Machine Learning working group

Scalable Tools Workshop 2017 Lake Tahoe

Intro

- Introduction by David Levinthal
- How/Where can we collect it? What type of data?
 - Collecting data from clusters, multiple data collectors and sinks
 - How to handle time-series? -> rNNs (Levinthal)
- Most try and error but intuition helps
 - There are approaches to help doing try and error
- Large correctly tagged training sets required (for supervised learning)
 - Army tank recognition training set at cloudy and sunny days

Application for HPC data

- Requires model and tagged training set
 - Be careful about the inputs!
 - Might be biased or missing characteristics
- Workflow:
 - Create a reasonable and big training set
 - Design the network (mostly) by try and error
 - Multiple data sources might require multiple network types put together
 - Hyperbolic parameter sweeps for convergence and stabilization
 - Domain specific knowledge required

Potential ML at Livermore

- Task: How to schedule jobs that they don't influence others
 - Predicting job runtime by looking at job scripts
 - Predicting load on filesystem for job
 - Problem: Same job script but runtimes differ
 - different inputs but not mentioned in job scripts
- Task of mesh refinement/relaxation
 - Can change over time
- Maybe tasks can be solved with
 - FNN (fully connected NN)
 - CNN+RNN

Input data

- Time-series probably RRNs
 - CNN for first item in sequence and then RNN?
- Do we get all the data? -> Security issues, multiple sources
- How to tag the data for training sets
 - Users rate their jobs from 1 to 10?
 - Most difficult task!
- Objective functions are different for performance data than for image recognition, ...
 - Sometimes only parameter testing -> no ML required
 - Can we compare same kernels in different applications?
 - How often do we train (nightly?)
 - Does overfitting matter?
- Domain specific knowledge needed to create the model