Palm: Easing the Burden of
Analytical Performance Modeling

, ADOLFY HOISIE

Pacific Northwest National Lab

Petascale Tools Workshop

Analytical Modeling of Performance is Hard \7/

» Analytical model of performance
B Quantitatively explains and predicts application execution time
e statistical model
statistical mode an.aly.tlcal model 5|muIajL'|on amalyticalTodel simulation
insight (high) evaluation time (high)

B Diagnose performance-limiting resources, design machines, etc.

» How is application modeling difficult?
B Modeling requires expertise and labor
® model critical path: identify parameters for each critical path segment
® parameter reduction: represent ‘invariant’ code as measurement
® validate: iterate until model captures all interesting behavior
B Reproducing and distributing models is ad hoc
® 1 modeler, N application variants

® 1 application, N modelers

What can a tool automate? Can we pair model and source code?

Palm: How Can Tools Help? N

» Identify and formalize best practices
» Make the simple easy and the difficult possible
M Provide a fully general framework (do not hinder)
B Automate routine tasks
» Facilitate a divide-and-conquer modeling strategy
B Construct model by composing sub-models
B Define model structure from static & dynamic code structure
» Assist reproducibility
B Generate same model given same input
B Generate model according to well-defined rules
» Assist validation (feedback loop)
B Generate contribution and error reports

Palm: Performance & Architecture Lab Modeling Tool

Palm: Annotations Guide Modeling \?/

Palm reference & instrumented executables Palm
source Compiler static analysis Monitor

» Annotations guide modeling and express insight
B Develop model and application in tandem

B Decompose modeling task into sub-problems

A 4

B Reasonable because applications change slowly Palm

Generator

» To annotate a block of code:
B assign it a name (will be qualified by dynamic instance)

B associate a modeling expression with it
@® expressions may use model functions and program values

_ _ _ _ parameters
® define model functions/variables for convenience

refine as necessa ry

model
(program)

prediction & diagnostics

Simple Annotations for Nekbone (CG solver) \?/

program nekbone model: classify code block and model one
ISpal model init instance of its execution; if expression is
[omitted, automatically synthesize one

call init_dim, call init_mesh, ...

ISpal model cg
[
call cg(...)
end

loop: model several instances of a code block;
name block and model its trip count

subroutine cg(...) def: define model variable or function

ISpal loop n,, = ${n_iter}

do iter=1,n iter S{x}: program value reference: capture x’s
- value during program execution and
compute statistic across instances & ranks

enddo

- ~
void halo exchange(buf[n], n...) APl ORI

#pragma pal loop n_, 4 = $S{n}[max] void isend(...size_t n, uint dst...)
for(i =0; 1 < n; ++i)

[#pal model send = snd(S{n})

isend(..., bufli]...); MPI_Isend(... n, dst...)

Palm: Static & Dynamic Analysis

annotated Palm reference & instrumented executables
source Compiler

Palm
static analysis Monitor

» Compile with Palm Compiler = Annotation structure
» Execute with Palm Monitor — Calling context tree

nekbone

static & dynamic annotation structure
context-sensitive measurements
statistics for program values

leaves represent computation

Palm
Generator

yi
|

@ model annotation
@ !oop annotation parameters

A unannotated sub-tree

model
(program)

refine as necessa ry

prediction & diagnostics

Palm: Generating Models

reference & instrumented executables

annotated Palm

source Compiler

Palm
Monitor

static analysis

» Generate model from (static/dynamic) annotation structure
B combine annotation expressions and measurements

—— Generate model by composing model nodes

| nekbone() = init() + cg() + k,
init() = k,

cg() = n * (reduce,() + reduce,()
+n... Fsnd(k))

send

n.... = S{n}[max] @ model annotation

send —

refine as necessa ry

@ loop annotation
A unannotated sub-tree

prediction & diagnostics

parameters

Palm

Generator

model
(program)

Model Generation for Nekbone %
— —

* Annotation structure * Model structure * Annotation - model function
e Performance measurements ¢ Convert sub-trees to ¢ Compose model functions
* Program values (runtime) measurement constants * Combine model expressions

* Resolve expression references and measurements

measurement program value
’ 4

nekbone nekbone() = init() + cg() + k,

nekbone

init() = k,

cg() =n, * (reduce() +
reduce,() +
N..4 ¥ snd(1600))

send

reduce () = ...

reduce, I

snd(sz) = ...
reduce, -

def-namespace
snd(sz) = ...

context sensitive

Palm: Using Models

reference & instrumented executables

annotated Palm

source Compiler

Palm
Monitor

static analysis

» Models are (Ruby) programs
M scripting language is convenient; could use machine code
B invoke by passing appropriate parameters (e.g., # cores)

M replace sub-models by re-defining functions

» Refine annotations using model diagnostics

B show contribution of each sub-model (expression)
@ guantitatively distinguish 15t- and 2"d-order effects

B show errors of each sub-model w.r.t. measurements
® understand effects of replacing a sub-model (function)

parameters

® example: new communication model

prediction & diagnostics

A 4

Palm
Generator

model
(program)

Palm’s Model Matches Human-Generated ModgL/

class Model
def nekbone() (init() + cg() + k,) end

def init() k, end

def cg()
n, * (f() + reducey() + ... + reduce,() +
26 * send())
end

def snd(sz) @machine.send(sz) end
end

require ‘machine-pic.rb'
m = Model.new(PAL::ExecutionPIC.new(...))
m.eval(parameter-list)

A model is a program.
Here, it is a Ruby script.

synthesized model function
(from model & loop annotations
and measurements)

cg() model’s form matches a
human-generated model:
T+3T +26T

reduce send

model function
(from def annotation)

machine parameters
(from model library)

evaluate to obtain runtime

Models are Hierarchical %

Palm Model

def-namespace

nekbone nekbone() = init() + cg() + k,
init() = k,
@ model cg() = ne, * (reduce;() + reduce,() +
. |OOp Nsend * Snd(1600))
Neg /2 sub-tree reduce,() = ...
4 snd(sz) = ...
reduce, \

model defined in
terms of models;

reduce,

preserves annotation
structure

a model node’s subtree
contains other model nodes Non-hierarchical Model
. k
model annotations are ki +n. * (reduce,+ reduce, +
*k
" L)+
context sensitive Neeng *) T K,

11

Models are First Class Values

Sweep3D: 2D pipeline where wait time

depends on number ranks & pipeline stage. @{x}: model class reference:
Easier to model aggregate wait time than per placeholder for x’s (yet to be)
iteration wait time synthesized model

Use models as values

— " sweep3d
wait time plus myself (= compute) s

Noe= S{n_iter}

ISpal def wait(x,y, g) = (x+y-1)g

I$pal model solve = wait(p,, p,, @{grind}) +@{solve}) L52Ve = Waitlo. P, @igrind}) + @isolve}
call solve(...)

ISpal loop ngee, = |dir| * |z-block|
for each dir and z-block b,
recv(pipeline-prev) @{solve} is a self reference
[#pal model grind

compute(b,) @{grind} refers to the model for
send(pipeline-next) the tree fragment in this context

First Class Models Unify Models & I\/IeasuremenE/

@ model
sweep3d ® loop sweep3d
None= S{N_iter} [\ sub-tree

solve = wait(p,, p,, @{grind}) + @{solve}

def-namespace
wait(x, y, g) =

nsweep= S{n}

(x+y-1)g

: : : Model
To permit recursive models, define an - solve(variant) =

inductive ordering of model types: case variant
2. annotation expression — x1 g=grind(x1)

1. synthesized expression s = sweep(x1’)
i : : wait(p,, p,, g) + S
(includes an annotation expression) O . n *grind (x1)
0. synthesized measurement ‘ —

grind(variant) = k,

13

Models and Accurate Measurements \g/
def solve(variant)

sweep3d @ model case variant
@ loop g = grind(x1)
[\ sub-tree s = sweep(x1')

wait(p,, p,, g) +$

sweep(xn') / N e
Nsolve * sweep(xl)
grind(xn')

def-namespace
wait(x, y, g) =
(x+y-1)g

Each model has four variants, a
combination of
* instance types: per (x1) vs. multi (xn)

Two ways to measure:
* model types: inductive vs. base (')

1. time each instance & average
2. time many instances & divide Examples:

e sweep(x1): one instance
* sweep(xn): all instances

Method (2) is more accurate

Results: Models Match Validated Models

140
120
100
80
60
40
20

(a) Nekbone, weak scaling

**=*%error

e=0==measured (s)
={=predicted (s)

[}
co o™ o

2 4 8 16 32 64 128
Compute nodes (16 core/node)

(c) Sweep3D, weak scaling

e=0==measured (s)

={J=predicted (s)

©e=*%error

w ™ = HK % error

L)
AN »== T
1 1 1 |\‘| 1
2 4 8 16 32 64 128

Compute nodes (16 cores/node)

68

63

58

53

140
120
100
80
60
40
20

(b) GTC, weak scaling

2 4 8 16 32 64 128
Compute nodes (16 cores/node)

10
e=O==measured (s)
={J=predicted (s) - 8
1°°**% error
)
-4
o.. ..$. ° o= | 2
T T T .-..|.-..|..- T 0
2 4 8 16 32 64 128

Compute nodes (16 core/node)

(d) Sweep3D, strong scaling
e=O==measured (s) - 20
={J=predicted (s) .-'..

| ..Oo%error -. B 15
1 = == HK % error ‘.
N - 10
1 -5
e T T T T T T O

Percent error

15

Palm e hpc.pnnl.gov/palm

» Ease burden of modeling

B Facilitate divide-and-conquer modeling strategy

B Automatically incorporate measurements

B Generate contribution and error reports
» Enable first-class models

B Coordinate models and source code

B Functions unify annotations, generated models, and measurements
» Expressive: elegantly represent non-trivial critical paths

B Annotations provide convenience within fully generic framework
» Reproducible: generate same model given same input

B Generate model according to well-defined rules

B Define model structure from static & dynamic code structure

16

