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Call Path Profiling of Optimized Code
• Optimized code presents challenges for stack unwinding 

— optimized code often lacks frame pointers  
— routines may have multiple epilogues, multiple frame sizes 
— code may be partially stripped: no info about function bounds 

• HPCToolkit’s approach for nearly a decade 
— use binary analysis to compute unwinding recipes for intervals 

– often, no compiler information to assist unwinding is available 
— cache unwind recipes for reuse at runtime (more about this later)
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Nathan R. Tallent, John Mellor-Crummey, and Michael W. Fagan. Binary analysis for 
measurement and attribution of program performance. Proceedings of ACM PLDI. ACM, New 
York, NY, USA, 2009, 441–452. Distinguished Paper. (doi:10.1145/1542476.1542526)



Challenges for Unwinding
• Binary analysis of optimized multithreaded applications has 

become increasingly difficult 
— previously: procedures were typically contiguous 
— today: procedures are often discontiguous
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void f(…) { 

… 

#pragma omp parallel 
{ 

  … 

} 

… 

}

Code generated by 
Intel’s OpenMP compiler



New Unwinding Approach in HPCToolkit
• Use libunwind to unwind procedure frames where compiler-

provided information is available 

• Use binary analysis for procedure frames where no unwinding 
information is available 

• Transition seamlessly between the two approaches 

• Status:  
— first implementation for x86_64 completed on Friday 
— under evaluation
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Surprises 

• libunwind sometimes unwound incorrectly from signal 
contexts [our fixes are now in libunwind git] 

• On Power, register frame procedures are not only at 
call chain leaves [unwind fixes in an hpctoolkit branch]



Caching Unwind Recipes in HPCToolkit
Concurrent Skip Lists 

• Two-level data structure: concurrent skip list of binary trees  
— maintain a concurrent skip list of procedure intervals  

– [proc begin, proc end)  
— associate an immutable balanced binary tree of unwind recipes 

with each procedure interval  

• Synchronization needs 
— scalable reader/writer locks [Brandenburg & Anderson; RTS ’10] 

– read lock: find, insert  
– write lock: delete  

— MCS queuing locks [Mellor-Crummey & Scott; ACM TOCS ’91] 
– lock skip-list predecessors to coordinate concurrent inserts
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Validating Fast Synchronization 
• Used C++ weak atomics in MCS locks and phase-fair reader/

writer synchronization 
— against Herb Sutter’s advice  

– C++ and Beyond 2012: atomic<> Weapons (bit.ly/atomic_weapons) 
— as Herb predicted: we got it wrong! 

• Wrote small benchmarks that exercised our synchronization 
• Identified bugs with CDS checker - model checker for C11 and 

C++11 Atomics 
— http://plrg.eecs.uci.edu/software_page/42-2/ 

• Fixed them 
• Validated the use of C11 atomics by our primitives
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We recommend CDS checker  
to others facing similar issues



Understanding Kernel Activity and Blocking 
• Some programs spend a lot of time in the kernel or blocked  

• Understanding their performance requires measurement of 
kernel activity and blocking 
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Measuring Kernel Activity and Blocking
• Problem 

— Linux timers and PAPI are inadequate 
– neither measure nor precisely attribute kernel activity 

• Approach 
— layer HPCToolkit directly on top of Linux perf_events 
— also sample kernel activity: perf_events collect kernel call stack 
— use sampling in conjunction with Linux CONTEXT_SWITCH 

events to measure and attribute blocking
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performance  
problem 

appears to 
be page 

faults



Understanding Kernel Activity with HPCToolkit
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the real problem:  
zero-filling pages 
returned to and 

reacquired from the OS



Kernel Blocking
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Surprise 
• Third-party monitoring: SWITCH_OUT & SWITCH_IN  
• First party monitoring: SWITCH_OUT only 
• IBM Linux team working to upstream a fix



Kernel Blocking
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Measuring Kernel Blocking
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Binary Analysis with hpcstruct
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• function calls 
• inlined functions  
• inlined RAJA templates 
• loops 
• outlined OMP loop 
• lambda function



Binary Analysis of GPU Code
• Challenge: NVIDIA is very closed about their code 

— has not shared any CUBIN documentation even through NDA 
• Awkward approach: reverse engineer CUBIN binaries 
• Findings 

— each GPU function is in its own text segment 
— all text segments begin at offset 0 
— result: all functions begin at 0 and overlap 

• Goal 
— use Dyninst to analyze CUBINs in hpcstruct 

• Challenge 
— Dyninst SymtabAPI and ParseAPI are not equipped to analyze 

overlapping functions and regions 
• Approach 

— memory map CUBIN load module 
— relocate text segments, symbols, and line map in hpcstruct prior 

to analysis using Dyninst inside  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Binary Analysis of CUBINs: Preliminary Results
Limitation: CUBINs currently 
only have inlining information 
for unoptimized code 

Next step: full analysis of 
heterogeneous binaries 
— host binary with GPU load 

modules embedded as 
segments

19



source 
code

optimized 
binary

compile & link call path 
profile

profile 
execution 
[hpcrun]

binary 
analysis 

[hpcstruct]

presentation 
[hpcviewer/ 

hpctraceviewer]

program 
structure

HPCToolkit Workflow

20

interpret profile 
correlate w/ source 
[hpcprof/hpcprof-mpi]

database

Ongoing work 
• Improving measurement 
• Improving attribution to source 
• Accelerating analysis with multithreaded parallelism 
Next Steps 



Parallel Binary Analysis: Why?
• Static binaries on DOE Cray systems are big 

• Binary analysis of large application binaries is too slow 
– NWchem binary from Cray platform at NERSC (Edison)  

 157M (104M text) 
– serial hpcstruct based on Dyninst v9.3.2 

 Intel Westmere @ 2.8GHz: 10 minutes 
 KNL @ 1.4GHz: 28 minutes 

• Tests user patience and is an impediment to tool use

21



Parallelizing hpcstruct: Two Approaches
• Light 

— approach 
– parse the binary with Dyninst’s ParseAPI, SymtabAPI 
– parallelize hpcstruct’s binary analysis, which runs atop Dyninst APIs
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• Full 
— approach 

– parallelize parsing of the binary with Dyninst 
– Dyninst supports a callback when a procedure parse is finalized 

 register callback to perform hpcstruct analysis at that time 
— potential benefits 

– opportunity for speedup as much as number of procedures 



Parallel Binary Parsing with Dyninst
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Added parallelism using CilkPlus constructs
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Accelerating Data Analysis
• Problem 

— need massive parallelism to analyze large-scale measurements 
— MPI-everywhere is not the best way to use Xeon Phi 

• Approach  
— add thread-level parallelism to hpcprof-mpi 

– threads collaboratively process multiple performance data files
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hpcprof-mpi with Thread-level Parallelism
• Add thread-level parallelism with OpenMP 

— program structure where the opportunity for an asynchronous 
task appears deep on call chains is not well suited for CilkPlus 
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MPI thread (OpenMP master)

MPI thread (OpenMP master)

OpenMP worker threads

OpenMP worker threads



hpcprof-mpi with Thread-level Parallelism
• Add thread-level parallelism with OpenMP 

— program structure where the opportunity for an asynchronous 
task appears deep on call chains is not well suited for CilkPlus 

27

merge profiles using a parallel 
reduction tree



hpcprof-mpi with Thread-level Parallelism
• Add thread-level parallelism with OpenMP 

— program structure where the opportunity for an asynchronous 
task appears deep on call chains is not well suited for CilkPlus 
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update traces asynchronously



hpcprof-mpi with Thread-level Parallelism
• Add thread-level parallelism with OpenMP 

— program structure where the opportunity for an asynchronous 
task appears deep on call chains is not well suited for CilkPlus 

29

compute thread metrics locally
using a global variable



hpcprof-mpi with Thread-level Parallelism
• Add thread-level parallelism with OpenMP 

— program structure where the opportunity for an asynchronous 
task appears deep on call chains is not well suited for CilkPlus 
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accumulate metric values locally
into a global variable
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Next Steps
• Integrate hpcstruct and perf_events improvements into trunk 

• Data-centric measurement with perf_events 

• Continue work with Wisconsin on parallelization of hpcstruct 

• Work with OpenMP community to finalize OMPT and OpenMP 5 
— test and validate new LLVM OMPT host-side implementation 
— integrate OMPT support for libomptarget into LLVM trunk 

• Finish OpenMP 5 and CUDA support in HPCToolkit 

• Improve support for measurement and analysis at scale 
— reduce file counts 
— improve multithreaded parallel analysis 

• Explore GUI enhancements to improve developer workflows 

• Add support for top-down models for architecture analysis
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