
Improving Attribution of Performance
Measurements for Optimized Code

John Mellor-Crummey and Mark Krentel

Department of Computer Science
Rice University

http://hpctoolkit.org

Petatools 2014 August 4, 2014

Motivation

• Modern software uses abstractions to manage complexity
– procedures
– classes
– parameterized templates for algorithms and data structures

• Programmers rely on optimizing compilers to transform
abstractions for efficient execution
– compose algorithm and data structure templates

• e.g., C++ Standard Template Library (STL), Boost, ...
– inline procedures
– transform loop nests

• Understanding the performance of modern software requires
measuring the performance of optimized code and relating
measurements back to the program source code

2

HPCToolkit Workflow

3

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

Measure and attribute costs in context
 sample timer or hardware counter overflows
 gather calling context using stack unwinding

Call Path Profiling

4

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...
...not call frequency

Calling context tree

• Control flow graph structure is often rather complex
– more than simple loops

Understanding Optimized Code can be Difficult

• Structure of code is radically different after template instantiation,
function inlining, and loop transformations
– functions contain code from multiple files and functions

–

5

CCT unoptimized code

...

CCT optimized code

Starting Point for This Work

Nathan Tallent, John Mellor-Crummey, and Michael Fagan. Binary
analysis for measurement and attribution of program performance.

PLDI '09. ACM, New York, NY, 441-452

• Binary analysis for call stack unwinding of unmodified optimized
code

– need to determine return address
– parent’s value for frame pointer register

• Binary analysis for attribution of performance to optimized code
– identified inlined code as code from different source file
– reported only one level of inlining

• enclosing context
• a single source line mapping for each generated instruction

6

An Example: small.cpp
using namespace std;
vector <int> v;
inline static void addToVector(int i) {
 v.push_back(i);
}
void do_work(int num) {
 v.clear();
 for (int i = 0; i < num; i++) {
! addToVector(i);
 }
}
int main(int argc, char **argv) {
 int len = 1000;
 int num, k;
 if (argc < 2 || sscanf(argv[1], "%d", &num) < 1) {
! num = 20;
 }
 num *= len;
 for (k = 0; k < num; k++) {
! do_work(len);
 }
 return 0;
} 7

Generated Code for small.cpp (g++ 4.4.6)
91 lines of assembly code for main

• Multiple levels of inlining
• Inlines the following functions

– dowork
– addToVector
– vector::push_back
– __gnu_cxx::new_allocator
– vector::clear
– vector::_M_erase_at_end

• Only two function calls left
– iterator in push_back
– sscanf

8

Construct the CFG

• Parse the machine code in
an executable

• Build a CFG at the level of
basic blocks

9g++ 4.4.6

Identify Loops

Directed Graph G = (V, E)
• Dominator

– x dom y iff every execution path from entry to y goes through x

• Natural loop
– defined by a back edge y ➔ x where x dom y

• finds only single-entry loops

• Tarjan’s algorithm finds single-entry, strongly-connected subgraphs
– Robert Tarjan, “Depth-first search and linear graph algorithms,” SIAM

Journal on Computing 1(2):146–160, June 1972.
– sketch

• based on depth-first search
• an SCC body includes nodes that reach a lower node then itself
• loop head: node where lowest reachable is itself

– complexity: O(V + E)

10

Coping with Irreducible Loops

• Problem: not all cycles are
single-entry loops
– multiple entry loop: irreducible

• Paul Havlak. Nesting of
reducible and irreducible loops.
ACM TOPLAS 19(4):557-567,
1997.
– uses definitions of reducible

and irreducible loops which
allows arbitrary nesting of either
kind of loop

– loop nesting tree can depend
on the depth-first spanning tree
used to build it

• header node representing a
reducible loop in one version of
loop nesting tree can represent
an irreducible loop in another

11g++ 4.4.6

Considerable Variations in Code Shape

12g++ 4.4.6 g++ 4.1.2 g++ 4.8.2

Challenges to CFG Construction

• Compiler optimizations make it difficult to recover accurate CFGs
– tail calls
– functions that don’t return, e.g., exit, __cxa_throw, longjmp, ...

• calls to through PLT to dynamically-linked routines
• calls to routines statically-linked in a load module

• No indication of these features in DWARF
– recover this info by processing /usr/include and C++ ABI headers

13

Tail Call Example from LLNL’s LULESH

14

 if (hgcoef > Real_t(0.)) {
 CalcFBHourglassForceForElems(determ,x8n,y8n,z8n,dvdx,dvdy,dvdz,hgcoef);
 }

 Release(&z8n) ;
 Release(&y8n) ;
 Release(&x8n) ;
 Release(&dvdz) ;
 Release(&dvdy) ;
 Release(&dvdx) ;

 return ;

Fragment of source code

 if (hgcoef > Real_t(0.)) goto calc
rel: free(&z8n)
 free(&y8n)
 free(&x8n)
 free(&dvdz)
 free(&dvdy)
 push &dvdx
 jmp free
calc:inlined code for CalcFBHourglassForceForElems
 goto rel

Sketch of generated code (gcc 4.4.6 -O3)

Non-returning Function Example from miniFE

• Non-returning functions occur frequently, even in scientific codes
– casting associated with inlined C++ I/O helper routines

15

#ifndef _BASIC_IOS_H
...
_GLIBCXX_BEGIN_NAMESPACE(std)
 template<typename _Facet>
 inline const _Facet&
 __check_facet(const _Facet* __f)
 {
 if (!__f)
 __throw_bad_cast();
 return *__f;
 }
...

Mapping Back to Program Structure

• For each instruction, identify its full provenance
– use DWARF info to recover complete static call chains

• recover a full inlined call chain for each machine instruction

• Integrate information about loops and inlining to assemble a
representation of static structure

• Not as simple as it sounds
– where do loops belong in an inlined call chain?

16

Source Code Attribution for Loops

• Need to identify a source code
position for each Interval and
Irreducible interval

• What line number to use?
– source line for first machine

instruction in loop header?
– source line for backward branch

reaching loop header?
– some complications ...

• edges reaching loop header are
not always backward branches

17
g++ 4.1.2

Detail of CFG for main (gcc 4.1.2)

Only fall through branches
reach this header!

18

Associating a Loop with a Source Line

Today’s heuristic
• Priority scheme

– back edge
• backward branch closing natural loop

– true branches from within the loop
– fall through edges from within the loop

• If none of these has a source mapping, use the mapping for the
loop header

• If the source mapping for the loop header is less deeply nested
than the source of the edge targeting it, use that instead

19

Assembling the Source View

• Perform interval analysis of the CFG
• Recursively assemble the CCT for a procedure

– for each interval
• insert source code for all machine instructions inside into CCT

– insert the call chain for the loop
• never make the loop a child of any node inserted inside the loop

– create copies of context where necessary
– identify the least common ancestor between a loop and and the calling

context for machine instruction inside it
• treat copies of contexts along respective paths as equivalent

– take the path below the LCA and insert that inside the loop
• For each “alien” context in inlined code, record information about

– call site
– callee

• Gracefully handle case where no static call chain information available
– simply indicate that inlined code came from the following source file and line

• Present this in hpcviewer’s source code view as if real call chains, but
indicate when function is inlined 20

LULESH: Attribution for Optimized Code

• Present full calling context and loops, as if an unoptimized
executable

21

i
n
l
i
n
e
d

miniFE with Non-returning Function Analysis

22

i
n
l
i
n
e
d

miniFE without Non-returning Function Analysis

23

bogus loop distorts
CFG for miniFE::driver

i
n
l
i
n
e
d

What’s left?

• Technical issues
– explore cases where embedding of loops in static call chains still isn’t

satisfactory
• is there a better interpretation of the graph depending on depth first parse
• can exhaustive analysis of a loop yield better results?

– beyond just looking at loop header and incident edges
• new 2007 flow graph analysis algorithm

– better results?
– better performance?

– analysis speed for huge binaries?
• Community issues

– lobby DWARF community to enhance standard with information about
functions that don’t return

24

Flowgraph Analysis References

• Robert Tarjan, “Depth-first search and linear graph algorithms,”
SIAM Journal on Computing 1(2):146–160, June 1972.

• Paul Havlak. Nesting of reducible and irreducible loops. ACM
TOPLAS 19(4): 557–567, July 1997.

• Tao Wei, Jian Mao, Wei Zou, and Yu Chen. A New Algorithm for
Identifying Loops in Decompilation. Static Analysis 14th
International Symposium (SAS), LNCS 4634, pp. 170–183, 2007.

25

