
Uni�cation of static analyses
and runtime measurements
for improving vectorization

Ashay Rane, Rakesh Krishnaiyer, Chris Newburn,
James Browne, Leo Fialho and Zakhar Matveev

4 August, 2014
Petascale Tools Workshop

th

1

Overview of this work

Goal: To increase the applicability and ef�ciency of vectorization by:

1.  Understand compiler vectorization messages.

2.  Find what information is the compiler missing.

3.  Gather and analyze runtime measurements.

4.  Feed runtime information back to compiler.

2

Why vectorization?

•  Increased SIMD vector lengths, hence perf boost.

•  Improves energy ef�ciency of the processor.

•  Inherent limitations for compiler because of lack of runtime information.

•  Lots of headroom available to improve vectorization.

3

Time taken by non-vectorized loops

Application Time

heartwall 07.43%

euler 12.42%

kmeans 19.54%

backprop 32.52%

leukocyte 35.01%

lavaMD 37.42%

srad_v1 48.45%

pre_euler_double 71.60%

pre_euler 75.94%

euler_double 78.99%

streamcluster 85.58%

4

Causes of poor vectorization

Limited information available at compile-time, hence compiler assumed:

•  Inter-iteration dependence.

•  Varying trip count (non-countable loop).

•  Temporal array references.

•  Mis-aligned loads and stores.

5

Reasons for poor vectorization

Example: Rodinia LavaMD.

•  Hot function kernel_cpu(box* b, fp* qv, ...) de�ned in kernel_cpu.c.

•  Compiler does not know caller arguments when compiling kernel_cpu.c.

•  Assumes pointers b and qv may overlap in memory.

•  Concludes possible existence of vector dependence.

6

Reasons for poor vectorization

Example: NAS CG.

•  Unknown loop trip count: for (k = rowstr[j]; k < rowstr[j+1]; k++) { }

•  Double indirection in loop body: suml += a[k]*p[colidx[k]];.

•  Compiler generates gather and scatter instructions for each iteration.

7

Reasons for poor vectorization

Example: NBody.

•  Operates on dynamically allocated (malloc()ed) arrays

•  Memory allocator may allocate objects in any way that it desires.

•  Compiler cannot guarantee alignment of objects to cache-line boundary.

8

Our contributions - MACVEC tool

1.  What information does the compiler need?

2.  How to measure without high overhead?

3.  How to feed information back to compiler?

9

Tool (MACVEC) workflow

1.  Pro�le application for hotspots using production inputs.

2.  Parse compiler vectorization reports to �nd loops not fully vectorized.

3.  Instrument hot-loops that are not fully vectorized.

4.  Gather measurements, analyze results and generate recommendations.

5.  Verify validity of the recommended changes.

6.  Implement changes, measure performance gains.

10

Tool (MACVEC) workflow

1.  Pro�le application for hotspots using production inputs.

2.  Parse compiler vectorization reports to �nd loops not fully vectorized.

3.  Instrument hot-loops that are not fully vectorized.

4.  Gather measurements, analyze results and generate recommendations.

5.  Verify validity of the recommended changes.

6.  Implement changes, measure performance gains.

Automated step

Manual step 11

Dynamic pro�ling measurements

•  Loop trip counts.

•  Array access strides.

•  Alignment of arrays.

•  Overlapping pointers.

•  Non-temporal or streaming stores.

•  Branch path outcomes.

12

Measurement collection overhead

Measurement Overhead (geo. mean)

Trip count 1.08x

Strides 1.05x

Alignment 1.12x

Pointer overlap 1.07x

Branch outcomes 1.07x

13

Rule-based recommendations

Loop trip count

Precondition:

•  Loop trip count less than threshold (1024).

Recommendation: #pragma loop_count(n)

14

Rule-based recommendations

Stride

Precondition:

•  Non-unit but �xed-length strides for speci�c data structures.

Recommendation: Convert from array-of-structs to struct-of-arrays refs.

15

Rule-based recommendations

Stride

Precondition:

•  Code to be compiled for Intel Xeon Phi.

•  Fixed-length strides that are more than 4 cache lines apart.

Recommendation: #pragma prefetch array, -opt-gather-scatter-unroll.

16

Rule-based recommendations

Alignment

Precondition:

•  All arrays aligned to cache-line boundary.

•  Loop is vectorizable.

Recommendation: #pragma vector aligned.

17

Rule-based recommendations

Non-temporal stores

Precondition:

•  Low reuse for arrays used in loop body.

•  Loop is vectorizable.

Recommendation: #pragma vector nontemporal.

18

Rule-based recommendations

Streaming stores

Precondition:

•  Arrays are written but never read back.

•  Arrays are accessed with unit stride, no mask register.

•  Low reuse for speci�c array.

Recommendation: -opt-streaming-stores=always.

19

Rule-based recommendations

Pointer-overlap checks

Precondition:

•  Span of memory accessed using pointers does not overlap with other

pointer accesses.

Recommendation: restrict keyword.

20

Rule-based recommendations

Branch path analysis

Precondition:

•  Branch evalutes to always true or always false.

Recommendation: __builtin_expect().

21

Results: running time improvements

Validation applications Xeon Xeon Phi

NBody 0.93x 1.45x

STREAM Copy 1.06x 1.00x

STREAM Scale 1.41x 1.32x

STREAM Add 1.30x 1.29x

STREAM Triad 1.29x 1.30x

22

Results: running time improvements

Small benchmarks Xeon Xeon Phi

NAS CG 1.06x 2.18x

LavaMD 2.19x 8.99x

SRAD 0.99x 1.09x

23

Results: running time improvements

Full applications Xeon Xeon Phi

LBM 1.06x 1.20x

Lulesh 1.03 1.00x

MILC 1.10x 1.60x

24

Safety of recommended changes

•  Are recommendations independent of standard compiler optimizations?

•  Will recommendations be applicable across multiple program inputs?

•  Seven of the nine recommendations are guaranteed to be safe.

•  O(1) runtime checks guarantee safety for remaining recommendations.

25

Summary

•  Identi�ed some key metrics necessary to improve vectorization.

•  Combined static and dynamic information to generate recommendations.

•  MACVEC will be available in the next release of PerfExpert.

26

