
10th		Scalable	Tools	Workshop	
Anthony	Danalis	

Lake	Tahoe,	California	
August	1-4,	2016	

	

Recent	Advances	in	the		
Performance	API	(PAPI)	

Collaborators:	
Heike	Jagode	
Asim	Yarkhan	
Jack	Dongarra	
	

PAPI	
•  Middleware	that	provides	a	consistent	interface	and	methodology	for	the	performance	counter	

hardware	found	in	most	major	microprocessors	

•  PAPI	enables	software	engineers	to	see,	in	near	real	time,	the	relation	between		
SW	performance	and	HW	events	

	
SUPPORTED		ARCHITECTURES:	

•  AMD	
•  CRAY:	Aris,	Gemini,	power	
•  IBM	Blue	Gene	Series,	Q:	5D-Torus,	I/O	system,	CNK,	EMON	power/energy	
•  IBM	Power	Series	
•  Intel	Westmere,	Sandy|Ivy	Bridge,	Haswell,	Broadwell,	Skylake,	Knights	Corner	|	Landing	
•  ARM	Cortex	A8,	A9,	A15,	ARM64	
•  NVidia	Tesla,	Kepler,	NVML:	CUDA	support	for	multiple	GPUs;	PC	Sampling	
•  In\iniband	
•  Intel	RAPL	(power/energy);	power	capping	
•  Intel	KNC,	KNL	power/energy	

	
COMPONENT		PAPI:	

•  provides	access	to	a	collection	of	components	that	expose	performance	measurement	opportunities	
across	the	system	as	a	whole,	including	network,	the	I/O	system,	the	Compute	Node	Kernel,	power/
energy	

2	

PAPI	CPU	Components:	KNC	vs.	KNL	

3	

PAPI	Components	 Knights	Corner	 Knights	Landing	

perf_event:	
Linux	perf_event	CPU	core	
events	

PMU's	supported:	
perf,	perf_raw,	knc	
	
	
#	of	NaBve	Events:			140	
#	of	Preset	Events:					14	
#	of	Counters:															2	

PMU's	supported:	
perf,	perf_raw,	knl,	
ix86arch	
	
#	of	NaBve	Events:				182	
#	of	Preset	Events:						26	
#	of	Counters:																5				

perf_event_uncore:	
Linux	perf_event	CPU	
uncore	and	northbridge	
events	

PMU’s	supported:	
e.g.	Memory,	on-die	
interconnect,	IO,	Memory-
to-PCIe	event	support	
	
#	of	NaBve	Events:					894	

PAPI	offers	two	components	to	the	CPU	counters:	

See	
next	
slide	

4	

Preset	Events	 Descrip(on	
PAPI_L1_DCM	 Level	1	data	cache	misses	
PAPI_L1_ICM	 Level	1	instruc2on	cache	misses	
PAPI_L1_TCM	 Level	1	cache	misses		
PAPI_L2_TCM	 Level	2	cache	misses		
PAPI_TLB_DM	 Data	transla2on	lookaside	buffer	misses	
PAPI_L1_LDM	 Level	1	load	misses		
PAPI_L2_LDM	 Level	2	load	misses		
PAPI_STL_ICY	 Cycles	with	no	instruc2on	issue	
PAPI_BR_UCN	 Uncondi2onal	branch	instruc2ons			
PAPI_BR_CN	 Condi2onal	branch	instruc2ons			
PAPI_BR_TKN	 Condi2onal	branch	instruc2ons	taken		
PAPI_BR_NTK	 Condi2onal	branch	instruc2ons	not	taken	
PAPI_BR_MSP	 Condi2onal	branch	instruc2ons	mispredicted		
PAPI_TOT_INS	 Instruc2ons	completed				
PAPI_LD_INS	 Load	instruc2ons				
PAPI_ST_INS	 Store	instruc2ons				
PAPI_BR_INS	 Branch	instruc2ons				
PAPI_RES_STL	 Cycles	stalled	on	any	resource	
PAPI_TOT_CYC	 Total	cycles				
PAPI_LST_INS	 Load/store	instruc2ons	completed			
PAPI_L1_DCA	 Level	1	data	cache	accesses	
PAPI_L1_ICH	 Level	1	instruc2on	cache	hits	
PAPI_L1_ICA	 Level	1	instruc2on	cache	accesses	
PAPI_L2_TCH	 Level	2	total	cache	hits	
PAPI_L2_TCA	 Level	2	total	cache	accesses	
PAPI_REF_CYC	 Reference	clock	cycles			

List	of	the	26	PAPI	Preset	Events	for	KNL	

PAPI	POWER	Components:	KNC	vs.	KNL	

5	

PAPI	Components	 KNC	 KNL	

powercap:	
Reads	RAPL	results	via	
Linux	POWERCAP	interface	

#	of	NaBve	Events:	15	
(requires	no	special	
permissions)	

rapl:	
RAPL	results	(raw	access	to	
the	underlying	MSRs)	

#	of	NaBve	Events:	14	
(requires	root	privilege)	
	

micpower:	
Reading	power	in	na2ve	
mode	

Power	values	reported	in	
/sys/class/micras/power	
	
#	of	NaBve	Events:	16	

host_micpower:	
Reading	power	in	offload	
mode	

Power	values	exported	via	
MicAccessAPI	(MPSS)	
	
#	of	NaBve	Events:	16	

PAPI	offers	four	components	for	Power/Energy	monitoring:	

PAPI	POWER	on	Knights	Landing	

6	

The	following	power	domains	are	supported:	
•  PACKAGE: 	 	Processor	die	

•  DRAM	(Memory): 	Directly-attached	DRAM	

•  PP0	(Power	Plane	0):	Processors	cores	subsystem	

Simple	VeriTication	Test:		Naive	MMM	(1024x1024):	
Scaled Energy Measurements:

PACKAGE_ENERGY 8216.792419 J (Average Power 84.5W)

DRAM_ENERGY 2539.645264 J (Average Power 26.1W)

Energy Measurement Counts:
PACKAGE_ENERGY_CNT 134623927

DRAM_ENERGY_CNT 41609548

Scaled Fixed Values:

THERMAL_SPEC 215.000 W

MAXIMUM_POWER 258.000 W

MAXIMUM_TIME_WINDOW 0.046 s

Fixed Value Counts:
THERMAL_SPEC_CNT 1720

MAXIMUM_POWER_CNT 2064

MAXIMUM_TIME_WINDOW_CNT 47

	

	

PAPI	POWER	on	KNL:		Hessenberg	(MKL’s	dgehrd)	
Intel®	Xeon	Phi™	Knights	Landing,		68	cores	(4	HW	threads/core)	

	

+	memory-bound	kernel	
			(GEMVs	and	GEMMs)	

+	9	computations	with		
			different	matrix	sizes	

	

	

	

power	usage	mimics		
computational	intensity:	

+	Factorization	starts	on	
				entire	matrix		
				à	consumes	most	power	

+	As	factorization	progresses,	it		
				operates	on	smaller	matrices	
				à	consumes	less	power	

	

7	

 0

 50

 100

 150

 200

 0 50 100 150 200

1088 (6
.3 G

Flops)

2112 (1
3.6 G

Flops)

3136 (2
1.4 G

Flops)

4160 (2
7.9 G

Flops)

5184 (3
4.4 G

Flops)

6082 (3
6.0 G

Flops)

7232 (4
6.1 G

Flops)

8256 (5
0.5 G

Flops)

9280 (5
6.1 G

Flops)

P
o

w
e

r
(w

a
tt

s)

Time (seconds) passing as different size Hessenberg reductions are done on KNL (68x4 cores)

Accelerator Power Usage (Watts) (PACKAGE)
Memory Power Usage (Watts) (DRAM)

PAPI		FOR		PARSEC	
PARALLEL	RUNTIME	SCHEDULING	AND	EXECUTION	CONTROLLER	

8	

DataTlow-driven	Programming	Models	

	

•  Develop	for	a	portability	layer,	not	an	architecture	

•  Let	the	runtime	deal	with	the	hardware	characteristics	

•  Task-scheduling:	PaRSEC,	StarSS,	StarPU,	Swift,	Parallex,	Quark,	Kaapi,	DuctTeip	

9	

PaRSEC	Features	

10	

PAPI	and	PaRSEC	
																																																					Parallel	Runtime	Scheduling	and	Execution	Controller	

PaRSEC:		

•  Generic	framework	for	architecture	aware	scheduling	of	micro-tasks	on	
distributed	many-core	heterogeneous	architectures	

à  Performance	tools	become	more	and	more	important	for	task-based	
dataTlow	and	execution	systems	

à  Analysis	features	that	show	the	connection	of	the	dataTlow	and	the	
execution	proTile/trace	is	extremely	beneTicial	

PAPI	in	PaRSEC:	

•  Integrated	in	PaRSEC’s	Performance	INStrumentation	modules	

•  PINS	modules	can	be	selectively	loaded	and	used	by	users	

•  Enables	users	to	measure	performance	counter	data	for		
each	task/node	in	a	DAG	(Directed	Acyclic	Graph)	

•  Everything	supported	by	PAPI	can	be	measured	in	PaRSEC		
at	“per	task”	granularity		

11	

PAPI	Power	per	Task:	PaRSEC	

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

Av
er

ag
e

Po
w

er
 (W

at
ts

)

Time (Seconds)

PACKAGE_ENERGY:PACKAGE0
PACKAGE_ENERGY:PACKAGE1

PP0_ENERGY:PACKAGE0
PP0_ENERGY:PACKAGE1

Average	Power	Usage	for	dgeqrf	@	30.8	GFLOPs	--	MatrixSize	=	11,584	--	TileSize	=	724	
Sandy	Bridge	EP	2.60GHz,	2	sockets,	running	on	1	(out	of	8)	core	per	socket		

Total	Power	
on	Socket	0,	
1	(includes	
everything)	

Power	of	
cores	only	on	
Socket	0,	1	

12	

PAPI	Power	Sampling:	ScaLAPACK	

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
ts

)

Time (Seconds)

PACKAGE_ENERGY:PACKAGE0
PACKAGE_ENERGY:PACKAGE1

PP0_ENERGY:PACKAGE0
PP0_ENERGY:PACKAGE1

Average	Power	Usage	for	pdgeqrf	@	19.6	GFLOPs	--	MatrixSize	=	11,584	--	TileSize	=	724	
Sandy	Bridge	EP	2.60GHz,	2	sockets,	running	on	1	(out	of	8)	core	per	socket		

Total	Power	
on	Socket	0,	
1	(includes	
everything)	

Power	of	
cores	only	on	
Socket	0,	1	

13	

PaRSEC:	
		
30.8	GFLOPs	
	
Total	Energy:		
	

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
ts

)

Time (Seconds)

PACKAGE_ENERGY:PACKAGE0
PACKAGE_ENERGY:PACKAGE1

PP0_ENERGY:PACKAGE0
PP0_ENERGY:PACKAGE1

PAPI	Power	Measurements	

4.35	kWs	

ScaLAPACK:	
	
	19.6	GFLOPs	
	
Total	Energy:		

7.79	kWs	

Average	Power	Usage	for	(p)dgeqrf	--	MatrixSize	=	11,584	--	TileSize	=	724	
Sandy	Bridge	EP	2.60GHz,	2	sockets,	running	on	1	(out	of	8)	core	per	socket		

14	

PAPI		POWER		CONTROLLING		
READING	AND	WRITING	POWER	

15	

RAPL	&	msr-safe	&	libmsr	
•  RAPL	–	Running	Average	Power	Limit	

•  Intel	Sandybridge	or	better	
•  Models	energy	at	package,	DRAM	controller,	CPU	core	(PP0),	graphics	uncore	(PP1)	

•  Providing	write	access	to	MSRs	can	be	unsafe	
•  Can	have	large	effect	on	machine	
•  To	use,	you	need	to	make	MSRs	writeable,	capability-executable,	static-only	

executable,	paranoid	setting	in	kernel		!!!	

•  msr-safe	and	libmsr	from	LLNL	
•  msr-safe	provides	a	safer	whitelist	controlled	access	to	MSRs	

•  kernel	module	provides	/dev/cpu/*/safe_msr	
•  libmsr	is	a	library	to	simplify	access	to	MSRs	

•  PAPI	libmsr	component	in	PAPI	to	WRITE	values	
•  Wraps	the	RAPL	power	calls	in	libmsr	
•  Set	RAPL	power	limits	over	a	time-window	(two	windows)	

•  set	limit	on	socket,	low,	high,	time-window	

•  Collaboration	with	Barry	Rountree	(LLNL)	

16	

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

W
a
tt
s

U
n
it

W
o
rk

 T
im

e
 (

se
co

n
d
s)

Elapsed time (seconds)

Using PAPI libmsr component to read and set power caps
 2x8 cores Xeon E5-2690 SandyBridge-EP at 2.9GHz

Set/Request Avg Power Cap (watts in 1 sec)
Read Power Consumpution (watts)

Time for Unit Work (seconds on y2 axis)

Ini_al	Power	
consump_on	 Time	taken	for	work	

a`er	seang	to	lowest	
power	(y2	axis)	

Time	for	work	
decreases	as	power	
increases	

Controlling	Power	with	PAPI-libmsr	

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

W
a
tt
s

U
n
it

W
o
rk

 T
im

e
 (

se
co

n
d
s)

Elapsed time (seconds)

Using PAPI libmsr component to read and set power caps
 2x8 cores Xeon E5-2690 SandyBridge-EP at 2.9GHz

Set/Request Avg Power Cap (watts in 1 sec)
Read Power Consumpution (watts)

Time for Unit Work (seconds on y2 axis)

Ini_al	Power	
consump_on	

Set/write	
Power	Cap	

Time	taken	for	work	
a`er	seang	to	lowest	
power	(y2	axis)	

Time	for	work	
decreases	as	power	
increases	

Controlling	Power	with	PAPI-libmsr	

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

W
a
tt
s

U
n
it

W
o
rk

 T
im

e
 (

se
co

n
d
s)

Elapsed time (seconds)

Using PAPI libmsr component to read and set power caps
 2x8 cores Xeon E5-2690 SandyBridge-EP at 2.9GHz

Set/Request Avg Power Cap (watts in 1 sec)
Read Power Consumpution (watts)

Time for Unit Work (seconds on y2 axis)

Ini_al	Power	
consump_on	

Set/write	
Power	Cap	

Time	taken	for	work	
a`er	seang	to	lowest	
power	(y2	axis)	

Try	to	set	power	
above	maximum	

Time	for	work	
decreases	as	power	
increases	

Controlling	Power	with	PAPI-libmsr	

20	

Usage	Scenarios	

•  Sample	usage	scenarios	
	

•  If	we	know	that	computation	requirements	will	decrease	due	
to	communication	(I/O	bound)	and	that	the	overall	execution	
time	will	not	suffer	if	the	CPU	power	is	capped	temporarily.	

	

•  We	can	schedule	the	critical	path	of	the	DAG	on	fast	resources,	
decrease	power	consumption	on	sockets	running	the	rest	of	
the	DAG.	

LU	factorization	and	DAG	

�����

����

�����

����

����

���������

����

����� �����

��������

����

�����

����

���������

���������

�����

SOC 0 CPU 0
SOC 0 CPU 1
SOC 0 CPU 2
SOC 0 CPU 3
SOC 1 CPU 4
SOC 1 CPU 5
SOC 1 CPU 6
SOC 1 CPU 7

Time (sec): 0.0

SOC 0 CPU 0
SOC 0 CPU 1
SOC 0 CPU 2
SOC 0 CPU 3
SOC 1 CPU 4
SOC 1 CPU 5
SOC 1 CPU 6
SOC 1 CPU 7

Time (sec): 0.0

Both	socket	0	and	1	running	at	full	power.		Note	that	the	panel	factoriza_on	(red)	is	long		
and	on	the	cri_cal	path,	so	there	is	white	space	where	no	tasks	can	be	run	on	socket	2.			

Slow	down	socket	1	using	RAPL	and	lock	criBcal	path	to	socket	0.		The	gemm	tasks	
(green)	take	longer,	filling	out	the	white	space	on	socket	2.		This	occurs	without	any	
overall	loss	in	_me	for	the	full	computa_on.					

RED:	GETRF					BLUE/BROWN:	LASWP/TRSM							GREEN:GEMM							BLUE:LASWP	

•  Tiled	LU	(N=17920=224x80)	using	a	SandyBridge	EP	(2	sockets,	4	cores/socket)	
•  Demonstra_ng	running	the	cri_cal	path	at	a	higher	speed	than	other	tasks.	

•  High	power:	Both	sockets	running	at	full	power.	
•  Low	power:	Second	socket	running	a	low	power;	cri_cal	path	(panel)	on	first	socket.	
•  Total	energy	used	by	processors	in	Joules:	High	4136	Joules;		Low:	4001	Joules	

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

P
ro

ce
ss

o
r

P
o
w

e
r

S
o
ck

e
t
0
+

1
 (

W
a
tt
s)

Elapsed Time (sec)

High Power (Total Joules:2069+2067=4136)
High Power Usage (Socket 0)
High Power Usage (Socket 1)

Low Power (Total Joules:2634+1371=4001)
Low Power Usage (Socket 0)
Low Power Usage (Socket 1)

DGEMM	Power	&	Performance:	KNC	vs.	KNL	

24	

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
DGEMM Performance

Time (s)
0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0

40

80

120

160

200

240

280
Accelerator Power Usage (PACKAGE)

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
DGEMM Performance

Time (s)
0 20 40 60 80 100 120

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0

40

80

120

160

200

240

280
Accelerator Power Usage (PACKAGE)

	Knights	Corner																																																							Knights	Landing	
	60	cores	(4	HW	threads/core)	 													 	 	 								68	cores	(1	HW	thread/core)	

PAPI		COUNTER	INSPECTION	TOOLKIT	

25	

Counter	Inspection	Toolkit	
De\ine	an	“accurate	mapping”	between		
high-level	concepts	of	performance	metrics	and	the	underlying	
low-level	hardware	events.	

Benchmarks	and	analyses	for:	

1.  Validating	native	events	

2.  De\ining	high-level	events	(“pre-de\ined”)	

26	

Random	Pointer	Chasing	

Benchmark	timing	

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

A
ve

ra
g
e
 A

cc
e
ss

 L
a
te

n
cy

 (
n

s)

Buffer Size (KBytes)

Memory Hierarchy (ig)

DeTining	high	level	events	(Presets)	
| LLC_MISSES |

| Alias for LAST_LEVEL_CACHE_MISSES |

--

| LAST_LEVEL_CACHE_MISSES |

| This is an alias for L3_LAT_CACHE:MISS |

--

| L3_LAT_CACHE |

| Core-originated cacheable demand requests to L3 |

| :MISS |

| Core-originated cacheable demand requests missed L3 |

| :REFERENCE |

| Core-originated cacheable demand requests that refer to L3 |

| :e=0 |

| edge level (may require counter-mask >= 1) |

| :i=0 |

| invert |

| :c=0 |

| counter-mask in range [0-255] |

| :t=0 |

| measure any thread |

| :u=0 |

| monitor at user level |

| :k=0 |

| monitor at kernel level |

29	

PAPI	6		(a.k.a.	PAPI-EX)	

System-wide	measurements:	
•  Shared	hardware	counter	support	is	complex	

•  limited	vendor	and	kernel	support	

Counter	inspection	Toolkit:		
•  kernels	that	stress	on-core	+	shared	hardware	features	

Deeper	Integration	of	PAPI	for	data\low-based	
programming	models		
	
New	Architectures:		

•  Xeon	Phi	Knights	Landing,	Cavium	ThunderX,	…	
	

30	

3rd	Party	Tools	applying	PAPI	

•  PaRSEC	(UTK)	http://icl.cs.utk.edu/parsec/	

•  TAU	(U	Oregon)	http://www.cs.uoregon.edu/research/tau/	

•  PerfSuite	(NCSA)		http://perfsuite.ncsa.uiuc.edu/	

•  HPCToolkit	(Rice	University)	http://hpctoolkit.org/	

•  KOJAK	and	SCALASCA	(FZ	Juelich,	UTK)		http://icl.cs.utk.edu/kojak/	

•  VampirTrace	and	Vampir	(TU	Dresden)	http://www.vamir.eu	

•  Open|Speedshop	(SGI)	http://oss.sgi.com/projects/openspeedshop/	

•  SvPablo	(UNC	Renaissance	Computing	Institute)	
http://www.renci.org/research/pablo/	

•  ompP	(UTK)	http://www.ompp-tool.com	
31	

