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Motivation

• Modern software uses abstractions to manage complexity
– procedures
– classes
– parameterized templates for algorithms and data structures

• Programmers rely on optimizing compilers to transform 
abstractions for efficient execution
–  compose algorithm and data structure templates 

• e.g., C++ Standard Template Library (STL), Boost, ...
– inline procedures
– transform loop nests

• Understanding the performance of modern software requires 
measuring the performance of optimized code and relating 
measurements back to the program source code
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HPCToolkit Workflow
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Measure and attribute costs in context
    sample timer or hardware counter overflows
    gather calling context using stack unwinding

Call Path Profiling
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• Control flow graph structure is often rather complex
– more than simple loops

Understanding Optimized Code can be Difficult

• Structure of code is radically different after template instantiation, 
function inlining, and loop transformations
– functions contain code from multiple files and functions

–

5

CCT unoptimized code

...

CCT optimized code



Starting Point for This Work

Nathan Tallent, John Mellor-Crummey, and Michael Fagan. Binary 
analysis for measurement and attribution of program performance. 

PLDI '09. ACM, New York, NY, 441-452 

• Binary analysis for call stack unwinding of unmodified optimized 
code

– need to determine return address
– parent’s value for frame pointer register

• Binary analysis for attribution of performance to optimized code
– identified inlined code as code from different source file
– reported only one level of inlining

• enclosing context
• a single source line mapping for each generated instruction
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An Example: small.cpp
using namespace std;
vector <int> v;
inline static void addToVector(int i) {
    v.push_back(i);
}
void do_work(int num) {
    v.clear();
    for (int i = 0; i < num; i++) {
!   addToVector(i);
   }
}
int main(int argc, char **argv) {
    int len = 1000;
    int num, k;
    if (argc < 2 || sscanf(argv[1], "%d", &num) < 1) {
!   num = 20;
    }
    num *= len;
    for (k = 0; k < num; k++) {
!   do_work(len);
    }
    return 0;
} 7



Generated Code for small.cpp (g++ 4.4.6)
91 lines of assembly code for main

• Multiple levels of inlining
• Inlines the following functions

– dowork
– addToVector
– vector::push_back
– __gnu_cxx::new_allocator
– vector::clear
– vector::_M_erase_at_end

• Only two function calls left
– iterator in push_back
– sscanf
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Construct the CFG

• Parse the machine code in 
an executable

• Build a CFG at the level of 
basic blocks

9g++ 4.4.6



Identify Loops

Directed Graph G = (V, E)
• Dominator

– x dom y iff every execution path from entry to y goes through x 

• Natural loop
– defined by a back edge y ➔ x where x dom y

• finds only single-entry loops

• Tarjan’s algorithm finds single-entry, strongly-connected subgraphs
– Robert Tarjan, “Depth-first search and linear graph algorithms,” SIAM 

Journal on Computing 1(2):146–160, June 1972.
– sketch

• based on depth-first search
• an SCC body includes nodes that reach a lower node then itself
• loop head: node where lowest reachable is itself

– complexity: O(V + E)
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Coping with Irreducible Loops

• Problem: not all cycles are 
single-entry loops
– multiple entry loop: irreducible

• Paul Havlak. Nesting of 
reducible and irreducible loops. 
ACM TOPLAS 19(4):557-567, 
1997.
– uses definitions of reducible 

and irreducible loops which 
allows arbitrary nesting of either 
kind of loop

– loop nesting tree can depend 
on the depth-first spanning tree 
used to build it

• header node representing a 
reducible loop in one version of 
loop nesting tree can represent 
an irreducible loop in another

11g++ 4.4.6



Considerable Variations in Code Shape

12g++ 4.4.6 g++ 4.1.2 g++ 4.8.2



Challenges to CFG Construction

• Compiler optimizations make it difficult to recover accurate CFGs
– tail calls
– functions that don’t return, e.g., exit, __cxa_throw, longjmp, ... 

• calls to through PLT to dynamically-linked routines
• calls to routines statically-linked in a load module

• No indication of these features in DWARF
– recover this info by processing /usr/include and C++ ABI headers
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Tail Call Example from LLNL’s LULESH
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   if ( hgcoef > Real_t(0.) ) {
      CalcFBHourglassForceForElems(determ,x8n,y8n,z8n,dvdx,dvdy,dvdz,hgcoef);
   }

   Release(&z8n) ;
   Release(&y8n) ;
   Release(&x8n) ;
   Release(&dvdz) ;
   Release(&dvdy) ;
   Release(&dvdx) ;

   return ;

Fragment of source code

     if ( hgcoef > Real_t(0.) ) goto calc
rel: free(&z8n)
     free(&y8n)
     free(&x8n)
     free(&dvdz)
     free(&dvdy)
     push &dvdx
         jmp free
calc:inlined code for CalcFBHourglassForceForElems
     goto rel

Sketch of generated code (gcc 4.4.6 -O3)



Non-returning Function Example from miniFE

• Non-returning functions occur frequently, even in scientific codes
– casting associated with inlined C++ I/O helper routines
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#ifndef _BASIC_IOS_H
...
_GLIBCXX_BEGIN_NAMESPACE(std)
  template<typename _Facet>
    inline const _Facet& 
    __check_facet(const _Facet* __f)
    {
      if (!__f)
        __throw_bad_cast();
      return *__f;
    }
...



Mapping Back to Program Structure

• For each instruction, identify its full provenance
– use DWARF info to recover complete static call chains

• recover a full inlined call chain for each machine instruction

• Integrate information about loops and inlining to assemble a 
representation of static structure

• Not as simple as it sounds
– where do loops belong in an inlined call chain?
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Source Code Attribution for Loops

• Need to identify a source code 
position for each Interval and 
Irreducible interval

• What line number to use?
– source line for first machine 

instruction in loop header?
– source line for backward branch 

reaching loop header?
– some complications ...

• edges reaching loop header are 
not always backward branches
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Detail of CFG for main (gcc 4.1.2)

Only fall through branches 
reach this header!
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Associating a Loop with a Source Line

Today’s heuristic
• Priority scheme

– back edge
• backward branch closing natural loop

– true branches from within the loop
– fall through edges from within the loop

• If none of these has a source mapping, use the mapping for the 
loop header

• If the source mapping for the loop header is less deeply nested 
than the source of the edge targeting it, use that instead
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Assembling the Source View

• Perform interval analysis of the CFG
• Recursively assemble the CCT for a procedure

– for each interval
• insert source code for all machine instructions inside into CCT

– insert the call chain for the loop
• never make the loop a child of any node inserted inside the loop

– create copies of context where necessary
– identify the least common ancestor between a loop and and the calling 

context for machine instruction inside it
• treat copies of contexts along respective paths as equivalent

– take the path below the LCA and insert that inside the loop
• For each “alien” context in inlined code, record information about

– call site
– callee

• Gracefully handle case where no static call chain information available
– simply indicate that inlined code came from the following source file and line

• Present this in hpcviewer’s source code view as if real call chains, but 
indicate when function is inlined 20



LULESH: Attribution for Optimized Code 

• Present full calling context and loops, as if an unoptimized 
executable
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miniFE with Non-returning Function Analysis
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miniFE without Non-returning Function Analysis
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bogus loop distorts 
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What’s left?

• Technical issues
– explore cases where embedding of loops in static call chains still isn’t 

satisfactory
• is there a better interpretation of the graph depending on depth first parse
• can exhaustive analysis of a loop yield better results?

– beyond just looking at loop header and incident edges
• new 2007 flow graph analysis algorithm

– better results?
– better performance?

– analysis speed for huge binaries?
• Community issues

– lobby DWARF community to enhance standard with information about 
functions that don’t return
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