
Extending Performance Monitoring Profile

Guided Optimization Capabilities

Michael Chynoweth - Sr. Principal Engineer Intel Corporation

Contributors: Joe Olivas, Chris Chrulski, Patrick Konsor, Rajshree Chabukswar, Stas Bratanov, Hideki

Saito, Angie Schmid, Sneha Gohad, Robert Cox, Zia Ansari, Ahmad Yasin, Lama Saba, Dorit Nuzman

2

Agenda

• Today Profile Guided Optimizations are mostly impacting code/text section

• Extensions on analysis to the text section optimizations

• Who’s Interested?

• Next generation of PGO will utilize more events

• Allow focus on the right bottleneck

• Examples of automatic profile guided optimizations with compiler

• Decision on whether to fix a uarch bottleneck

• Loop optimizations

• Data reordering

Top Down: Our Processor is Just An Assembly Line

Gets Instructions Execute Instructions
Commit

Instructions

FrontEnd BackEnd Retire

Top Down Helps Define the Primary Bottleneck

• Abstracts our architectures into 4 categories

• Front End Bound

• Back End Bound

• Bad Speculation

• Retiring

• Focus our efforts on the right bottlenecks

4

Everything is Driven by Top Down Optimizations
Metric Cost Performance Monitoring Events Calculation

Front End Bound Cost 38.8% NO_ALLOC_CYCLES.NOT_DELIVERED/CPU_CLK_UNHALTED.CORE

Instruction Cache Misses Cost 26.3% INST_LINE_FETCH_COST+PREDECODE_WRONG_COST
Instruction Line Fetch Cost 7.2% FETCH_STALL.ICACHE_FILL_PENDING_CYCLES*1/CPU_CLK_UNHALTED.CORE
PreDecode Wrong Cost 19.1% DECODE_RESTRICTION.PDCACHE_WRONG*3/CPU_CLK_UNHALTED.CORE

ITLB Misses Cost 8.5% PAGE_WALKS.I_SIDE_CYCLES*1/CPU_CLK_UNHALTED.CORE

Back End Bound Cost 44.1% 1-RETIRING-FRONT_END_BOUND-BAD_SPECULATION
L2 Data Miss Cost 12.0% MEM_UOPS_RETIRED.L2_MISS_LOADS_PS*230/CPU_CLK_UNHALTED.CORE

DTLB Misses Cost 9.0% PAGE_WALKS.D_SIDE_CYCLES*1/CPU_CLK_UNHALTED.CORE

Bad Speculation Bound Cost 3.6% NO_ALLOC_CYCLES.MISPREDICTS*1/CPU_CLK_UNHALTED.CORE
Branch Mispredict Cost 5.70% BR_MISP_RETIRED.ALL_BRANCHES_PS*10/CPU_CLK_UNHALTED.CORE

Retiring Bound Cost 13.5% UOPS_RETIRED.ALL*0.5/CPU_CLK_UNHALTED.CORE

Performance Monitoring Tells Where We are Bound

and By How Much

Fixed issues in red…

will cover later

5

PGO Example Basic Block Reordering

Statistic NoPGO PGO

%FWD_TAKEN_JCC 31% 16%

Successful Basic Block Reordering

Statistic NoPGO PGO

%FWD_TAKEN_JCC 28% 29%

Unsuccessful Basic Block Reordering

%FWD_TAKEN_JCC = (FWD_TAKEN_JCC-FWD_TAKEN_JCC_LESSTHAN_10BYTES)*100/ALL_CONDITIONAL

Jumps over

debug code

100% time

6

LBR Already Gives Us Overall Statistics

Allowing Prediction of Opportunity

Statistic NoPGO PGO
TotalBytesExecuted 69k 62k
TotalCacheLinesExecuted 1738 1373
TotalCacheLinesBytes 109k 86k
CacheLineEfficiency 64% 72%
TotalPagesExecuted 182 93
PageEfficiency 10% 17%

PotentialInstructionCacheSavedPercentage 11.6%

BranchWith4kTraversalPercentage 36.3%

Predicted using LBR

Statistic No PGO PGO PGO/NoPGO

Utilization: 39% 33% 1.18

Front End Bound Cost 43% 32%

7

Taking Profile Guided Optimizations to Next Level

• Utilize all of performance monitoring capabilities for PGO

• Code reorganization (Already being stressed)
 Basic block + Function reordering, Function splitting, Inlining/partial inlining

• Data profiling
 Data structure + Data section reordering + False sharing avoidance

 Function parameters

 Loop pointer aliasing

 Intelligent allocators

• Drive optimizations based on where bound in the pipeline
 Often optimizations conflict

– Example = "optimize for speed" and "optimize for size"

 Loop vectorization

 Fixing individual code generation issues

8

Progression of Profile Guided Optimizations
+ Performance Monitoring

Instrumented PGO

(Code Reordering)

Sampling Based PGO

(No instrumentation)

LBR Based PGO

PGO + Top Down

PerfMon

PGO + Top Down

+ Data Profiling

PGO Crowd

Sourcing

9

Top Down Helps Determine Usage of Compiler

Workaround for Slow LEA (LLVM Compiler)

Statistics SlowLEA SlowLEA
Patch

SlowLEA/
SlowLEAPatch

Benchmark Cycles Per
Instruction (CPI)

0.60 0.59 1.03

Benchmark Front End
Bound Cost

9.4% 10.2% 0.92

Benchmark Core Bound 22.1% 17.2% 1.28

Benchmark Slow LEA 5.7% 2.4% 2.38

Issue Type Assembly

SLOW_LEA lea rax,ptr [r9+rax*1-fff1]

Front end bottleneck

increases

Core bound cost

due to slow lea

decreases

Slower execution

10

How Can Performance Monitoring PGO Help

Optimize a Loop?

• Picked a couple of examples loops from benchmarks to create proof-of-concepts

• Loops were unique in that we could force them to auto-vectorize with pragmas

• Gave us 2.6% speedup on the benchmark (on ICC or LLVM)

• Information could Performance Monitoring for PGO Provide?

• % Cost of loop within process

• Determines how aggressive to attempt vectorize

• Average trip count of loop

• Typical values in the loop

• A value of shift in the loop is always zero

• Pointer aliasing and data alignment

• Total time in all vectorizable loops in the process

11

Choosing Which Level of Vectorization to Utilize

Top Down and Data Reordering
Metric PGO PGO + Full Interprocedural Opt

Back End Bound Cost 43% 49%

DTLB Misses Cost 1% 8%

Top Down Helps Identify Necessary Global Data Reordering

Hottest lock in OS

placed on own page

causing DTLB

misses

Compiler optimization

Hurting performance

Due to data locality

13

Conclusions

• Today Profile Guided Optimizations (PGO) mostly impacting code/text section

• Easier than impacting other vectors

• Next generation of PGO will utilize more events and capabilities

• Determine where the instruction pipeline is bound

• Appropriately address the appropriate bottleneck

• Currently taking advantage of a small portion of opportunity

• Started an effort to tackle

• Covered uarch optimization, loop optimizations and data reorganization

14

Backup

