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  Motivation: Memory is the Bottleneck
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State of the Arts
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simulation methods

measurement methods

deep insights

low overhead

low overhead with deep insights

deep insights with low overhead

weaknesses:!
• 2-5x overhead!
• not real machines



Hardware Address Sampling

• Features of address sampling 
• sample memory-related events (memory accesses, NUMA events) 
• capture effective addresses  
• record precise IP of sampled instructions or events 

•  Support in modern processors 
• AMD Opteron 10h and above: instruction-based sampling (IBS) 
• IBM POWER 5 and above: marked event sampling (MRK) 
• Intel Itanium 2: data event address register sampling (DEAR) 
• Intel Pentium 4 and above: precise event based sampling (PEBS) 
• Intel Nehalem and above: PEBS with load latency (PEBS-LL) 

• Efficient memory measurement (SC’13) 
• code-centric analysis 
• data-centric analysis
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Code-centric vs. Data-centric
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• Code-centric attribution 
– problematic code sections 

• instruction, loop, function 
!

• Data-centric attribution 
– problematic variables 

• static/heap variables
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1: #pragma omp parallel for num_threads(4)	


2: for (i = 0; i < n; i++) {	


3:    for(j = 0; j < n; j++) {	


4:        for(k = 0; k < n; k++) {	


5:            A[i, j, k] = A[i, j, k,] + B[j, i, k] + C[k, j, i];	


6:        }	


7:    }	


8: }

line 5: 100% latency

array A:	


line 5: 1% latency	



array B	


line 5: 10% latency	



array C	


line 5: 89% latency	



code-centric profiling data-centric profiling

T4

Combining code-centric and data-centric attribution 
 provides additional insight



    Attributing Samples
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Aggregating Profiles
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         LULESH on Platform of 8 NUMA Domains
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allocation call path call site of allocation

z accounts for 
7.7% remote accesses

call paths for 
accesses

remote accesses

heap data:68% 
remote accesses

interleave pages of z 
across NUMA nodes	


13% improvement in 

running time

z is allocated in a 
NUMA domain but 
accessed by others



        Existing Measurement is Inadequate

• Data collection + attribution ≠ optimal optimization 
– know problematic data objects but not know why 
– need more insights for optimization guidance 

• Challenges for address sampling 
– very sparse memory access samples 
– not monitoring continuous memory accesses 

• Opportunities for address sampling 
– effective addresses: analyze memory access patterns 
– data sources: understand where inefficiencies come from 
– latency: derive new latency metrics to quantify inefficiencies.
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         Beyond Data Collection and Attribution

• Published work 
– analyzing NUMA bottlenecks (PPoPP’14) 
– guiding array regrouping for better locality (PACT’14) 
– identifying memory scaling issues (SC’15)
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        Interleaved Allocation is NOT Always Best
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core1 core2

core3 core4

core1 core2

core3 core4

core1 core2

core3 core4

core1 core2

core3 core4

domain 1 domain 2 domain 3 domain 4

centralized allocation: poor

interleaved allocation: sub-optimal

co-locate data with computation: optimal

Goal: identify the best data distribution for a program

allocation 1

allocation 2

allocation 3
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Memory Access Pattern Analysis

• Online data collection 
!
!
!
!
!
!
!
!
!

• Offline analysis 
– merge [min, max] intervals along call paths 
– plot [min, max] for each thread 

• can be for any context, any variable
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array A

domain1

[min1, max1]
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[min, max]
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allocate A blockwise to different domains

domain2 domain3 domain4

balanced allocation + maximum locality

array A

min max
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memory access
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         LULESH on Platform of 8 NUMA Domains

call path 	


allocates z

call paths	


access z

special metrics common metrics

Block-wise allocation: 25% faster running time	


Interleaved allocation: 13% faster running time

z accounts for 7.7% of 
remote accesses

domain	


0

domain	
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         Beyond Data Collection and Attribution

• Published work 
– analyzing NUMA bottlenecks (PPoPP’14) 
– guiding array regrouping for better locality (PACT’14) 
– identifying memory scaling issues (SC’15)
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Array Regrouping
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no contention

only 1 stream
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contention: conflict misses
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multiple  
prefetching streams
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Workflow
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Filter out Insignificant Arrays
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latency

SRAD from Rodinia 



18

Latency-based Array Affinity
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loops in their calling contexts

Prune CCT 
leaf nodes: loops

aggregate latency of uncommon loops

aggregate latency of all loops

loop
instruc+on
func+on



19

An Example
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Access Pattern Analysis
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Regrouping Results of SRAD
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         Beyond Data Collection and Attribution

• Published work 
– analyzing NUMA bottlenecks (PPoPP’14) 
– guiding array regrouping for better locality (PACT’14) 
– identifying memory scaling issues (SC’15)
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      Scaling Losses in Memory Hierarchies

• Memory contentions hurt scalability: cache/bandwidth contention 
– which data objects contribute to the most scaling losses 
– which memory layers incur the most scaling losses 

• Methods 
– decompose latency according to data objects and memory layers 

• data-centric analysis with data source information  
– differential analysis supported by HPCToolkit 

• compare profiles between different runs
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more details in SC’15



Conclusions and Future Work

• Hardware address sampling 
– widely supported in modern architectures 
– powerful in monitoring memory behaviors 
– more analysis of the samples provides more performance insights 

• On-going work 
– structure splitting  
– locality optimization between SMT threads 
– cache line false sharing 
– automatic page migration for NUMA architectures 

• Future directions of address sampling 
– comparing different address sampling mechanisms 
– analyzing new performance issues 

• heterogeneous memory: 3D stack memory
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Backup Slides
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         UMT2013 on Quad-socket POWER7 Node

18.2% of remote accesses

sample off-chip 
accesses

allocated in one domain	


accessed by everyone	



self%STime 
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Optimize self%STime for UMT2013
address-centric analysis for self%STime
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optimization: let each thread 
initialize its own data

result: all threads have data 
locally -- 7% faster

multiple pages
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