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PAPI	
•  Middleware	that	provides	a	consistent	interface	and	methodology	for	the	performance	counter	

hardware	found	in	most	major	microprocessors	

•  PAPI	enables	software	engineers	to	see,	in	near	real	time,	the	relation	between		
SW	performance	and	HW	events	

	
SUPPORTED		ARCHITECTURES:	

•  AMD	
•  CRAY:	Aris,	Gemini,	power	
•  IBM	Blue	Gene	Series,	Q:	5D-Torus,	I/O	system,	CNK,	EMON	power/energy	
•  IBM	Power	Series	
•  Intel	Westmere,	Sandy|Ivy	Bridge,	Haswell,	Broadwell,	Skylake,	Knights	Corner	|	Landing	
•  ARM	Cortex	A8,	A9,	A15,	ARM64	
•  NVidia	Tesla,	Kepler,	NVML:	CUDA	support	for	multiple	GPUs;	PC	Sampling	
•  In\iniband	
•  Intel	RAPL	(power/energy);	power	capping	
•  Intel	KNC,	KNL	power/energy	

	
COMPONENT		PAPI:	

•  provides	access	to	a	collection	of	components	that	expose	performance	measurement	opportunities	
across	the	system	as	a	whole,	including	network,	the	I/O	system,	the	Compute	Node	Kernel,	power/
energy	
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PAPI	CPU	Components:	KNC	vs.	KNL	
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PAPI	Components	 Knights	Corner	 Knights	Landing	

perf_event:	
Linux	perf_event	CPU	core	
events	

PMU's	supported:	
perf,	perf_raw,	knc	
	
	
#	of	NaBve	Events:			140	
#	of	Preset	Events:					14	
#	of	Counters:															2	

PMU's	supported:	
perf,	perf_raw,	knl,	
ix86arch	
	
#	of	NaBve	Events:				182	
#	of	Preset	Events:						26	
#	of	Counters:																5				

perf_event_uncore:	
Linux	perf_event	CPU	
uncore	and	northbridge	
events	

	
---	

PMU’s	supported:	
e.g.	Memory,	on-die	
interconnect,	IO,	Memory-
to-PCIe	event	support	
	
#	of	NaBve	Events:					894	

PAPI	offers	two	components	to	the	CPU	counters:	

See	
next	
slide	
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Preset	Events	 Descrip(on	
PAPI_L1_DCM	 Level	1	data	cache	misses	
PAPI_L1_ICM	 Level	1	instruc2on	cache	misses	
PAPI_L1_TCM	 Level	1	cache	misses		
PAPI_L2_TCM	 Level	2	cache	misses		
PAPI_TLB_DM	 Data	transla2on	lookaside	buffer	misses	
PAPI_L1_LDM	 Level	1	load	misses		
PAPI_L2_LDM	 Level	2	load	misses		
PAPI_STL_ICY	 Cycles	with	no	instruc2on	issue	
PAPI_BR_UCN	 Uncondi2onal	branch	instruc2ons			
PAPI_BR_CN	 Condi2onal	branch	instruc2ons			
PAPI_BR_TKN	 Condi2onal	branch	instruc2ons	taken		
PAPI_BR_NTK	 Condi2onal	branch	instruc2ons	not	taken	
PAPI_BR_MSP	 Condi2onal	branch	instruc2ons	mispredicted		
PAPI_TOT_INS	 Instruc2ons	completed				
PAPI_LD_INS	 Load	instruc2ons				
PAPI_ST_INS	 Store	instruc2ons				
PAPI_BR_INS	 Branch	instruc2ons				
PAPI_RES_STL	 Cycles	stalled	on	any	resource	
PAPI_TOT_CYC	 Total	cycles				
PAPI_LST_INS	 Load/store	instruc2ons	completed			
PAPI_L1_DCA	 Level	1	data	cache	accesses	
PAPI_L1_ICH	 Level	1	instruc2on	cache	hits	
PAPI_L1_ICA	 Level	1	instruc2on	cache	accesses	
PAPI_L2_TCH	 Level	2	total	cache	hits	
PAPI_L2_TCA	 Level	2	total	cache	accesses	
PAPI_REF_CYC	 Reference	clock	cycles			

List	of	the	26	PAPI	Preset	Events	for	KNL	



PAPI	POWER	Components:	KNC	vs.	KNL	

5	

PAPI	Components	 KNC	 KNL	

powercap:	
Reads	RAPL	results	via	
Linux	POWERCAP	interface	

	
---	

#	of	NaBve	Events:	15	
(requires	no	special	
permissions)	

rapl:	
RAPL	results	(raw	access	to	
the	underlying	MSRs)	

	
---	

#	of	NaBve	Events:	14	
(requires	root	privilege)	
	

micpower:	
Reading	power	in	na2ve	
mode	

Power	values	reported	in	
/sys/class/micras/power	
	
#	of	NaBve	Events:	16	

	
---	

host_micpower:	
Reading	power	in	offload	
mode	

Power	values	exported	via	
MicAccessAPI	(MPSS)	
	
#	of	NaBve	Events:	16	

	
---	

PAPI	offers	four	components	for	Power/Energy	monitoring:	



PAPI	POWER	on	Knights	Landing	
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The	following	power	domains	are	supported:	
•  PACKAGE: 	 	Processor	die	

•  DRAM	(Memory): 	Directly-attached	DRAM	

•  PP0	(Power	Plane	0):	Processors	cores	subsystem	

Simple	VeriTication	Test:		Naive	MMM	(1024x1024):	
Scaled Energy Measurements:

PACKAGE_ENERGY           8216.792419 J (Average Power 84.5W)

DRAM_ENERGY              2539.645264 J (Average Power 26.1W)

Energy Measurement Counts:
PACKAGE_ENERGY_CNT         134623927

DRAM_ENERGY_CNT             41609548

Scaled Fixed Values:

THERMAL_SPEC                 215.000 W

MAXIMUM_POWER                258.000 W

MAXIMUM_TIME_WINDOW            0.046 s

Fixed Value Counts:
THERMAL_SPEC_CNT                1720

MAXIMUM_POWER_CNT               2064

MAXIMUM_TIME_WINDOW_CNT           47

	

	



PAPI	POWER	on	KNL:		Hessenberg	(MKL’s	dgehrd)	
Intel®	Xeon	Phi™	Knights	Landing,		68	cores	(4	HW	threads/core)	

	

+	memory-bound	kernel	
			(GEMVs	and	GEMMs)	

+	9	computations	with		
			different	matrix	sizes	

	

	

	

power	usage	mimics		
computational	intensity:	

+	Factorization	starts	on	
				entire	matrix		
				à	consumes	most	power	

+	As	factorization	progresses,	it		
				operates	on	smaller	matrices	
				à	consumes	less	power	
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PAPI		FOR		PARSEC	
PARALLEL	RUNTIME	SCHEDULING	AND	EXECUTION	CONTROLLER	
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DataTlow-driven	Programming	Models	

	

•  Develop	for	a	portability	layer,	not	an	architecture	

•  Let	the	runtime	deal	with	the	hardware	characteristics	

•  Task-scheduling:	PaRSEC,	StarSS,	StarPU,	Swift,	Parallex,	Quark,	Kaapi,	DuctTeip	
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PaRSEC	Features	
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PAPI	and	PaRSEC	
																																																					Parallel	Runtime	Scheduling	and	Execution	Controller	

PaRSEC:		

•  Generic	framework	for	architecture	aware	scheduling	of	micro-tasks	on	
distributed	many-core	heterogeneous	architectures	

à  Performance	tools	become	more	and	more	important	for	task-based	
dataTlow	and	execution	systems	

à  Analysis	features	that	show	the	connection	of	the	dataTlow	and	the	
execution	proTile/trace	is	extremely	beneTicial	

PAPI	in	PaRSEC:	

•  Integrated	in	PaRSEC’s	Performance	INStrumentation	modules	

•  PINS	modules	can	be	selectively	loaded	and	used	by	users	

•  Enables	users	to	measure	performance	counter	data	for		
each	task/node	in	a	DAG	(Directed	Acyclic	Graph)	

•  Everything	supported	by	PAPI	can	be	measured	in	PaRSEC		
at	“per	task”	granularity		
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PAPI	Power	per	Task:	PaRSEC	
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PAPI	Power	Sampling:	ScaLAPACK	
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PaRSEC:	
		
30.8	GFLOPs	
	
Total	Energy:		
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	19.6	GFLOPs	
	
Total	Energy:		
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PAPI		POWER		CONTROLLING		
READING	AND	WRITING	POWER	
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RAPL	&	msr-safe	&	libmsr	
•  RAPL	–	Running	Average	Power	Limit	

•  Intel	Sandybridge	or	better	
•  Models	energy	at	package,	DRAM	controller,	CPU	core	(PP0),	graphics	uncore	(PP1)	

•  Providing	write	access	to	MSRs	can	be	unsafe	
•  Can	have	large	effect	on	machine	
•  To	use,	you	need	to	make	MSRs	writeable,	capability-executable,	static-only	

executable,	paranoid	setting	in	kernel		!!!	

•  msr-safe	and	libmsr	from	LLNL	
•  msr-safe	provides	a	safer	whitelist	controlled	access	to	MSRs	

•  kernel	module	provides	/dev/cpu/*/safe_msr	
•  libmsr	is	a	library	to	simplify	access	to	MSRs	

•  PAPI	libmsr	component	in	PAPI	to	WRITE	values	
•  Wraps	the	RAPL	power	calls	in	libmsr	
•  Set	RAPL	power	limits	over	a	time-window	(two	windows)	

•  set	limit	on	socket,	low,	high,	time-window	

•  Collaboration	with	Barry	Rountree	(LLNL)	
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Usage	Scenarios	

•  Sample	usage	scenarios	
	

•  If	we	know	that	computation	requirements	will	decrease	due	
to	communication	(I/O	bound)	and	that	the	overall	execution	
time	will	not	suffer	if	the	CPU	power	is	capped	temporarily.	

	

•  We	can	schedule	the	critical	path	of	the	DAG	on	fast	resources,	
decrease	power	consumption	on	sockets	running	the	rest	of	
the	DAG.	



LU	factorization	and	DAG	
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SOC 0 CPU 0
SOC 0 CPU 1
SOC 0 CPU 2
SOC 0 CPU 3
SOC 1 CPU 4
SOC 1 CPU 5
SOC 1 CPU 6
SOC 1 CPU 7

Time (sec): 0.0

SOC 0 CPU 0
SOC 0 CPU 1
SOC 0 CPU 2
SOC 0 CPU 3
SOC 1 CPU 4
SOC 1 CPU 5
SOC 1 CPU 6
SOC 1 CPU 7

Time (sec): 0.0

Both	socket	0	and	1	running	at	full	power.		Note	that	the	panel	factoriza_on	(red)	is	long		
and	on	the	cri_cal	path,	so	there	is	white	space	where	no	tasks	can	be	run	on	socket	2.			

Slow	down	socket	1	using	RAPL	and	lock	criBcal	path	to	socket	0.		The	gemm	tasks	
(green)	take	longer,	filling	out	the	white	space	on	socket	2.		This	occurs	without	any	
overall	loss	in	_me	for	the	full	computa_on.					

RED:	GETRF					BLUE/BROWN:	LASWP/TRSM							GREEN:GEMM							BLUE:LASWP	



•  Tiled	LU	(N=17920=224x80)	using	a	SandyBridge	EP	(2	sockets,	4	cores/socket)	
•  Demonstra_ng	running	the	cri_cal	path	at	a	higher	speed	than	other	tasks.	

•  High	power:	Both	sockets	running	at	full	power.	
•  Low	power:	Second	socket	running	a	low	power;	cri_cal	path	(panel)	on	first	socket.	
•  Total	energy	used	by	processors	in	Joules:	High	4136	Joules;		Low:	4001	Joules	
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DGEMM	Power	&	Performance:	KNC	vs.	KNL	
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	Knights	Corner																																																							Knights	Landing	
	60	cores	(4	HW	threads/core)	 													 	 	 								68	cores	(1	HW	thread/core)	



PAPI		COUNTER	INSPECTION	TOOLKIT	
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Counter	Inspection	Toolkit	
De\ine	an	“accurate	mapping”	between		
high-level	concepts	of	performance	metrics	and	the	underlying	
low-level	hardware	events.	

Benchmarks	and	analyses	for:	

1.  Validating	native	events	

2.  De\ining	high-level	events	(“pre-de\ined”)	
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Random	Pointer	Chasing	



Benchmark	timing	
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DeTining	high	level	events	(Presets)	
| LLC_MISSES                                                                   |

|            Alias for LAST_LEVEL_CACHE_MISSES                                 |

--------------------------------------------------------------------------------

| LAST_LEVEL_CACHE_MISSES                                                      |

|            This is an alias for L3_LAT_CACHE:MISS                            |

--------------------------------------------------------------------------------

| L3_LAT_CACHE                                                                 |

|            Core-originated cacheable demand requests to L3                   |

|     :MISS                                                                    |

|            Core-originated cacheable demand requests missed L3               |

|     :REFERENCE                                                               |

|            Core-originated cacheable demand requests that refer to L3        |

|     :e=0                                                                     |

|            edge level (may require counter-mask >= 1)                        |

|     :i=0                                                                     |

|            invert                                                            |

|     :c=0                                                                     |

|            counter-mask in range [0-255]                                     |

|     :t=0                                                                     |

|            measure any thread                                                |

|     :u=0                                                                     |

|            monitor at user level                                             |

|     :k=0                                                                     |

|            monitor at kernel level                                           |
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PAPI	6		(a.k.a.	PAPI-EX)	

System-wide	measurements:	
•  Shared	hardware	counter	support	is	complex	

•  limited	vendor	and	kernel	support	

Counter	inspection	Toolkit:		
•  kernels	that	stress	on-core	+	shared	hardware	features	

Deeper	Integration	of	PAPI	for	data\low-based	
programming	models		
	
New	Architectures:		

•  Xeon	Phi	Knights	Landing,	Cavium	ThunderX,	…	
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3rd	Party	Tools	applying	PAPI	

•  PaRSEC	(UTK)	http://icl.cs.utk.edu/parsec/	

•  TAU	(U	Oregon)	http://www.cs.uoregon.edu/research/tau/	

•  PerfSuite	(NCSA)		http://perfsuite.ncsa.uiuc.edu/	

•  HPCToolkit	(Rice	University)	http://hpctoolkit.org/	

•  KOJAK	and	SCALASCA	(FZ	Juelich,	UTK)		http://icl.cs.utk.edu/kojak/	

•  VampirTrace	and	Vampir	(TU	Dresden)	http://www.vamir.eu	

•  Open|Speedshop	(SGI)	http://oss.sgi.com/projects/openspeedshop/	

•  SvPablo	(UNC	Renaissance	Computing	Institute)	
http://www.renci.org/research/pablo/	

•  ompP	(UTK)	http://www.ompp-tool.com	
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