
1

Analyzing data latency access

William Jalby, Vincent Palomares**, Alexandre Vardoshvili,
Emmanuel Oseret

University of Versailles Saint Quentin en Yvelines/ECR

**Now with INTEL

Scalable Tools Workshop 2017

2

DATA ACCESS LATENCY (1)

➢ Data access latency can have a major impact on performance
(more data on that topic in the rest of the talk)

➢ Several hardware mechanisms have been designed to minimize
latency impact (latency hiding):

• Various buffers: Reservation Station, Reorder Buffer, Load/Store
Buffer, Line Fill Buffer

• Hardware prefetchers: on Xeon, 4 prefetchers per core: topic is
serious ☺

• Various memory levels and types (Off chip versus on Chip DRAM on
KNL): useful not only for latency but also bandwidth.

• Special PMU PEBS for tracking load latency…

Scalable Tools Workshop 2017

3

DATA ACCESS LATENCY (2)

➢Difficult to exactly associate with every load its latency
• Exactly is of major importance because you want to identify

the array access which is guilty

• Some PMU events can provide such info.

➢Even more difficult to associate with each load, its
latency impact on the overall loop performance.
• It is one thing to know that you are sick but it is better to know

how serious it is and even better to get the right prescriptions

• Accelerate the exploration of the different prefetching
configurations

• PMU events have hard time to provide such info.

Scalable Tools Workshop 2017

4

Optimizing Data Access Latency

➢ Various optimization mechanisms:
• Array restructuring, blocking, loop interchange

• Allocating to different memory levels: On chip DRAM versus Off chip DRAM

• Use software instructions to perform aggressive prefetching, more
aggressive than hardware due to a better knowledge on loop bounds

➢BIG ISSUE: how to drive use of these techniques, what is
benefit of blocking, prefetching, etc. ???
• PMU do not provide such info on potential gain.

➢Many simple performance models are only dealing with
bandwidth: simplistic with roofline method, more realistic by
taking into account different functional units bandwidths and
even better different cache levels.

Scalable Tools Workshop 2017

5

LITTLE’S LAW (1)

➢Interesting enough, bandwidth and latency are related
through buffer usage, more precisely Little’s Law

➢Classical formulation: L = λ W
• L : Average Number of customers

• W : Average waiting time

• λ : Average arrival rate

Scalable Tools Workshop 2017

6

LITTLE’S LAW (2)

➢First use of L = λ W : model off chip cache line
access
• L : Average Number of in flight cache line requests

(smaller than number of LFB slots: 10!!)

• W : Average waiting time (in cycles) in LFB (close to
Latency)

• λ : Average number of cache lines entering per cycle the
LFB (close to Bandwidth)

This formula clearly shows that Bandwidth is a
function of latency and max number of LFB slots.
Clearly constant bandwidth (as assumed by Roof
Line model) is a myth ☺

➢Second use: more complex: model FU within CPU.
Scalable Tools Workshop 2017

7

UFS Model Overview

UFS: Uop Flow Simulation

➢ Ignore semantics: code not executed: use instruction traces.
Very simple for loops without branches in loop body.

➢Off line analysis/simulation

➢Works directly with asm/binary

➢Cycle level simulation

➢Cycle accurate simulation of core pipeline according to
public/published information. If no information is available,
use best fit algorithm

➢Parametrizable inputs: buffer sizes, instruction latencies/back
to back rates, number of ports, bandwidths……

Hardware parameters: two main options

1. Use published numbers: issues with quality and user versus system view

2. Design specific benchmark to measure the requested info.

Our approach is with specific benchmarks.

8

Why bother with UFS: Yet Another Simulator

➢ Much faster than most of standard simulators (but does much
less)

➢ Due to its speed, ability to perform massive parameter
studies (Sensitivity Analysis)

➢ Globally good accuracy most of the time, within 10% of real
measurements

➢ Much better than counters for understanding real issues: the
difficulty is that buffer saturation is not the source of the
problem but in general the consequence of a problem….
Excessive load latencies will quickly lead to Load Buffer
and/or RS overflow. However, well controlled latencies will
avoid such overflow and lead to better performance.

➢ ONE MAJOR ISSUE: how to optimize code to minimize RS,
ROB etc…footprint/consumption

Scalable Tools Workshop 2017

9

Impact of Latency: Balanc_3_de

BALANC3 : A(I) = A(I) * CST

10

Characterizing codelet response to latency variations

On most of the latency sensitivity plots (see previous slides),
two regions can be clearly seen:

➢ Initial flat region where codelet is supporting higher
latencies without any impact on performance (buffers filling
up).

➢Linear region where impact on performance varies linearly
with latency increase (one of the buffer is full).

Two key parameters for characterizing a codelet:

➢Lmax: maximum latency tolerated with 0 or negligible cost

➢Additional cost: slope of the linear line

Scalable Tools Workshop 2017

11

A few Numerical Recipes loops on Haswell

➢ For Haswell

Scalable Tools Workshop 2017

12

Comparison for NR on KNL

➢ For KNL

Scalable Tools Workshop 2017

13

LATENCY SENSITIVITY ANALYSIS

UFS allows to model the impact of varying latency: this can be done uniformly
on loads and stores or individually.

This allows to understand the potential performance gain of:

1. Better blocking (blocking for L2 instead of L3)

2. Better prefetching (add extra prefetch instructions on targeted loads)

3. Using on die DRAM versus external DRAM (cf. KNL)

Scalable Tools Workshop 2017

14

Conclusions

➢ Various Out of Order buffers (ROB, RS, PRF, LB, SB
….) are critical to get peak performance on modern
cores.

➢ UFS gives a detailed insight on buffer usage and can
correlate usage with code.

➢ UFS is fast, allowing massive parameter explorations.

➢ UFS is excellent at exploring what if scenarii (hardware
and software)

➢ UFS allows to characterize latency impact on loop
performance.

Scalable Tools Workshop 2017

15

BACKUP SLIDES

Scalable Tools Workshop 2017

16

Scalar versus Vector: Haswell

Scalable Tools Workshop 2017

BALANC3 : A(I) = A(I) * CST

17

KNL

Scalable Tools Workshop 2017

18

A first simple performance model (CQA)

CQA: Code Quality Analyzer Open Source: www. maqao.org

STATIC MODEL: all operands are assumed resident in L1.

Compute 3 bounds:

➢ Issue/Decode : divide number of uops per 4 + ceiling effect

➢ Execution: count number of instructions per port/FU (taking into account
rate)

➢ Inter iterations dependencies: compute cycles

Predicted number of cycles = max of the 3 estimates above.

THROUGHPUT/BANDWIDTH BASED MODEL

Scalable Tools Workshop 2017

19

CQA Output

Analyze ASM:

12 FP Mul instructions, 16 FP Add/Sub instructions, 4 Loads Instructions + 4
Address computations, 4 Store Instructions, 18 Alu Instructions

Compute the 3 bounds:

1. Issue/Decode : 58 uops after unlamination.: 14,5 cycles rounded to 15
cycles.

2. Execution: P0 (FP */ALU): 15 cycles, P1 (FP+/ALU): 16 cycles, P2 (Load): 4
cycles, P3 (Load): 4 cycles, P4 (Store): 4 cycles, P5 (Misc/ALU): 15 cycles

3. Inter iterations dependencies: 13 cycles

Predicted number of cycles = max of the 3 estimates = 16 cycles

Scalable Tools Workshop 2017

20

CQA versus Measurements in L1

CQA prediction: 16 cycles

Measurement: 23,36 cycles

GAP: 23,36-16 = 7,36 cycles.

BEYOND L1: results slightly worse but to be expected

What happens??

A first answer provided by hardware events: each of the buffer has an
associated event counting the number of cycles where when full it causes the
front end to stall.

Measurement: Reservation Station Stalls occur for 7,85 cycles….

ISSUES: a stall at the front end does not necessarily result in cycles lost in the
back end, multiple counting (several buffers full)

UFS results:

23,01 (using SNB buffer sizes): perfect match with measurements and points to
RS full leading to wasted cycles

19,03 (using large buffers): time lost in dispatch

21

FP PRF Resource Quantification

PRINCIPLE: increase the payload to force an overflow in the target resource
which in turn translates into a discontinuity in timing.

"payload" is basically some extra instructions specifically designed to run
COMPLETELY in parallel with divisions *UNLESS* they saturate the target
buffer.

Scalable Tools Workshop 2017

22

YALES2 Speed Validation

Scalable Tools Workshop 2017

