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Overview of this work

Goal: To increase the applicability and ef�ciency of vectorization by:

1.  Understand compiler vectorization messages.

2.  Find what information is the compiler missing.

3.  Gather and analyze runtime measurements.

4.  Feed runtime information back to compiler.
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Why vectorization?

•   Increased SIMD vector lengths, hence perf boost.

•   Improves energy ef�ciency of the processor.

•   Inherent limitations for compiler because of lack of runtime information.

•   Lots of headroom available to improve vectorization.

3



Time taken by non-vectorized loops

Application Time

heartwall 07.43%

euler 12.42%

kmeans 19.54%

backprop 32.52%

leukocyte 35.01%

lavaMD 37.42%

srad_v1 48.45%

pre_euler_double 71.60%

pre_euler 75.94%

euler_double 78.99%

streamcluster 85.58%
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Causes of poor vectorization

Limited information available at compile-time, hence compiler assumed:

•   Inter-iteration dependence.

•   Varying trip count (non-countable loop).

•   Temporal array references.

•   Mis-aligned loads and stores.
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Reasons for poor vectorization

Example: Rodinia LavaMD.

•   Hot function kernel_cpu(box* b, fp* qv, ...) de�ned in kernel_cpu.c.

•   Compiler does not know caller arguments when compiling kernel_cpu.c.

•   Assumes pointers b and qv may overlap in memory.

•   Concludes possible existence of vector dependence.
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Reasons for poor vectorization

Example: NAS CG.

•   Unknown loop trip count: for (k = rowstr[j]; k < rowstr[j+1]; k++) { }

•   Double indirection in loop body: suml += a[k]*p[colidx[k]];.

•   Compiler generates gather and scatter instructions for each iteration.
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Reasons for poor vectorization

Example: NBody.

•   Operates on dynamically allocated ( malloc()ed) arrays

•   Memory allocator may allocate objects in any way that it desires.

•   Compiler cannot guarantee alignment of objects to cache-line boundary.
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Our contributions - MACVEC tool

1.  What information does the compiler need?

2.  How to measure without high overhead?

3.  How to feed information back to compiler?
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Tool (MACVEC) workflow

1.  Pro�le application for hotspots using production inputs.

2.  Parse compiler vectorization reports to �nd loops not fully vectorized.

3.  Instrument hot-loops that are not fully vectorized.

4.  Gather measurements, analyze results and generate recommendations.

5.  Verify validity of the recommended changes.

6.  Implement changes, measure performance gains.
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Dynamic pro�ling measurements

•   Loop trip counts.

•   Array access strides.

•   Alignment of arrays.

•   Overlapping pointers.

•   Non-temporal or streaming stores.

•   Branch path outcomes.
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Measurement collection overhead

Measurement Overhead (geo. mean)

Trip count 1.08x

Strides 1.05x

Alignment 1.12x

Pointer overlap 1.07x

Branch outcomes 1.07x

13



Rule-based recommendations

Loop trip count

Precondition:

•   Loop trip count less than threshold (1024).

Recommendation: #pragma loop_count(n)
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Rule-based recommendations

Stride

Precondition:

•   Non-unit but �xed-length strides for speci�c data structures.

Recommendation: Convert from array-of-structs to struct-of-arrays refs.
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Rule-based recommendations

Stride

Precondition:

•   Code to be compiled for Intel Xeon Phi.

•   Fixed-length strides that are more than 4 cache lines apart.

Recommendation: #pragma prefetch array, -opt-gather-scatter-unroll.
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Rule-based recommendations

Alignment

Precondition:

•   All arrays aligned to cache-line boundary.

•   Loop is vectorizable.

Recommendation: #pragma vector aligned.
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Rule-based recommendations

Non-temporal stores

Precondition:

•   Low reuse for arrays used in loop body.

•   Loop is vectorizable.

Recommendation: #pragma vector nontemporal.
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Rule-based recommendations

Streaming stores

Precondition:

•   Arrays are written but never read back.

•   Arrays are accessed with unit stride, no mask register.

•   Low reuse for speci�c array.

Recommendation: -opt-streaming-stores=always.
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Rule-based recommendations

Pointer-overlap checks

Precondition:

•   Span of memory accessed using pointers does not overlap with other

pointer accesses.

Recommendation: restrict keyword.
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Rule-based recommendations

Branch path analysis

Precondition:

•   Branch evalutes to always true or always false.

Recommendation: __builtin_expect().
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Results: running time improvements

Validation applications Xeon Xeon Phi

NBody 0.93x 1.45x

STREAM Copy 1.06x 1.00x

STREAM Scale 1.41x 1.32x

STREAM Add 1.30x 1.29x

STREAM Triad 1.29x 1.30x
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Results: running time improvements

Small benchmarks Xeon Xeon Phi

NAS CG 1.06x 2.18x

LavaMD 2.19x 8.99x

SRAD 0.99x 1.09x
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Results: running time improvements

Full applications Xeon Xeon Phi

LBM 1.06x 1.20x

Lulesh 1.03 1.00x

MILC 1.10x 1.60x
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Safety of recommended changes

•   Are recommendations independent of standard compiler optimizations?

•   Will recommendations be applicable across multiple program inputs?

•   Seven of the nine recommendations are guaranteed to be safe.

•   O(1) runtime checks guarantee safety for remaining recommendations.
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Summary

•   Identi�ed some key metrics necessary to improve vectorization.

•   Combined static and dynamic information to generate recommendations.

•   MACVEC will be available in the next release of PerfExpert.
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