
Leveraging Hardware Address
Sampling!

Beyond Data Collection and Attribution

Xu Liu
!

Department of Computer Science
College of William and Mary

xl10@cs.wm.edu

mailto:xl10@cs.wm.edu

 Motivation: Memory is the Bottleneck

2

local
access

remote
access

core core

cache

memory

core core

cache

memory

QuickPath

HyperTransport

NUMA: Non-Uniform Memory Access

State of the Arts

3

simulation methods

measurement methods

deep insights

low overhead

low overhead with deep insights

deep insights with low overhead

weaknesses:!
• 2-5x overhead!
• not real machines

Hardware Address Sampling

• Features of address sampling
• sample memory-related events (memory accesses, NUMA events)
• capture effective addresses
• record precise IP of sampled instructions or events

• Support in modern processors
• AMD Opteron 10h and above: instruction-based sampling (IBS)
• IBM POWER 5 and above: marked event sampling (MRK)
• Intel Itanium 2: data event address register sampling (DEAR)
• Intel Pentium 4 and above: precise event based sampling (PEBS)
• Intel Nehalem and above: PEBS with load latency (PEBS-LL)

• Efficient memory measurement (SC’13)
• code-centric analysis
• data-centric analysis

4

Code-centric vs. Data-centric

5

• Code-centric attribution
– problematic code sections

• instruction, loop, function
!

• Data-centric attribution
– problematic variables

• static/heap variables

5

1: #pragma omp parallel for num_threads(4)	

2: for (i = 0; i < n; i++) {	

3: for(j = 0; j < n; j++) {	

4: for(k = 0; k < n; k++) {	

5: A[i, j, k] = A[i, j, k,] + B[j, i, k] + C[k, j, i];	

6: }	

7: }	

8: }

line 5: 100% latency

array A:	

line 5: 1% latency	

array B	

line 5: 10% latency	

array C	

line 5: 89% latency	

code-centric profiling data-centric profiling

T4

Combining code-centric and data-centric attribution 
 provides additional insight

 Attributing Samples

6

heap allocated
variables

variable
name

static 	

variables

... ...
allocation path

malloc

variable range

0x0 0xff

data-centric attribution

code-centric attribution

7

Aggregating Profiles

heap allocated
variables

...
allocation path

malloc

heap allocated
variables

...
allocation path

malloc

heap allocated
variables

...
allocation path

malloc

...
merge

 LULESH on Platform of 8 NUMA Domains

8

allocation call path call site of allocation

z accounts for
7.7% remote accesses

call paths for
accesses

remote accesses

heap data:68%
remote accesses

interleave pages of z
across NUMA nodes	

13% improvement in

running time

z is allocated in a
NUMA domain but
accessed by others

 Existing Measurement is Inadequate

• Data collection + attribution ≠ optimal optimization
– know problematic data objects but not know why
– need more insights for optimization guidance

• Challenges for address sampling
– very sparse memory access samples
– not monitoring continuous memory accesses

• Opportunities for address sampling
– effective addresses: analyze memory access patterns
– data sources: understand where inefficiencies come from
– latency: derive new latency metrics to quantify inefficiencies.

9

 Beyond Data Collection and Attribution

• Published work
– analyzing NUMA bottlenecks (PPoPP’14)
– guiding array regrouping for better locality (PACT’14)
– identifying memory scaling issues (SC’15)

10

11

 Interleaved Allocation is NOT Always Best

11

core1 core2

core3 core4

core1 core2

core3 core4

core1 core2

core3 core4

core1 core2

core3 core4

domain 1 domain 2 domain 3 domain 4

centralized allocation: poor

interleaved allocation: sub-optimal

co-locate data with computation: optimal

Goal: identify the best data distribution for a program

allocation 1

allocation 2

allocation 3

12

Memory Access Pattern Analysis

• Online data collection
!
!
!
!
!
!
!
!
!

• Offline analysis
– merge [min, max] intervals along call paths
– plot [min, max] for each thread

• can be for any context, any variable

12

array A

domain1

[min1, max1]

[min2, max2]

[min, max]

T1 T2 T3 T4

allocate A blockwise to different domains

domain2 domain3 domain4

balanced allocation + maximum locality

array A

min max

[min, max] per sampled
memory access

0x00 0xff

address

13

 LULESH on Platform of 8 NUMA Domains

call path 	

allocates z

call paths	

access z

special metrics common metrics

Block-wise allocation: 25% faster running time	

Interleaved allocation: 13% faster running time

z accounts for 7.7% of
remote accesses

domain	

0

domain	

7

 Beyond Data Collection and Attribution

• Published work
– analyzing NUMA bottlenecks (PPoPP’14)
– guiding array regrouping for better locality (PACT’14)
– identifying memory scaling issues (SC’15)

14

Array Regrouping

1515

no contention

only 1 stream

A1

A2

A1[0] A1[1] A1[2] A1[3]A2[0] A2[1] A2[2] A2[3]

contention: conflict misses

A1

A2 A1[0] A2[0] A3[0] A4[0]
A3
A4

multiple
prefetching streams

16

Workflow

16

executable
binaries

filter out
insignificant arrays

compute
array affinity

regrouping
decision

analyze access
patterns

ArrayTool

programmers

source code
compile regroup

17

Filter out Insignificant Arrays

17

latency

SRAD from Rodinia

18

Latency-based Array Affinity

18

loops in their calling contexts

Prune CCT
leaf nodes: loops

aggregate latency of uncommon loops

aggregate latency of all loops

loop
instruc+on
func+on

19

An Example

19

array	
 A

array	
 B

array	
 C

high
	
 Rcw

low	
 Rcw

20

Access Pattern Analysis

20

arrays	
 c’s	
 access	
 pa9ern

threads

ad
dr
es
s	
 r
an
ge

array	
 interval	
 touched	
 	

by	
 each	
 thread

dN,	
 dS,	
 dE,	
 dW	
 have	
 the	
 same	
 pa9ern

[low,	
 high]

0 10 20 30 40 48
0

1

21

Regrouping Results of SRAD

21

only	
 regroup	
 dN,	
 dS,	
 dW,	
 dE

regroup	
 dN,	
 dS,	
 dW,	
 dE	
 and	
 c

↑1.47x

↑1.89x

 Beyond Data Collection and Attribution

• Published work
– analyzing NUMA bottlenecks (PPoPP’14)
– guiding array regrouping for better locality (PACT’14)
– identifying memory scaling issues (SC’15)

22

 Scaling Losses in Memory Hierarchies

• Memory contentions hurt scalability: cache/bandwidth contention
– which data objects contribute to the most scaling losses
– which memory layers incur the most scaling losses

• Methods
– decompose latency according to data objects and memory layers

• data-centric analysis with data source information
– differential analysis supported by HPCToolkit

• compare profiles between different runs

23

more details in SC’15

Conclusions and Future Work

• Hardware address sampling
– widely supported in modern architectures
– powerful in monitoring memory behaviors
– more analysis of the samples provides more performance insights

• On-going work
– structure splitting
– locality optimization between SMT threads
– cache line false sharing
– automatic page migration for NUMA architectures

• Future directions of address sampling
– comparing different address sampling mechanisms
– analyzing new performance issues

• heterogeneous memory: 3D stack memory

24

Backup Slides

25

26

 UMT2013 on Quad-socket POWER7 Node

18.2% of remote accesses

sample off-chip
accesses

allocated in one domain	

accessed by everyone	

self%STime

27

Optimize self%STime for UMT2013
address-centric analysis for self%STime

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

303 6 10 13 16 20 23 26

T1 T2 T3 T4 T1 T2 T3 T4 ...
self%STime’s address space

optimization: let each thread
initialize its own data

result: all threads have data
locally -- 7% faster

multiple pages

address

