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DATA ACCESS LATENCY (1) 

➢ Data access latency can have a major impact on performance 
(more data on that topic in the rest of the talk)

➢ Several hardware mechanisms have been designed to minimize 
latency impact (latency hiding): 

• Various buffers: Reservation Station, Reorder Buffer, Load/Store 
Buffer, Line Fill Buffer

• Hardware prefetchers: on Xeon, 4 prefetchers per core: topic is 
serious ☺

• Various memory levels and types (Off chip versus on Chip DRAM on 
KNL): useful not only for latency but also bandwidth.

• Special PMU PEBS for tracking load latency…
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DATA ACCESS LATENCY (2) 

➢Difficult to exactly associate with every load its latency
• Exactly is of major importance  because you want to identify 

the array access which is guilty

• Some PMU events can provide such info.

➢Even more difficult to associate with each load, its 
latency impact on the overall loop performance.
• It is one thing to know that you are sick but it is better to know 

how serious it is and even better to get the right prescriptions

• Accelerate the exploration of the different prefetching 
configurations

• PMU events have hard time to provide such info.
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Optimizing Data Access Latency

➢ Various optimization mechanisms:
• Array restructuring, blocking, loop interchange

• Allocating to different memory levels: On chip DRAM versus Off chip DRAM

• Use software instructions to perform aggressive prefetching, more 
aggressive than hardware due to a better knowledge on loop bounds

➢BIG ISSUE: how to drive use of these techniques, what is 
benefit of blocking, prefetching, etc. ???
• PMU do not provide such info on potential gain.

➢Many simple performance models are only dealing with 
bandwidth: simplistic with roofline method, more realistic by 
taking into account different functional units bandwidths and 
even better different cache levels.
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LITTLE’S LAW (1)

➢Interesting enough, bandwidth and latency are related 
through buffer usage, more precisely Little’s Law

➢Classical formulation: L = λ W
• L : Average Number of customers

• W : Average waiting time

• λ : Average arrival rate
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LITTLE’S LAW (2)

➢First use of L = λ W : model off chip cache line 
access 
• L : Average Number of in flight cache line requests 

(smaller than number of LFB slots: 10!!)

• W : Average waiting time (in cycles) in LFB (close to 
Latency)

• λ :  Average number of cache lines entering per cycle the 
LFB (close to Bandwidth)

This formula clearly shows that Bandwidth is a 
function of latency and max number of LFB slots. 
Clearly constant bandwidth (as assumed by Roof 
Line model) is a myth ☺

➢Second use: more complex: model FU within CPU.
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UFS Model Overview

UFS: Uop Flow Simulation

➢ Ignore semantics: code not executed: use instruction traces. 
Very simple for loops without branches in loop body.

➢Off line analysis/simulation

➢Works directly with asm/binary

➢Cycle level simulation

➢Cycle accurate simulation of core pipeline according to 
public/published information. If no information is available, 
use best fit algorithm

➢Parametrizable inputs: buffer sizes, instruction latencies/back 
to back rates, number of ports, bandwidths……

Hardware parameters: two main options

1. Use published numbers: issues with quality and user versus system view

2. Design specific benchmark to measure the requested info.

Our approach is with specific benchmarks.
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Why bother with UFS: Yet Another Simulator 

➢ Much faster than most of standard simulators (but does much 
less)

➢ Due to its speed, ability to perform massive parameter 
studies (Sensitivity Analysis)

➢ Globally good accuracy most of the time, within 10% of real 
measurements

➢ Much better than counters for understanding real issues: the 
difficulty is that buffer saturation is not the source of the 
problem but in general the consequence of a problem…. 
Excessive load latencies will quickly lead to Load Buffer 
and/or RS overflow. However, well controlled latencies will 
avoid such overflow and lead to better performance.

➢ ONE MAJOR ISSUE: how to optimize code to minimize RS, 
ROB etc…footprint/consumption

Scalable Tools Workshop 2017



9

Impact of Latency: Balanc_3_de

BALANC3 : A(I) = A(I) * CST
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Characterizing codelet response to latency variations 

On most of the latency sensitivity plots (see previous slides), 
two regions can be clearly seen:

➢ Initial flat region where codelet is supporting higher 
latencies without any impact on performance (buffers filling 
up).

➢Linear region where impact on performance varies linearly 
with latency increase (one of the buffer is full).

Two key parameters for characterizing a codelet:

➢Lmax: maximum latency tolerated with 0 or negligible cost

➢Additional cost: slope of the linear line
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A few Numerical Recipes loops on Haswell

➢ For Haswell
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Comparison for NR on KNL

➢ For KNL
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LATENCY SENSITIVITY ANALYSIS 

UFS allows to model the impact of varying latency: this can be done uniformly 
on loads and stores or individually.

This allows to understand the potential performance gain of:

1. Better blocking (blocking for L2 instead of L3)

2. Better prefetching (add extra prefetch instructions on targeted loads)

3. Using on die DRAM versus external DRAM (cf. KNL)
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Conclusions

➢ Various Out of Order buffers (ROB, RS, PRF, LB, SB 
….) are critical to get peak performance on modern 
cores.

➢ UFS gives a detailed insight on buffer usage and can 
correlate usage with code.

➢ UFS is fast, allowing massive parameter explorations.

➢ UFS is excellent at exploring what if scenarii (hardware 
and software)

➢ UFS allows to characterize latency impact on loop 
performance.
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BACKUP SLIDES
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Scalar versus Vector: Haswell
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KNL
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A first simple performance model (CQA)

CQA: Code Quality Analyzer Open Source: www. maqao.org

STATIC MODEL: all operands are assumed resident in L1.

Compute 3 bounds:

➢ Issue/Decode : divide number of uops per 4 + ceiling effect

➢ Execution: count number of instructions per port/FU (taking into account 
rate)

➢ Inter iterations dependencies: compute cycles

Predicted number of cycles = max of the 3 estimates above.

THROUGHPUT/BANDWIDTH BASED MODEL
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CQA Output

Analyze ASM: 

12 FP Mul instructions, 16 FP Add/Sub instructions, 4 Loads Instructions + 4 
Address computations, 4 Store Instructions, 18 Alu Instructions

Compute the 3 bounds:

1. Issue/Decode : 58 uops after unlamination.: 14,5 cycles rounded to 15 
cycles.

2. Execution: P0 (FP */ALU): 15 cycles, P1 (FP+/ALU): 16 cycles, P2 (Load): 4 
cycles, P3 (Load): 4 cycles, P4 (Store): 4 cycles, P5 (Misc/ALU): 15 cycles

3. Inter iterations dependencies: 13 cycles

Predicted number of cycles = max of the 3 estimates = 16 cycles
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CQA versus Measurements in L1

CQA prediction: 16 cycles

Measurement: 23,36 cycles

GAP: 23,36-16 = 7,36 cycles.

BEYOND L1: results slightly worse but to be expected 

What happens??

A first answer provided by hardware events: each of the buffer has an 
associated event counting the number of cycles where when full it causes the 
front end to stall.

Measurement: Reservation Station Stalls occur for 7,85 cycles….

ISSUES: a stall at the front end does not necessarily result in cycles lost in the 
back end, multiple counting (several buffers full)

UFS results:

23,01 (using SNB buffer sizes): perfect match with measurements and points to 
RS full leading to wasted cycles

19,03 (using large buffers): time lost in dispatch
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FP PRF Resource Quantification

PRINCIPLE: increase the payload to force an overflow in the target resource 
which in turn translates into a discontinuity in timing.

"payload" is basically some extra instructions specifically designed to run 
COMPLETELY in parallel with divisions *UNLESS* they saturate the target 
buffer.
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YALES2 Speed Validation
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