
www.bsc.es

Petascale Tools Workshop,
Madison, August 4th 2014

Jesús Labarta
BSC

Analysis and Parallelization Optimizations
of Weather Codes

2

Earth and Climate

A complex system
– Multicomponent
– Dynamic

High impact
– Societal, economic

Need to
– Understand and predict
– Accuracy ↑ uncertainty ↓
– Compute capacity exascale

Complex codes
– Not toys
– Not easy bottleneck

3

Exposed to several weather/climate related codes
CESM

– Cooperation with Rich Loft/John Dennis (NCAR)
– Full scale code
– G8 ECS project

CGPOP
– Ocean model Kernel
– G8 ECS Project

NMMB
– Cooperation with Oriol Jorba, Georgios Markomanolis (BSC)
– Full scale code
– Developing chemical and transport modules on top of NMMB by NCEP

IFS_KERNEL
– Kernel by George Mozdzynski (ECMRWF)
– … mimicking some aspects of the IFS weather forecast code …
– … to investigate issues and potential of hybrid task based models
– Some very important restrictions

• Just 1D decomposition vs 2D in production code
– More load imbalance than the real code

• No real physics code
• No real FFT …

4

Our interest

Learn about the three components and their interaction …

… identify programming model codesign issues/opportunities …
… report experiences and ongoing work

Climate codes
Complex, not kernel dominated
Sensitive to communication performance
Potential load imbalance

BSC Tools
Flexibility, detail

OmpSs
asynchrony
Dynamic Load Balance

5

Index

Original MPI weather codes
– Basic analysis
– Scalability

OmpSs instrumentation
Programming patterns
Dynamic Load Balance

ANALYSIS OF MPI CODES

7

0 3.5 s

A “different” view point

Look at structure …
– Of behavior, not syntax

– Differentiated or repetitive patterns in time
and space

– Focus on computation regions (Burst)

CESM
– Micro load

imbalance

– Due to Physics

8

LB Ser Trf Eff
0.83 0.97 0.80
0.87 0.90 0.78
0.88 0.82 0.73
0.88 0.72 0.63

A “different” view point

… and fundamental metrics

adv2 (gather–fft-scatter)* mono

TrfSerLB **
Useful user function @ NMMB

M. Casas et al, “Automatic analysis of
speedup of MPI applications”. ICS 2008.

LB Ser Trf Eff
0.83 0.97 0.80
0.87 0.90 0.78
0.88 0.97 0.84 0.73
0.88 0.96 0.75 0.61

9

IFS_KERNEL structure and efficiency
MPI calls

Useful duration

Is
en

ds
Ire

cv
s

w
ai

ts

Eff = 0.73; LB = 0.79; Ser = 0.98; Trf = 0.94

Useful = 0.73; MPI = 0.28

10

Sensitivity to network bandwidth

Dimemas simulations

Starts to be sensitive to
bandwidth at below 500MB/s

R
ea

l
Id

ea
l

1
G

B
/s

10
0

M
B

/s
50

0
M

B
/s

11

Scalability

Size
– Handle decent time intervals and core counts
– Instrumentation tracing modes …

• Full
• Burst

– Precise characterization of long computation bursts
– Summarized stats for sequences of short computation bursts

– … + sampling
– Paraver trace manipulation utilities

• Filter and cutter
– Paramedir: non GUI version of paraver (installed at tracing platform)
– Practice:

• Large trace never leaves tracing platform.
• Paraver analysis on laptop

Dynamic range
– Handle/visualize events of very different duration

12

Trace manipulation utilities (filter)

Understand Grid Distribution load balance impact @ CESM

ATM: 384
LND: 16
ICE: 32
OCN: 10
CPL: 128

2.54 GB actual trace

160 s

5 200 ms

2.55 GB actual trace 4.5 MB filtered

11.5 MB filtered

570

13

Instantaneous metrics at “no” cost

Folding: Obtaining detailed
information with minimal
overhead
– Instantaneous hardware counter

metrics
– Source behavioral structure:

Structured time evolution of call
stack

Applicable to traces of large
runs
– Scripting support …
– Orchestrating workflow of

analytics algorithms based on
clustering and folding
functionalities …

– … Integrated in Paraver GUI
– More analytics being integrated Convect_shallow_tend

Microp_driver_tend

aer_rad_props_sw

aer_rads_prop_lw

rrtmg_sg

rad_rrtmg_lw

GIPS

Functions

Subset of CESM @570

14

Paraver trace manipulation utilities (cut)

To focus on detailed towards insight

Imbalance within CLM

Imbalance between
CLM and CICE

Longer computation in POP but not in critical path
(does not communicate with Coupler at this point)

Critical path

OMPSS INSTRUMENTATION

16

OmpSs instrumentation
Instrumented runtime … (leveraged flexible paraver format)

– Tasks, dependences
– Runtime internals: task creation, number, NANOS/DLB API, allocated cores,…

Useful views
– Tasks
– Tasks and deps
– Task not doing MPI
– Task number
– Creating/submitting
– Waits
– Critical

Useful Paraver Features
– Handle high dynamic range in task sizes: finding needles in haystacks
– Complex derived views (i.e. Tasks not doing MPI)
– Scripts to track dependencies
– Big pixels, non linear rendering,…

Potential input for OMPT

17

Programming model instrumentation

Eases instrumentation
– Original worksharing OpenMP pragmas (+ schedule dynamic)
– MPI+OmpSs OMP_NUM_THREADS=1

Work sharing loops @CESM
– Micro load balance @ MPI level
– Different internal structure
– Impact on how to address it

~ uniform iteration cost

Non uniform iteration cost

18

Programming model instrumentation

Eases instrumentation
– Task have structural semantics
– !$OMP TASK LABEL(XXX) DEFAULT(SHARED) IF(.FALSE.)

Sequence of loops
@ NMMB

PROGRAMMING PATTERNS/PRACTICES

20

To overlap: what and how

Computation - Communication?
Computation - Computation?

Syntactically simple?
– Manually refactor code with quite unpredictable effects

• Not very productive
– OmpSs (OpenMP4.0):

• Specify ordering constraints as IN/OUT pragmas
– Productive

• Interprocedural reorderings
– High flexibility

21

All levels contribute
Address granularity issues of single level parallelization

Towards a top down parallelization
Small tasks can be put
outside of the critical path

Big task can be workshared
(nested) (30% gain)

22

“Background” computation and I/O overlap

Communication - computation
or I/O sequences
Instrumentation quantifies
relevance

– Pattern often generates MPI
imbalance

Spawning tasks achieves
“background” execution

– FIRSTPRIVATE does useful
memory management

do jv=1,nvars2d
ifld=ifld+1
do j=1,ngptot

znorms(j)=zgp(ifld,j)
enddo
call mpi_gatherv(znorms(:),ngptot,MPI_REAL8,znormsg(:),…)
if(myproc==1)then

!$OMP TASK PRIVATE (zmin, zmax, zave) INOUT(ZDUM) &
!$OMP& FIRSTPRIVATE(ngptotg, nstep, jv, znormsg) &
!$OMP& DEFAULT(NONE) LABEL(MIN_MAX)

zmin=minval(znormsg(:))
zmax=maxval(znormsg(:))
zave=sum(znormsg(:))/real(ngptotg)
write(*,…) nstep,jv,zmin,zmax,zave

!$OMP END TASK
endif

enddo

23

To overlap: what and how

for (latitudes)
physics

for (latitudes)
pack
send/recv
unpack/transpose

ffts();
…

ffts()
{

for (fields)
ffts

}

for (latitudes)
irecv

for (latitudes)
physics
pack
isend

for (latitudes)
wait

for (latitudes)
unpack/transpose

ffts();
…

for (latitudes)
physics

for (latitudes)
pack

for (latitudes)
irecv

for (latitudes)
isend

for (latitudes)
wait

for (latitudes)
unpack/transpose

ffts();
…

24

Communication schedule issues

User specified order of waits vs. order of arrivals?
How to visualize? Quantify?
– Used polling and fake MSG_READY task (print msg)

• 0.0177% of time
• Count is important

– Within 640 waits 575 times other msgs are ready
• Position IS important !!!

– When do messages arrive. Worthwhile to reschedule? Repetitive?
– scheduling issue programming model/runtime (co)design
– Need to find needles in haystacks

tasks

waits

Arrived while
waiting for other

25

Communication schedule issues

How to address?
– Application level

• Change issue order of calls. Need detailed knowledge of communication
pattern, machine characteristics, runtime behavior,

• … might not be feasible

– Application – task runtime codesign
• Out of order/concurrent execution of communication tasks

– Potential deadlock. Impose some order that does ensure no deadlock
– Critical or MPI_THREAD_MULTIPLE

• Similar scheduling issues codesign choices
– Polling + Nanos_yield + multiple concurrent wait tasks
– …

– Runtime level
• Codesign MPI and task runtimes

26

To overlap: what and how

tasks

Sequential

Out of order
execution

tasks (excluding communication tasks)

27

Communication schedule issues

How to address?

– Application – task runtime codesign
• Out of order/concurrent execution of communication tasks

– Potential deadlock. Impose some order that does ensure no deadlock
– Critical or MPI_THREAD_MULTIPLE

• Similar scheduling issues codesign choices
– Polling + Nanos_yield + multiple concurrent wait tasks
– …

28

Scheduling issues

Between MPI and computation

Need for codesign of MPI and OmpSs runtimes
Need to see details and gain insight

Wait for reception vs fft
computation

Overlap waits for recvs and sends

Simultaneous wait for two
MPI requests (progression
engine issue)

29

Scheduling issues

Issues can be very
varied
– Communication task

yields
– Default untied tasks

Solutions too
– Declare

communication task
untied

DLB

31

CESM and DLB

Place DLB API calls after the most unbalanced for loops
– DLB_Lend / DLB_Retrieve

Same scale:

32

CESM performance results

00:00:00

00:02:53

00:05:46

00:08:38

00:11:31

00:14:24

00:17:17

00:20:10

00:23:02

00:25:55

00:28:48

16 32 64 128

M
od

el
 E

xe
cu

tio
n

Ti
m

e

MPI processes

CESM performance

MPI

OmpSs+DLB

80,00%
85,00%
90,00%
95,00%

100,00%
105,00%
110,00%
115,00%
120,00%
125,00%
130,00%

16 32 64 128
Sp

ee
du

p

MPI processes

MPI+OmpSs+DLB vs. MPI

OmpSs+DLB

DLB total improvement is proportional to application
load unbalance
But the performance depends on the malleability of the
second level of parallelism

33

CESM and DLB

Dynamic Load Balance needs malleability!
– Uneven or serialized tasks prevent the efficient load balance

Same scale:

CONCLUSION

35

Conclusion

Tools needed for informed incremental parallelization and real
insight into behavior

Task based models:
– Easy to introduce significant changes in restructuring of code execution
– Good and a risk

• Scheduling: a very non linear behavior Intricate relationship between
components and their interactions

• A good transformation may be hidden by another behavior. Moving bottlenecks
• Need detailed tools to properly identify and detect new unexpected behaviors,

bottlenecks,…

Production Climate code
– A challenge … affordable

Potential/Need to co-design
– applications ↔ tools ↔ programming models
– Between programming model runtimes (MPI↔OmpSs)

THANKS

