perf_events status
Google Update

Stephane Eranian
Google

Petascale Tools Workshop 2014

Google

Agenda

new features, updates
upcoming features
use case

Q&A

Google

Miscellaneous progress

e |[ntel official event tables available online now!
o https://download.01.org/perfmon/
o Andi Kleen’s patches to use symbolic event names with perf

e |IBM Power 8 branch stack sampling patches under LKML review
o similar to Intel LBR sampling capabilities
o seamless integration under perf_events branch stack abstraction

e Intel Haswell LBR call-stack patches under LKML review
o LBR push/pop to collect call stack statistically (last 16 calls)
o Dbetter call stack unwinding support: no framepointer, no dwarf

e Ability to sample interrupted machine state under LKML review
o and includes the PEBS machine state in precise mode

e Intel lvyTown uncore PMU support since Linux 3.12

https://download.01.org/perfmon/
https://download.01.org/perfmon/

Google

perf: monitoring power consumption (RAPL)

e Intel Running Average Power Limit (RAPL) counters

(@)
(@)
(@)

power limiting, energy consumption in Joules
available in SNB*, IVB*, HSW*
consumption also reported by turbostat tool

e Integration in perf_events with Linux 3.14

(©)

(@)
(@)
(@)

new separate uncore PMU: power

system-wide mode counting only

package-level consumption only

new events: power/energy-cores/, power/energy-pkg/, power/energy-dram/,
power/energy-gpu/

perf stat -a -e power/energy-cores/,power/energy-pkg/ -I 1000 sleep 10

#

time counts unit events

1.000119482 7.72 Joules power/energy-cores/
1.000119482 12.67 Joules power/energy-pkg/

Google

perf: measuring memory bandwidth on client CPU

e Intel X86 client processors only (SNB/IVB/HSW)
o using integrated memory controller (IMC)
o PCI space, free running counters

e Integration in perf_events with Linux 3.15

separate uncore PMU: uncore imc

o system-wide, counting mode only

o twoevents: uncore imc/data reads/, uncore imc/data writes/
o counting full cache- line accesses onIy

O

perf stat -a -e uncore_imc/data reads/,uncore_imc/data writes/ -I 1000 sleep 2

time counts unit events
1.000181288 13442.16 MiB wuncore_imc/data reads/
1.000181288 4469.58 MiB uncore 1mc/data writes/
2.000418548 13442.89 MiB uncore 1mc/data reads/
2.000418548 4469.79 MiB uncore_lmc/data_wrltes/

Google
Hyperthreading counter corruption bug 2073

Measuring memory events may corrupt events on sibling thread S//'
MEM LOAD UOPS RETIRED.*, MEM UOPS RETIRED.* (729
MEM LOAD UOPS LLC HIT RETIRED.*

MEM LOAD UOPS LLC MISS RETIRED.*

Example:

THREADO: counter(0=MEM LOAD UOPS RETIRED:L3 MISS

THREAD1: counter(0 may be corrupted regardless of measured event

Impacted CPUs: SNB*, IVB*, HSW*

No workaround in firmware
o disable HT or measure only one thread/core (but clashes with NMI watchdog)

Linux 3.11
o blacklisting events on IVB even if HT is off (may add SNB, HSW soon)

Google working on modifications to event scheduler
o enforce mutual exclusion on sibling counters when corrupting events used

Google

HT bug: Google workaround eliminates corruption

e Posted kernel patch series to eliminate corruption
o still under LKML review
o developed by M. Dimakopoulou (Google intern in Paris)

e Enforce mutual exclusion between HT at counter granularity
o uses cache-coherency style protocol: Shared, Exclusive, Unused
o leverages built-in event scheduler
o adds dynamic event constraints based on sibling thread state

e No modifications to user tools or machine config
e All events can be measured safely
e Current limitations (work-in-progress):

o no re-integration of leaked counts (can be huge > 3x)
o PMU starvation: some events never scheduled because of other HT

Google
HT bug: XSU protocol

P EventS CPUO_CPU1
o Non-Corrupting (N) N
o Corrupting (C) ><C
e Counter States State0 State
o Xclusive (X) g 8
o Shared (S) X | U

o Unused (U)

® Principles

o event scheduling on one HT affects the state of the other HT

AN

CPUO_CPU1

N | - |/
N | N |/
V><C X
State0 State1
UlsS
S | S |

o C events — allowed on counters only with U state
o N events — allowed on counters only with U or S state

CPUO CPU1

C | - |/
 C | N

"
State0 State1
U [X

Google

upcoming features

Google
perf tool: profiling jitted code

e Many runtimes use jit-in-time (JIT) compilation
o opendDK Java, V8, DART,

e perf report very limited support for symbolizing jitted code
o runtime emits /tmp/perf-PID.map file: addr, size, symbol
o no support for assembly view
o no support for jit code cache reuse

Google
perf tool: current situation with OpenJDK Java

$ perf record java jnt/scimark/commandline

Samples: 125K of event 'cycles'
Event count (approx.): 102160463028

#

Ovh Cmd ShObj Symbol

..... e e e e e
2.16% java perf-17584.map [.] 0x00007fed17£db9£fd
2.13% java perf-17584.map [.] 0x00007£fed17£db9£f9
2.00% java perf-17584.map [.] 0x00007fedl17£fdf3ab
1.98% java perf-17584.map [.] 0x00007fedl17£fdb9ca
1.76% java perf-17584.map [.] 0x00007£fed17£d£395
1.68% java perf-17584.map [.] 0x00007fedl7fddfed
1.51% Jjava perf-17584.map [.] 0x00007fedl7£fd7dfe
1.49% java perf-17584.map [.] 0x00007fed17£de058
1.45% java perf-17584.map [.] 0x00007fed17£de029
0.01% Jjava libjvm.so [.] Phaselive: :compute (unsigned int)
0.01% java perf-17584.map [.] 0x00007fed17£94a3c

perf-PID.map is not emitted by runtime, no symbolization

Google

perf tool: Google adding full jitted code support

e Cooperation from runtime mandatory

(@)

(@)
(@)
(@)
(@)

must emit function mappings

must emit assembly code

must emit source line information

emitted info must be timestamped to correlate with samples
emitted file format must be runtime and arch agnostic

e Timestamps synchronized with perf_events timestamps

(@)
(@)

perf_events uses sched clock () which is not exposed to users
using POSIX dynamic clocks to expose a sched clock () to user

e No modification to perf events kernel subsystem

e Minimize changes to perf tool

(@)

no changes to report and annotate commands

e Similar approach used by OProfile

Google

perf tool: full jit code support example

$ perf record java -agentpath:libjvmti.so jnt/scimark/commandline
$ perf inject -i perf.data -o perf.data.j -j ~/.debug/jit/XXqw/jit-1815.dump
$ perf report -i perf.data.j

Samples: 124K of event 'cycles'
Event count (approx.):

#

ovh Cmd ShObj

23.38%
18.96%
17.99%
17.94%
17.89%

2.03%
0.27%
0.22%
0.22%

java
java
java
java
java
java
java
java
java

j-1815-245
§-1815-231
§-1815-241
§-1815-250
§-1815-243
§-1815-230
§-1815-251
§-1815-18

§-1815-248

101762443128

void class jnt.scimark2.SparseCompRow.matmult (double[], double[], int[],double[])
void class Jjnt.scimark2.FFT.transform internal (double[], int)

void class jnt.scimark2.SOR.execute (double, double[][], int)

int class jnt.scimark2.LU.factor (double[][], int[])

double class jnt.scimark2.MonteCarlo.integrate (int)

void class jnt.scimark2.FFT.bitreverse (double[])

double class jnt.scimark2.kernel.measurelU(int, double, class jnt.scimark2.Random)
Interpreter

void class jnt.scimark2.kernel.CopyMatrix(double[][], double[][])

Google

perf tool: jit code assembly view

$ perf annotate -i perf.data.j
void class jnt.scimark2.SparseCompRow.matmult (double[], double[], int[], int[], doublel[],

Ovh%

2,50
1,97
2,07
0,04
1,58
0,90

|13e:
|141:
|147:
|14a:
|14£:
|151:
|157:
|15e:
|165:
|169:
|16c:
|171:
|173:
|179:
|180:
|187:

cmp

—Jjge

data32
mov
cmp
jae
vmovsd
vmulsd
vaddsd
movslqg
mov
cmp
jae
vmovsd
vmulsd
mov

%$ecx,%rl0d

1d2 <Ljnt/scimark2/SparseCompRow;matmult ([D[D[I[I[DI)V+0x1d2>
xchg %ax, %$ax

0x10(%r8,%r1l0,4) ,%ebp

%esi, %ebp

22d <Ljnt/scimark2/SparseCompRow;matmult ([D[D[I[I[DI)V+0x22d>
0x10 (%rdx,%rl1l0,8) ,%xmml

0x10 (%r9, %rbp, 8) , $xmml , $xmml

$xmm0 , $xmml , $xmmO0

$r10d, %rld

0x14 (%r8,%rl4,4) ,%ebp

%esi, $ebp

224 <Ljnt/scimark2/SparseCompRow;matmult ([D[D[I[I[DI)V+0x224>
0x18 ($rdx,%rl4,8) ,%$xmml

0x10 (%r9, %rbp, 8) , $xmml , $xmml

0x18 (%r8,%rl4, 4) ,%ebp

int)

Google
perf tool: cache line access analysis

e perf c2c: profile load/store, analyze accesses patterns
o developed by Redhat

e using abstract load/store sampling feature of perf_events
o leverages Intel SNB/IVB/HSW load latency, precise store sampling

e Very helpful to detect:
o cache line false sharing
o bad NUMA locality

e under LKML review

$ perf c2c record -a sleep 10
S perf c2c report

Google

perf c2c: demo

Google

How does Google use all of this?

Google
CPI2: monitor CPI

monitor Cycles Per Instruction (CPI)
learn normal and anomalous behaviors
identify a likely antagonist, and

throttle it to shield victims [optional]

s~

e Experimental data shows CPI correlates well with

o latency
o throughput

e CPlis easy to collect with PMU
o PMU events easily avail: unhalted ref cycles,
instructions retired

Google

CPI4: data collection architecture

(

|

CPIl sample-
[cluster scheduler]4 smoothed, L aggregator
averaged,
CPI_spec
FPI
samples
agent agent agent agent agent
[task | [[[task] [| [task] [| [task]
[task | [[[task] || [task] || [task]
| task | |) [task | [| [task | || [task | task

machines

Google

CPI2: architecture

(

CPIl sample-
[cluster scheduler]4 smoothed, L aggregator
averaged,
CPI_spec
CPI_specs CPI
samples
agent agent agent agent agent
| task | || [task | antagonist | task |
| task | || [_task task task task
| task | |] [_task [vioim | task task

Google

CPI?: dealing with antagonist

e Examine time-correlation
between victim's CPls and
(suspected) antagonist's
CPU usages

e Highest positive correlation
signals most likely culprit

® Antagonist throttled via
CPU hard capping

CPI of victim

throttling period

l"

Ol .
14:3014:4515:0015:1515:3015:4516:0016:1516:30

CPU usage of antagonist

Google

CPI4: results

deployed to Google's fleet
thousands of interference events/day
simple and effective

37% CPI reduction

only using very common PMU events in counting mode

Google
Conclusion: we are almost there!

e All major processor architectures supported

e All key hardware features are supported now
o Intel X86: core, uncore, PEBS, LBR, |d/st sampling, offcore _rsp, PT
o Only incremental hardware improvements from now on

e Tool vendors adopting perf_events interface or tool
© Nno more custom drivers

e Systematic and continuous profiling implemented

e Need more high-level metric tools
o core PMU cycles breakdown, leverage uncore PMU

Google
Looking for help!

e full-time software engineer to help with kernel and user tool
infrastructure developments

e requirements:
o experience with Performance Monitoring Unit (PMU) technology
o experience with Linux kernel development
o some experience with Javascript development
o strong interest in the field

Google

References

e HT counter corruption (SandyBridge: BJ122, lvyBridge: BV98,
Haswell: HSD29)
o http://www.intel.

com/content/dam/www/public/us/en/documents/specification-updates/3rd-
gen-core-desktop-specification-update.pdf

e CPI"2: CPU performance isolation for shared compute clusters

O Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, John Wilkes

e Andi Kleen’s patches for full symbolic event support in perf

e HT corruption workaround patches

e perfc2c LKML patches

http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specification-update.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Zhang_2.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Zhang_2.pdf
http://research.google.com/pubs/XiaoZhang.html
http://research.google.com/pubs/EricTune.html
http://research.google.com/pubs/JohnWilkes.html
http://research.google.com/pubs/XiaoZhang.html
https://lkml.org/lkml/2014/3/14/539
https://lkml.org/lkml/2014/3/14/539
https://lkml.org/lkml/2014/6/4/610
https://lkml.org/lkml/2014/6/4/610
https://lkml.org/lkml/2014/2/28/421
https://lkml.org/lkml/2014/2/28/421

