
Overview
• Problem
• Approach

– Automation of Performance Optimization
– Application to MPI

• Example Tuning Strategies
• Case Studies
• Related Research
• Future Research

Problem and Motivation
• MPI is pervasive
• Most users use library and cluster specific default parameters and

settings
• Defaults by definition are not always optimal
• Workload studies show many jobs/applications may have MPI

related performance issues.
• Most existing tools require in depth knowledge of MPI internals for

productive use and/or major investment in effort.
• Easy to use, low overhead tool is needed.

Approach - Conceptual

1. Specify what is to be optimized
2. Specify the metrics needed to diagnosis the bottleneck and

recommend the optimization
3. Define the algorithms for diagnosing bottlenecks and

recommending optimizations
4. Determine the measurements needed to evaluate those

metrics
5. Specify the instrumentation to obtain the measurements.

Approach - Operational
1. Get required data from measurements
2. Compute metrics from measurements
3. Diagnose bottlenecks and recommend optimizations using

analyses based on metrics and execution environment
parameters

4. Implement recommendations
5. Evaluate result of optimization recommendations
6. Go to 1

Previous Applications of Approach

• PerfExpert – Optimization (mostly) memory access at compute
node level

• MACPO – Adding data structure measurements and metrics to
PerfExpert diagnoses and recommendations.

• MACVEC – Application to optimization by enhancing
vectorization.

All of these are intra-compute node optimizations.
What about internode optimization – MPI Advisor

MPI Advisor Functionality
MPI Advisor currently:
1. Does all of the steps in the conceptual approach
2. Implements the measurements without requiring user instrumentation
3. Implements computation of the metrics
4. Implements the algorithms for diagnosing bottlenecks and

recommending optimizations
5. Does all the above with a single run of the application and only a few

percent overhead.
for a limited subset of the possible parameters, settings and choice of library
calls.

Workflow Diagram

Measurements

• Execution Environment Parameters – Once on Installation
– Run IMB and OMB Benchmarks with each library and collect data on

performance of each collective algorithm among other data
• Application Measurements

– Specific to each tuning strategy
– MPI_P
– MPI_T
– POSIX getenv()
– MPI_get_processor_name()
– HWLOC

Currently Implemented Optimizations
1. Point to Point Protocol Threshold

1. Eager versus Rendezvous
2. Choice of Algorithm for Collective Operations

1. Depends on system size, message size and task properties
2. Default versus custom selected

3. Mapping of MPI Tasks to Cores
1. Task 0 should be on HCA card
2. Default mappings versus custom mappings

4. Selection between RC and UD Transport Protocols
1. Memory and message size trade-off

Mapping of MPI Tasks to Cores - Default Mappings
Default Mappings of 4, multi-threaded MPI Tasks for Three

MPI Libraries on four-core chip nodes with two chips.

Intel MPI MVAPICH2

Open MPI

Mapping of MPI Tasks to Cores
1. Get Data: Get (via getenv()) the value of OMP_NUM_THREADS, the number of MPI and OpenMP tasks per node, determine

(via MPI_Get_processor_name()) the number of MPI tasks per node (MPI_Tasks_per_Node), and (via hwloc) the assignment of
tasks/threads to cores, the number of cores on a node (Cores_per_Node), and the location of the HCA;

2. Check Tasks-to-Cores Assignment:
If (all cores assigned to one MPI task) then Check Value of OMP_NUM_THREADS 2;
Else Check Value of OMP_NUM_THREADS 1;

3. Check Value of OMP_NUM_THREADS 1:
If (OMP_NUM_THREADS set) then Check Number of Cores Used;
else output “Warning: Node Under-subscribed” and Check Location of Rank Zero ;

4. Check Value of OMP_NUM_THREADS 2:
If (OMP_NUM_THREADS not set or = 1) then Check Location of Rank Zero;
else output “Warning: Cores Over-subscribed” and Check Location of Rank Zero;

5. Check Cores_per_Node:
If (MPI_Tasks_per_Node * OMP_NUM_THREADS < Cores_per_Node) then output “Warning: Node Under-subscribed” and
Check Location of Rank Zero;
If (MPI_Tasks_per_Node * OMP_NUM_THREADS > Cores_per_Node) then Output “Warning: Node Over-subscribed” and
Check Location of Rank Zero;
If (MPI_Tasks_per_Node * OMP_NUM_THREADS = Cores_per_Node) then Check Location of Rank Zero;

6. Check Location of Rank Zero:
If (Rank Zero process close to HCA card) then output “Mapping is OK” and terminate
else (output “Mapping Recommendation: ………..” and terminate

Mapping of MPI Tasks to Cores – Case Study
HPCG Application with MVAPICH 2: Use Default Configuration - Two

MPI Tasks with 8 OpenMP threads/task
Measurements

– Tasks are mapped to cores (Slide 11)
– Task 0 which does communication is mapped to socket 1 which is not

connected to network.
Recommendations

– Map each task to different socket
– Map Task 0 to Socket 0 which is attached to network

Improvement
– 50% in GFLOPS/sec

Related Work

• Periscope – Complex to use and requires system level access
privilege

• Atune – Autotuning – OpenMPI only
• OPTO – OpenMPI only Infiniband tuning
• Vtune – optimize library parameters for Intel MPI
• CrayPat – provides recommendations for rank ordering

Summary and Future Work
• MPI Advisor demonstrates automation of library and

parameter level tuning of MPI codes
• Paper to appear in EuroMPI 2015
• MPI Advisor is an ongoing project

– Additional Library and parameter selection strategies
– Introduce important source code level optimizations
– Expend to other MPI implementations

• Long Term Plan
– Unified approach to optimization of multilevel parallelism.

	Overview
	Problem and Motivation
	Approach - Conceptual
	Approach - Operational
	Previous Applications of Approach
	MPI Advisor Functionality
	Workflow Diagram
	Measurements
	Currently Implemented Optimizations
	Mapping of MPI Tasks to Cores - Default Mappings
	Mapping of MPI Tasks to Cores
	Mapping of MPI Tasks to Cores – Case Study
	Related Work
	Summary and Future Work

