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Program Instrumentation

What is instrumentation?

Addition of statements to user code for measuring execution behavior.

Used for measuring runtime code behavior, e.g.:

•   Performance monitoring (e.g. function invocation count).

•   Logging / recording events (e.g. recording memory access trace).

•   Enforcing specific behaviors (e.g. preventing out-of-bounds accesses).
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Our goals

•   Make program instrumentation easy.

•   Not sacrifice accuracy in making instrumentation easy.

•   Not force the instrumentation-developer to reinvent the wheel.

Democratize accurate instrumentation
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Compiler-based instrumentation

Source code → Intermediate rep. → Assembly → Executable (binary).

•   Applies instrumentation at the IR level.

•   Allows using sophisticated compiler APIs (e.g. alias analysis).

•   However, compiler optimizations are impacted.

•   Instrumentation may produce incorrect performance measurements.
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Binary instrumentation

Source code → Intermediate rep. → Assembly → Executable (binary).

•   Applies instrumentation to machine (x86) instructions.

•   Is accurate because measurements are based on executing instructions.

Unlike compliation, code is not translated any further.

•   However, requires knowledge of machine instruction semantics.

•   Code analysis is difficult, sometimes even impossible.
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Motivation

•   Accurate measurements possible only using binary instrumentation.

•   But binary instrumentation is not easy.

•   Binary instrumentation clients have to reconstruct information that was

available (but thrown away) during compilation.
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Can we have our cake and eat it too?

•   Specify instrumentation at a higher level during compilation.

•   Add instrumentation instructions after all optimizations are applied.
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Motivating example

Wrong vectorization diagnosis

•   Instrumentation code measured branch outcomes (true v/s false count).

•   Without instrumentation, the branch was optimized away by the compiler.

•   With instrumentation, the branch was retained in the loop.

•   Instrumentation (incorrectly) concluded that loop was not vectorizable.
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Without instrumentation, compiler

can vectorize this branch with

VPCMOV or BLEND instructions.

Motivating example

Wrong vectorization diagnosis

for (i = 0; i < 1024; i++) {

    if (a[i] < b[i]) {

        x = a[i];

    }

}
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Motivating example

Wrong vectorization diagnosis

Solution:

1.  Let compiler-level analysis find the branch to be instrumented.

2.  Compiler nodes are “tagged” with instrumentation information.

3.  Instrumentation added to the binary depending on associated tags.
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What about the average Joe?

•   Both compile-time instrumentation and binary instrumentation require

non-trivial effort (writing compiler passes, DynInst client, PINTool, etc.).

•   Certain instrumentations (e.g. generating address trace) are required for

many different measurements.

•   Can we make program instrumentation easier?
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Instrumentation for the average Joe

Configuration file defines what and how to instrument.

instrumentation:

    - type: address-traces

      location: loop at foo.cc:565, function bar(int, int)

      output: trace-output.txt

 

    - type: invocation-counter

      location: function kernel(void)

      output: call-counts.txt
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Workflow of hybrid instrumentation

1.  Configuration file defines type, location of source-level instrumentation.

2.  Compiler-level static analysis identifies what to instrument.

3.  Instrumentation (as meta-level info) is associated with IR instructions.

4.  Meta-level info is carried across compiler optimizations.

5.  Meta-level info added to executable binary using assembly labels.

6.  Flesh out these special assembly labels into instrumentation code.

Proof-of-concept implementation uses LLVM and DynInst.
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Demo: Detecting false sharing

Step #1: Sample configuration file.

instrumentation:

    - type: false-sharing

      location: function kernel(int)

      output: thrashing-candidates.txt
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Demo: Detecting false sharing

Step #2: Compiler-level static analysis.

•   Find store instructions to arrays in multi-threaded function.

•   These instructions represent potential false-sharing accesses and need to

be instrumented.
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Demo: Detecting false sharing

Step #3: Associate instrumentation information with IR instructions.

uint32_t addr_expr = mdfactory->set_effective_addr_md(store_inst);

uint32_t var_name = mdfactory->set_constant_md(store_inst, name_string);

/* Construct list of arguments for function call. */

std::vector params;

params.push_back(addr_expr);

params.push_back(var_name);

mdfactory->set_function_call_md(store_inst, "record_addr", params);
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Demo: Detecting false sharing

Step #4: Propagate instrumentation information across optimizations.

Handled transparently by our modified LLVM compiler backend.
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•    .GSYM: Special prefix.

•    10: Instrumentation type (call).

•    2: ID of label.

•    record_addr: Function name.

•    0, 1: Function argument list

(#0 ⇒ address, #1 ⇒ name).

Demo: Detecting false sharing

Step #5: Insert specially-encoded labels that represent instrumentation.

.GSYM.5.0, .GSYM.9.1.counts, .GSYM.10.2.record_addr.0.1

18



Demo: Detecting false sharing

Step #6: Flesh out instrumentation code from label definitions.

•   Implemented as a binary-rewriting tool in DynInst.

•   Loops over labels, inserts BPatch_snippet objects at the label locations.

•   Also performs basic type checking of label components.
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•    actual address

•    original address

•    breakpoint

•    function call

•    return

•    thread index

•    bytes accessed

•    effective address

•    parameter

•    dynamic target

•    arithmetic

•    boolean

•    constant

•    sequence

•    if statement

Supported snippets

20



Caveats

•   Instrumentation is secondary to code optimizations. Hence optimization-

induced errors in instrumentation should be handled by callee.

•   Passing arbitrary pointer constants to instrumentation functions not

supported because of separation of address spaces.

•   Currently implemented for the “fast” instruction selection path. Changing

generalized instruction selection code requires much more effort.
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Summary

•   Described an approach for accurate source-based instrumentation.

•   Allows leveraging compiler APIs for static analysis, while not perturbing

optimizations. Thus improves accuracy of instrumentation.

•   Obviates knowledge of compiler APIs or machine instructions for

common instrumentation kinds.

•   Proof-of-concept implementation built using LLVM and DynInst.
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Open questions and future work

•   Can the workflow be implemented in a production compiler?

•   Seeking suggestions and collaborations for extending this approach.

•   Is this approach a logical next generation of Dyninst?
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