
LLNL-PRES-675781
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Spack:
Bringing Order to HPC Software Chaos
Scalable Tools Workshop 2015

August 3, 2015

http://bit.ly/spack-git

Contributors
 Matt Legendre
 Greg Lee
 Mike Collette
 Bronis de Supinski
 Scott Futral

Lawrence Livermore National Laboratory LLNL-PRES-675781
2 http://bit.ly/spack-git

What is the “production”
environment for HPC codes?
§  Someone’s home directory?
§  LLNL? LANL? Sandia? ANL? LBL? TACC?

•  Environments at these sites are very different.

§  Which MPI?
§  Which compiler?
§  Which dependency versions?

§  Real answer: there isn’t a single production
environment or a standard way to build.

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX
3 http://bit.ly/spack-git

§  Not much standardization in HPC
§  Every machine and app has a different software stack (or several)
§  We want to experiment with many exotic architectures, compilers, MPI versions
§  All of this is necessary to get the best performance

48 third party packages

3 MPI versions
mvapich mvapich2 OpenMPI x

3-ish Platforms
Linux BlueGene Cray x

Up to 7 compilers
Intel GCC XLC Clang

PGI Cray Pathscale
x

Oh, and 2-3 versions of each x

= ~7,500 combinations

§  OK, so we don’t build all of these
•  Many combinations don’t make sense

§  We want an easy way to quickly
sample the space
•  Build a configuration on demand!

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX
4 http://bit.ly/spack-git

§  OS distribution does not deal with this
•  OS typically has one version of each package, installed in a common prefix: /usr	

§  HPC software typically installed manually in a directory hierarchy.
•  Hierarchy often doesn’t give you all the information you need about a build.
•  Typically run out of unique names for directories quickly.

§  Environment modules allow you to enable/disable packages.

Site Naming Convention

LLNL / usr / global / tools / $arch / $package / $version	
/ usr / local / tools / $package-$compiler-$build-$version	

Oak Ridge / $arch / $package / $version / $build	

TACC / $compiler-$comp_version / $mpi / $mpi_version / $package / $version	

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX
5 http://bit.ly/spack-git

§  Advantages:
•  Allow you to swap different library versions dynamically, in your

shell.

§  Disadvantages:
•  Module system doesn’t build software: only changes environment
•  Typically have to load the same module that you built with.
—  Easy to load wrong module; code no longer works.

$ module avail	
	
------------------------ /usr/share/Modules/modulefiles -------------------------	
dot module-git module-info modules null use.own	
	
--------------------------- /opt/modules/modulefiles ----------------------------	
acml-gnu/4.4 intel/11.1 mvapich2-pgi-ofa/1.7	
acml-gnu_mp/4.4 intel/12.0 mvapich2-pgi-psm/1.7	
acml-intel/4.4 intel/12.1(default) mvapich2-pgi-shmem/1.7	
acml-intel_mp/4.4 intel/13.0 netcdf-gnu/4.1	
acml-pathscale/4.0 intel/14.0 netcdf-intel/4.1	
...	
	
$ module load intel/12.0	
$ module load mvapich2-pgi-shmem/1.7	

Lawrence Livermore National Laboratory LLNL-PRES-675781
6 http://bit.ly/spack-git

Example: Spack has recently been
adopted by ARES, an LLNL production code.

ARES

tcl

tkscipy

python

cmake

hpdf

opclient

boost

zlib

numpy

bzip2

LAPACK

gsl

HDF5

gperftools papi

GA

bdivxml

sgeos_xmlScallop

rng perflib memusage timers

SiloSAMRAI

HYPRE

matprop

overlink qd

LEOS

MSlibLaser

CRETIN

tdf

Cheetah DSD

Teton

Nuclear

ASCLaser

MPI

ncurses

sqlite readline openssl BLAS

Physics Utility Math External

Types of Packages

§  ARES is a 1, 2, and 3-D radiation hydrodynamics code
•  Used in munitions modeling and ICF simulation
•  Runs on LLNL and LANL machines

§  Dependencies of ARES v3.0 shown above
•  47 component packages

§  Spack automates the build of ARES and its dependencies
•  Also being used to automate post-build testing.

Lawrence Livermore National Laboratory LLNL-PRES-675781
7 http://bit.ly/spack-git

ARES has uses Spack to test 36
different configurations

§  Above are nightly builds of ARES on machines at LLNL and LANL
•  Zin, Sequioa, Cielo

§  4 code versions:
•  (C)urrent Production (L)ite
•  (P)revious Production (D)evelopment

§  Team is currently porting to the new Trinity machine

parameter is not part of the link. To keep package installations
consistent and reproducible, Spack has a well-defined mechanism
for resolving conflicting links; it uses a combination of internal
default policies and user- or site-defined policies to define an order
of preference for different parameters. By default, Spack prefers
newer versions of packages compiled with newer compilers to older
packages built with older compilers. It has well-defined, but not
necessarily meaningful, order of preference for deciding between
MPI implementations and different compilers. The default policies
can be overridden in configuration files, by either users or by sites.
For example, at one site users may typically use the Intel compiler,
but some users also use the system’s default gcc@4.4.7. These
preferences could be stated by adding:

compiler_order = icc,gcc@4.4.7

to the site’s configuration file, which would cause the ambiguous
mpileaks link to point to an installation compiled with icc. Any
compiler not in the compiler_order setting is treated as less preferred
than those explicitly provided. In a similar manner, Spack can be
configured to give specific package configurations priority over
others. This can be useful if a new version is unstable and untested.

4.3.2 External Package Repositories
By default, Spack stores its package files in a mainline repository

that is present when users first run Spack. At many sites, packages
may build sensitive, proprietary software, or they may have patches
that are not useful outside of a certain company or organization.
Putting this type of code back into a public repository does not often
make sense, and if it makes the mainline less stable, it can actually
make sharing code between sites more difficult.

To support our own private packages, and to support those of
LLNL code teams, Spack allows the creation of site-specific variants
of packages. Via configuration files, users can specify additional
search directories for finding additional Package classes. The addi-
tional packages are like the mpileaks package shown in Figure 1.
However, the extension packages can extend from not only Package,
but also any of Spack’s built-in packages. Custom packages can
inherit from and replace Spack’s default packages, so other sites can
either tweak or completely replace Spack’s build recipes. To con-
tinue the previous example, a site can write a LocalSpindle Python
class, which inherits from Spack’s Spindle class. LocalSpindle
may simply add additional configure flags to the Spindle class,
while leaving the dependencies and most of the build instructions
from its parent class. For reproducibility, Spack also tracks the
Package class that drove a specific build.

4.4 The ARES Multi-physics Code
For our final use case, we describe our experiences using Spack

to build ARES. ARES [9, 31] is a 1, 2 and 3-dimensional radiation
hydrodynamics code, developed for production use at LLNL. It can
run both small, serial and large, massively parallel jobs. ARES
is used primarily in munitions modeling and inertial confinement
fusion simulations. At LLNL, it runs on commodity Linux clusters
and on Blue Gene/Q systems. It also runs on the Cielo Cray XE6
system at Los Alamos National Laboratory (LANL), and it is be-
ing ported to LANL’s forthcoming Trinity Cray XC30 machine on
Trinitite, a smaller version of the full system. The Trinity machine
will consist of two partitions; one using Intel Haswell processors
and another using Intel Knights Landing processors. Currently, only
the Haswell partition is deployed on Trinitite.

ARES comprises 47 packages, with complex dependency rela-
tionships. Figure 13 shows the DAG for the current production
configuration of ARES. At the top is ARES itself. ARES depends

Linux BG/Q Cray XE6
MVAPICH MVAPICH2 OpenMPI BG/Q MPI Cray MPI

GCC C P L D C P L D

Intel 14 C P L D

Intel 15 C P L D D

PGI D C P L D C L D

Clang C P L D C L D

XL C P L D

Table 3: Configurations of ARES built with Spack:
(C)urrent and (P)revious production, (L)ite, and (D)evelopment).

on 11 LLNL physics packages, 4 LLNL math/meshing libraries,
and 8 LLNL utility libraries. The utility libraries handle tasks in-
cluding logging, I/O, and performance measurement. ARES also
uses 23 external software packages, including MPI, BLAS, Python,
and many other libraries. Together, these packages are written in a
diverse set of languages including C, C++, Fortran, Python and tcl
and uses MPI and OpenMP for parallelism.

We have configured Spack to build ARES with external MPI
implementations, depending on the host system. This configuration
exploits the vendor- or site-supplied MPI installation that often uses
host-specific optimized network drivers. MPI is shown as a virtual
dependency in the figure, as the implementation differs according
to the host machine. ARES builds its own Python version in order
to run on machines where Python is not well supported, like Blue
Gene/Q. In particular, ARES builds a version of Python 2.7 for Blue
Gene/Q, which the native software stack does not support.

Prior to using Spack, ARES managed its software stack with
MixDown. Thus, the ARES team already had some experience
supporting automated builds of dependencies. We developed Spack
packages for the LLNL packages in Figure 13. Many of the external
packages were already available in Spack, but some, such as Python,
required modifications to support the new platforms and compilers.

Table 3 shows configurations of ARES that the ARES team tests
nightly. The rows and columns show architectures, compilers, and
MPI versions. The ARES Spack package supports four different
code configurations: the current (C) and previous (P) production
versions, a “lite” version (L) that includes a smaller set of features
and dependencies, and a development version (D). Each cell in the
table indicates the ARES configurations built for an architecture,
compiler, and MPI combination. Each configuration requires a
slightly different set of dependencies and dependency versions, but
one common ARES package supports all of them with conditional
logic on versions and variants.

Altogether, the initial packaging effort required roughly two
months for an experienced build engineer working 20 hours per
week. As shown in the table, 36 different configurations have been
run using Spack (some of 4 versions on each of 10 architecture-
compiler-MPI combinations). Prior to using Spack, only Linux/Intel
configurations were automated. The ARES team listed a number of
key features that enabled the increased automation:

1. Spack’s version tracking and optional dependencies were
required to build the four configurations with correct libraries;

2. The spec syntax allowed build scripts to concisely test com-
piler, compiler version, and dependency versions—a necessity
for handling the different architectures;

3. Patching packages for particular platforms was necessary to
build many packages; and

4. Using a DSL embedded in Python was a significant benefit;
certain packages required custom scripting to patch.

Lawrence Livermore National Laboratory LLNL-PRES-675781
8 http://bit.ly/spack-git

§  Installed packages will automatically find their dependencies
•  Binaries are installed with proper RPATHs
•  No need to use modules or customize LD_LIBRARY_PATH
•  Things continue to work the way you built them

§  Installation works just as well in $HOME as in shared FS.

Spack handles combinatorial
version complexity.
spack/opt/ !
 linux-x86_64/ !
 gcc-4.7.2/ !
 mpileaks-1.1-0f54bf/ !
 bgq/ !
 gcc-4.5.1/ !
 libelf-0.8.13-251fqb/ !
 ... !

§  Each unique DAG is a unique
configuration.

§  Many configurations can coexist.
§  Each package configuration is

installed in a unique directory.
§  Hash appended to each prefix allows

versioning of full dependency DAG.

Lawrence Livermore National Laboratory LLNL-PRES-675781
9 http://bit.ly/spack-git

`spack list` shows what’s available
$ spack list	
==> 244 packages.	
adept-utils DSD lapack memusage papi py-pygments scotch	
ares dtcmp Laser memwatch paraver py-pylint scr	
arpack dyninst launchmon mesa parmetis py-pypar sgeos	
ASCLaser extrae lcms metis parpack py-pyparsing sgeos_xml	
atk flex Leos miranda pcre py-pyqt sha	
atlas fontconfig libarchive Mitos perflib py-pyside silo	
autoconf freetype libcircle mpc petsc py-pytz spindle	
automaded ft_hash libdrm mpe2 pixman py-rpy2 sqlite	
automake GA libdwarf mpfr pmgr_collective py-scientificpython stat	
bdivlibs gasnet libelf mpibash Pmw py-scikit-learn sundials	
bdivxml gcc libevent mpich postgresql py-scipy swig	
bib2xhtml gdk-pixbuf libffi mpileaks ppl py-setuptools szip	
binutils geos libgcrypt mpism py-basemap py-shiboken task	
bison gidiplus libgpg-error mrnet py-biopython py-sip taskd	
boost git libjpeg-turbo mslib py-cffi py-six tau	
boxlib glib libmng muster py-cython py-sympy tcl	
bzip2 gmock libmonitor mvapich2 py-dateutil py-virtualenv tdf	
cairo gmp libNBC nasm py-epydoc python Teton	
callpath gnutls libpng ncurses py-genders qd the_silver_searcher	
cblas gperf libtiff netcdf py-gnuplot qhull timers	
cgm gperftools libtool netgauge py-h5py qt tk	
check graphlib libunwind netlib-blas py-ipython qthreads tmux	
Cheetah gsl libuuid nettle py-libxml2 R tmuxinator	
clang gtkplus libxcb nuclear py-mako raja uncrustify	
cloog harfbuzz libxml2 numpy py-matplotlib ravel util-linux	
cmake hdf5 libxshmfence ompss py-mpi4py readline vim	
cndf hpdf libxslt opari2 py-mx rng vtk	
coreutils hwloc llvm opclient py-nose rose wget	
cppcheck hypre llvm-lld openmpi py-numpy ruby wx	
cram icu lua openssl py-pandas SAMRAI wxpropgrid	
cretin icu4c lwgrp otf py-pexpect SandiaGeo xcb-proto	
cube ImageMagick lwm2 otf2 py-pil scalasca xz	
dbus isl matprop overlink py-pmw scallop yasm	
dmalloc jdk mcapm pact py-pychecker scipy zlib	
dri2proto jpeg memaxes pango py-pycparser scorep 	

Lawrence Livermore National Laboratory LLNL-PRES-675781
10 http://bit.ly/spack-git

Spack provides a spec syntax to describe
customized DAG configurations
$ spack install ares default: unconstrained !
!
$ spack install ares@3.3 @ custom version !
!
$ spack install ares@3.3 %gcc@4.7.3 % custom compiler!
!
$ spack install ares@3.3 %gcc@4.7.3 +threads +/- build option!
!
$ spack install ares@3.3 =bgqos_0 = cross-compile!

§  Each expression is a spec for a particular configuration
•  Each clause adds a constraint to the spec
•  Constraints are optional – specify only what you need.
•  Customize install on the command line!

§  Package authors can use same syntax within package files
•  Makes it easy to parameterize build by version, compiler, arch, etc.

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX
11 http://bit.ly/spack-git

mpileaks

mpi

callpath dyninst

libdwarf

libelf

$ spack install mpileaks %intel@12.1 ^libelf@0.8.12!

§  Spack ensures that all packages in the same install are
built with the same version of libraries, like libelf.

§  Spack can ensure that builds use the same compiler
•  Can also mix compilers but it’s not default

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX
12 http://bit.ly/spack-git

mpileaks

mpi

callpath dyninst

libdwarf

libelf

$ spack install mpileaks ^mvapich@1.9 !

$ spack install mpileaks ^openmpi@1.4: !

$ spack install mpileaks ^mpi@2 !

These install separately,
in unique directories

Spack chooses an MPI
version that satisfies constraint

Ask specifically for mvapich 1.9 !

Ask for openmpi 1.4 or higher !

Ask for an MPI that supports MPI-2 interface !

Lawrence Livermore National Laboratory LLNL-PRES-675781
13 http://bit.ly/spack-git

Spack packages are simple Python
from spack import *	
	
class Dyninst(Package):	
 """API for dynamic binary instrumentation. Modify programs while they 	
 are executing without recompiling, re-linking, or re-executing.""”	
	
 homepage = "https://paradyn.org"	
	
 version('8.2.1', 'abf60b7faabe7a2e’, url="http://www.paradyn.org/release8.2/DyninstAPI-8.2.1.tgz")	
 version('8.1.2', 'bf03b33375afa66f’, url="http://www.paradyn.org/release8.1.2/DyninstAPI-8.1.2.tgz")	
 version('8.1.1', 'd1a04e995b7aa709’, url="http://www.paradyn.org/release8.1/DyninstAPI-8.1.1.tgz")	
	
 depends_on("libelf")	
 depends_on("libdwarf")	
 depends_on("boost@1.42:")	
	
	
 # new version uses cmake 	
 def install(self, spec, prefix):	
 libelf = spec['libelf'].prefix	
 libdwarf = spec['libdwarf'].prefix	
	
 with working_dir('spack-build', create=True):	
 cmake('..',	
 '-DBoost_INCLUDE_DIR=%s' % spec['boost'].prefix.include,	
 '-DBoost_LIBRARY_DIR=%s' % spec['boost'].prefix.lib,	
 '-DBoost_NO_SYSTEM_PATHS=TRUE',	
 '-DLIBELF_INCLUDE_DIR=%s' % join_path(libelf.include, 'libelf'),	
 '-DLIBELF_LIBRARIES=%s' % join_path(libelf.lib, 'libelf.so'),	
 '-DLIBDWARF_INCLUDE_DIR=%s' % libdwarf.include,	
 '-DLIBDWARF_LIBRARIES=%s' % join_path(libdwarf.lib, 'libdwarf.so'),	
 *std_cmake_args)	
 make()	
 make("install")	
	
 # Old version uses configure	
 @when('@:8.1')	
 def install(self, spec, prefix):	
 configure("--prefix=" + prefix)	
 make()	
 make("install")

Metadata

Version/URLs

Commands for install

Access build config
through spec.

Dependencies

§  Package files live in repositories.
§  ‘spack create’ command generates boilerplate package given a URL.

Patches (not shown)

Lawrence Livermore National Laboratory LLNL-PRES-675781
14 http://bit.ly/spack-git

Concretization fills in missing configuration
details when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11!

User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
has all dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize

Lawrence Livermore National Laboratory LLNL-PRES-675781
15 http://bit.ly/spack-git

§  Based on user-enabled variants:

§  And according to other spec conditions
e.g., gcc dependency on mpc from 4.5 on:

§  DAG is not always complete before concretization!

Spack supports optional
dependencies

 variant("python", default=False, “Build with python support”)	
 depends_on("python", when="+python")	

 depends_on("mpc", when="@4.5:")	

 spack install vim +python 	

Lawrence Livermore National Laboratory LLNL-PRES-675781
16 http://bit.ly/spack-git

§  Current algorithm is greedy
•  Will not backtrack once a decision is made.

§  Can fail to find a build that satisfies user’s query
•  Haven’t seen this actually happen for current packages

§  Really needs a full constraint solver (coming soon!)

Full concretization algorithm iterates
until DAG does not change

Package
Files

$ spack install
mpileaks@2.3

Command Line

Site
Config

Intersect
Constraints

Abstract Specs

Concrete Spec

Resolve
Virtual Deps

Concretize
Parameters

User
Config

install()

Lawrence Livermore National Laboratory LLNL-PRES-675781
17 http://bit.ly/spack-git

1.  Concretize the spec to be built

2.  Fork a new process.

3.  Set CC, CXX, F77, FC to Spack compiler wrappers.
•  Builds that don’t respect these must be patched by package authors (typically an easy Makefile fix)

4.  Set parameters for compiler wrappers as environment variables.
•  SPACK_CC, SPACK_CXX, SPACK_F77, SPACK_FC à paths to real compilers

5.  Set env variables so that dependencies are found:
•  PATH, PKG_CONFIG_PATH, CMAKE_PREFIX_PATH, LIBRARY_PATH, etc.

6.  During install(), compiler wrappers add flags for deps and RPATHs automatically:
-I /dep/prefix/include	
-L /dep/prefix/lib	
-Wl,-rpath=/dep/prefix/lib	

§  Environment allows compilers to be swapped on demand
§  Flags & vars allow dependencies to be found automatically by build systems

§  RPATHs ensure that package runs regardless of end-user’s environment

Spack builds each package in an
isolated environment

Lawrence Livermore National Laboratory LLNL-PRES-675781
18 http://bit.ly/spack-git

‘spack find’ shows what’s installed
$ spack find	
==> 103 installed packages.	
-- chaos_5_x86_64_ib / gcc@4.4.7 --------------------------------	
ImageMagick@6.8.9-10 glib@2.42.1 libtiff@4.0.3 pango@1.36.8 qt@4.8.6	
SAMRAI@3.9.1 graphlib@2.0.0 libtool@2.4.2 parmetis@4.0.3 qt@5.4.0	
adept-utils@1.0 gtkplus@2.24.25 libxcb@1.11 pixman@0.32.6 ravel@1.0.0	
atk@2.14.0 harfbuzz@0.9.37 libxml2@2.9.2 py-dateutil@2.4.0 readline@6.3	
boost@1.55.0 hdf5@1.8.13 llvm@3.0 py-ipython@2.3.1 scotch@6.0.3	
bzip2@1.0.6 hwloc@1.9 mesa@8.0.5 py-matplotlib@1.4.2 sqlite@3.8.5	
cairo@1.14.0 icu@54.1 metis@5.1.0 py-nose@1.3.4 starpu@1.1.4	
callpath@1.0.2 jpeg@9a mpich@3.0.4 py-numpy@1.9.1 stat@2.1.0	
cmake@3.0.2 launchmon@1.0.1 mpileaks@1.0 py-pygments@2.0.1 tcl@8.6.3	
cram@1.0.1 lcms@2.6 mrnet@4.1.0 py-pyparsing@2.0.3 tk@src	
dbus@1.9.0 libdrm@2.4.33 muster@1.0.1 py-pyside@1.2.2 xcb-proto@1.11	
dyninst@8.1.2 libdwarf@20130729 ncurses@5.9 py-pytz@2014.10 xz@5.2.0	
dyninst@8.1.2 libelf@0.8.13 ocr@2015-02-16 py-setuptools@11.3.1 zlib@1.2.8	
fontconfig@2.11.1 libffi@3.1 openssl@1.0.1h py-six@1.9.0 	
freetype@2.5.3 libmng@2.0.2 otf@1.12.5salmon python@2.7.8 	
gdk-pixbuf@2.31.2 libpng@1.6.16 otf2@1.4 qhull@1.0 	
	
-- chaos_5_x86_64_ib / gcc@4.8.2 --------------------------------	
adept-utils@1.0.1 boost@1.55.0 cmake@5.6-special libdwarf@20130729 mpich@3.0.4 	
adept-utils@1.0.1 cmake@5.6 dyninst@8.1.2 libelf@0.8.13 openmpi@1.8.2 	
	
-- chaos_5_x86_64_ib / intel@14.0.2 -----------------------------	
hwloc@1.9 mpich@3.0.4 starpu@1.1.4	
	
-- chaos_5_x86_64_ib / intel@15.0.0 -----------------------------	
adept-utils@1.0.1 boost@1.55.0 libdwarf@20130729 libelf@0.8.13 mpich@3.0.4	
	
-- chaos_5_x86_64_ib / intel@15.0.1 -----------------------------	
adept-utils@1.0.1 callpath@1.0.2 libdwarf@20130729 mpich@3.0.4 	
boost@1.55.0 hwloc@1.9 libelf@0.8.13 starpu@1.1.4	

Lawrence Livermore National Laboratory LLNL-PRES-675781
19 http://bit.ly/spack-git

Multiple builds of same MPI package
$ spack find mpich	
==> 5 installed packages.	
-- chaos_5_x86_64_ib / gcc@4.4.7 --------------------------------	
mpich@3.0.4	
	
-- chaos_5_x86_64_ib / gcc@4.8.2 --------------------------------	
mpich@3.0.4	
	
-- chaos_5_x86_64_ib / intel@14.0.2 -----------------------------	
mpich@3.0.4	
	
-- chaos_5_x86_64_ib / intel@15.0.0 -----------------------------	
mpich@3.0.4	
	
-- chaos_5_x86_64_ib / intel@15.0.1 -----------------------------	
mpich@3.0.4	

Lawrence Livermore National Laboratory LLNL-PRES-675781
20 http://bit.ly/spack-git

$ spack find libelf %intel@15.0.1	
-- chaos_5_x86_64_ib / intel@15.0.1 ------	
libelf@0.8.13	

Spec constraints double as a query
syntax to allow refinement
$ spack find libelf	
==> 5 installed packages.	
-- chaos_5_x86_64_ib / gcc@4.4.7 ---------	
libelf@0.8.12 libelf@0.8.13	
	
-- chaos_5_x86_64_ib / gcc@4.8.2 ---------	
libelf@0.8.13	
	
-- chaos_5_x86_64_ib / intel@15.0.0 ------	
libelf@0.8.13	
	
-- chaos_5_x86_64_ib / intel@15.0.1 ------	
libelf@0.8.13	

Query versions of libelf package

List only those built
with intel compiler.

Restrict to specific
compiler version

$ spack find libelf %intel	
-- chaos_5_x86_64_ib / intel@15.0.0 ------	
libelf@0.8.13	
	
-- chaos_5_x86_64_ib / intel@15.0.1 ------	
libelf@0.8.13	

Lawrence Livermore National Laboratory LLNL-PRES-675781
21 http://bit.ly/spack-git

Query full dependency configuration

§  Not just architecture and compiler, but dependency
versions may differ between builds.

$ spack find -d callpath	
==> 2 installed packages.	
-- chaos_5_x86_64_ib / gcc@4.4.7 ----------	
 callpath@1.0.2-5dce4318	
 ^adept-utils@1.0-5adef8da	
 ^boost@1.55.0	
 ^mpich@3.0.4	
 ^dyninst@8.1.2-b040c20e	
 ^libdwarf@20130729-b52fac98	
 ^libelf@0.8.13	
	
-- chaos_5_x86_64_ib / intel@15.0.1 -------	
 callpath@1.0.2-63c842f9	
 ^adept-utils@1.0.1-ae1dfc92	
 ^boost@1.55.0	
 ^mpich@3.0.4	
 ^dyninst@8.1.2-ba05df97	
 ^libdwarf@20130729-ab4816c7	
 ^libelf@0.8.13	

$ spack find callpath	
==> 2 installed packages.	
-- chaos_5_x86_64_ib / gcc@4.4.7 -------	
callpath@1.0.2	
	
-- chaos_5_x86_64_ib / intel@15.0.1 ----	
callpath@1.0.2	

Expand dependencies
with spack find -d	

Lawrence Livermore National Laboratory LLNL-PRES-675781
22 http://bit.ly/spack-git

§  Profusion of new compiler features frequently causes
build confusion:
•  C++11 feature support
•  OpenMP language levels
•  CUDA compute capabilities

§  Spack could allow packages to request compiler
features like dependencies:

§  Spack could:

1.  Ensure that a compiler with these features is used
2.  Ensure consistency among compiler runtimes in the same DAG.

Future direction:
Dependencies on compiler features

require(‘cxx11-lambda’) !
require(‘openmp@4:’) !

Lawrence Livermore National Laboratory LLNL-PRES-675781
23 http://bit.ly/spack-git

§  Automatically adding source instrumentation to
large codes is difficult
•  Usually requires a lot of effort, especially if libraries need to be

instrumented as well.

§  Spack could expose tools like Scalasca, TAU, etc.
as “secondary” compiler wrappers.
•  Allow user to build many instrumented versions of large

codes, with many different compilers:

§  LLNL PRUNER debugging tool is looking into this.
•  Uses LLVM for instrumentation; needs to cover all libraries.

Future direction:
Compiler wrappers for tools

spack install ares@3.3 %gcc@4.7.3 +tau !

Lawrence Livermore National Laboratory LLNL-PRES-675781
24 http://bit.ly/spack-git

§  We’re starting to add the ability to link to external packages
•  Vendor MPI
•  OS-provided packages that are costly to rebuild

§  External packages are already built, so:
•  Can’t always match compiler exactly
•  Can’t always match dependency versions exactly

§  Need to guarantee that the RPATH’d version of a library is
compatible with one that an external package was built with
•  Allows more builds to succeed
•  Potentially violates ABI compatibility

§  Looking into using libabigail from RedHat to do some
checking at install time.

Future direction:
Automatic ABI checking

Lawrence Livermore National Laboratory LLNL-PRES-675781
25 http://bit.ly/spack-git

§  Most OS package managers don’t handle combinatorial builds (and shouldn’t)
•  Maintain single, stable (or latest) version of most packages.
•  Allow smooth upgrades and predictable user experience.
•  Generally you pick a single compiler

§  Gentoo Prefix
•  Based on Gentoo Linux: builds from source, installs into common prefix
•  Allows different compilers, but requires modifying packages (not parameterized)
•  Different major versions are allows, different versions allowed through multiple prefixes.

§  Nix
•  Allows many separate configurations, packages are cryptographically hashed.
•  Multi-compiler support is limited, no virtual dependencies, no simple HPC build parameterization.

§  HPC package managers:
•  Smithy (ORNL): No dependency management; only install automation
•  EasyBuild (HPC U. Ghent)

—  Requires a package file per configuration of software
—  Currently 3300 package config files for 600 packages (!)

•  Hashdist
—  Similar goals to Spack, different platform targets (small scale HPC)
—  No spec syntax, more package file and profile editing required.
—  Compiler/architecture support is limited
—  Team is implementing many Spack features now. Potential for long-term convergence

Related work

Lawrence Livermore National Laboratory LLNL-PRES-675781
26 http://bit.ly/spack-git

§  Spack is starting to be used in production at LLNL
§  Used for tool installation at Livermore Computing (LC)
§  Used by ARES, NextGen teams, others.
§  Will enable a common deployment environment for LC and codes.

§  Spack has a growing external community
§  Tri-labs: Participation in Spack calls by Sandia, LANL
§  Argonne, IIT, INRIA, Krell Institute, Stowers Medical Research Center

§  Recently NERSC looking at Spack for their Cori system (same arch as
Trinity)

§  Sites can easily leverage efforts by sharing builds.

§  Get Spack!
 Github: http://bit.ly/spack-git
 Mailing List: http://groups.google.com/d/spack

Spack has a growing community.

