
Evolving HPCToolkit

1

John Mellor-Crummey
Department of Computer Science

Rice University

http://hpctoolkit.org

Scalable Tools Workshop 7 August 2017

HPCToolkit

source 
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

2

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database

source 
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

3

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database

Ongoing work
• Improving measurement
• Improving attribution to source
• Accelerating analysis with multithreaded parallelism
Next Steps

Call Path Profiling of Optimized Code
• Optimized code presents challenges for stack unwinding

— optimized code often lacks frame pointers
— routines may have multiple epilogues, multiple frame sizes
— code may be partially stripped: no info about function bounds

• HPCToolkit’s approach for nearly a decade
— use binary analysis to compute unwinding recipes for intervals

– often, no compiler information to assist unwinding is available
— cache unwind recipes for reuse at runtime (more about this later)

4

Nathan R. Tallent, John Mellor-Crummey, and Michael W. Fagan. Binary analysis for
measurement and attribution of program performance. Proceedings of ACM PLDI. ACM, New
York, NY, USA, 2009, 441–452. Distinguished Paper. (doi:10.1145/1542476.1542526)

Challenges for Unwinding
• Binary analysis of optimized multithreaded applications has

become increasingly difficult
— previously: procedures were typically contiguous
— today: procedures are often discontiguous

5

void f(…) {

…

#pragma omp parallel
{

 …

}

…

}

Code generated by
Intel’s OpenMP compiler

New Unwinding Approach in HPCToolkit
• Use libunwind to unwind procedure frames where compiler-

provided information is available

• Use binary analysis for procedure frames where no unwinding
information is available

• Transition seamlessly between the two approaches

• Status:
— first implementation for x86_64 completed on Friday
— under evaluation

6

Surprises

• libunwind sometimes unwound incorrectly from signal
contexts [our fixes are now in libunwind git]

• On Power, register frame procedures are not only at
call chain leaves [unwind fixes in an hpctoolkit branch]

Caching Unwind Recipes in HPCToolkit
Concurrent Skip Lists

• Two-level data structure: concurrent skip list of binary trees
— maintain a concurrent skip list of procedure intervals

– [proc begin, proc end)
— associate an immutable balanced binary tree of unwind recipes

with each procedure interval

• Synchronization needs
— scalable reader/writer locks [Brandenburg & Anderson; RTS ’10]

– read lock: find, insert
– write lock: delete

— MCS queuing locks [Mellor-Crummey & Scott; ACM TOCS ’91]
– lock skip-list predecessors to coordinate concurrent inserts

7

Validating Fast Synchronization
• Used C++ weak atomics in MCS locks and phase-fair reader/

writer synchronization
— against Herb Sutter’s advice

– C++ and Beyond 2012: atomic<> Weapons (bit.ly/atomic_weapons)
— as Herb predicted: we got it wrong!

• Wrote small benchmarks that exercised our synchronization
• Identified bugs with CDS checker - model checker for C11 and

C++11 Atomics
— http://plrg.eecs.uci.edu/software_page/42-2/

• Fixed them
• Validated the use of C11 atomics by our primitives

8

Brian Norris and Brian Demsky. CDSchecker: checking concurrent data structures written with C/C++
atomics. Proceedings of the 2013 ACM SIGPLAN OOPSLA. 2013. ACM, New York, NY, USA,
131-150. (doi: 10.1145/2509136.2509514)

We recommend CDS checker  
to others facing similar issues

Understanding Kernel Activity and Blocking
• Some programs spend a lot of time in the kernel or blocked

• Understanding their performance requires measurement of
kernel activity and blocking

9

Measuring Kernel Activity and Blocking
• Problem

— Linux timers and PAPI are inadequate
– neither measure nor precisely attribute kernel activity

• Approach
— layer HPCToolkit directly on top of Linux perf_events
— also sample kernel activity: perf_events collect kernel call stack
— use sampling in conjunction with Linux CONTEXT_SWITCH

events to measure and attribute blocking

10

11

performance
problem

appears to
be page

faults

Understanding Kernel Activity with HPCToolkit

12

the real problem:
zero-filling pages
returned to and

reacquired from the OS

Kernel Blocking

13

Surprise
• Third-party monitoring: SWITCH_OUT & SWITCH_IN
• First party monitoring: SWITCH_OUT only
• IBM Linux team working to upstream a fix

Kernel Blocking

14

Measuring Kernel Blocking

15

source 
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

Ongoing work
• Improving measurement
• Improving attribution to source
• Accelerating analysis with multithreaded parallelism
Next Steps

16

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database

Ongoing work
• Improving measurement
• Improving attribution to source
• Accelerating analysis with multithreaded parallelism
Next Steps

Binary Analysis with hpcstruct

17

• function calls
• inlined functions
• inlined RAJA templates
• loops
• outlined OMP loop
• lambda function

Binary Analysis of GPU Code
• Challenge: NVIDIA is very closed about their code

— has not shared any CUBIN documentation even through NDA
• Awkward approach: reverse engineer CUBIN binaries
• Findings

— each GPU function is in its own text segment
— all text segments begin at offset 0
— result: all functions begin at 0 and overlap

• Goal
— use Dyninst to analyze CUBINs in hpcstruct

• Challenge
— Dyninst SymtabAPI and ParseAPI are not equipped to analyze

overlapping functions and regions
• Approach

— memory map CUBIN load module
— relocate text segments, symbols, and line map in hpcstruct prior

to analysis using Dyninst inside  
18

Binary Analysis of CUBINs: Preliminary Results
Limitation: CUBINs currently
only have inlining information
for unoptimized code

Next step: full analysis of
heterogeneous binaries
— host binary with GPU load

modules embedded as
segments

19

source 
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

20

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database

Ongoing work
• Improving measurement
• Improving attribution to source
• Accelerating analysis with multithreaded parallelism
Next Steps

Parallel Binary Analysis: Why?
• Static binaries on DOE Cray systems are big

• Binary analysis of large application binaries is too slow
– NWchem binary from Cray platform at NERSC (Edison)

 157M (104M text)
– serial hpcstruct based on Dyninst v9.3.2

 Intel Westmere @ 2.8GHz: 10 minutes
 KNL @ 1.4GHz: 28 minutes

• Tests user patience and is an impediment to tool use

21

Parallelizing hpcstruct: Two Approaches
• Light

— approach
– parse the binary with Dyninst’s ParseAPI, SymtabAPI
– parallelize hpcstruct’s binary analysis, which runs atop Dyninst APIs

22

• Full
— approach

– parallelize parsing of the binary with Dyninst
– Dyninst supports a callback when a procedure parse is finalized

 register callback to perform hpcstruct analysis at that time
— potential benefits

– opportunity for speedup as much as number of procedures

Parallel Binary Parsing with Dyninst

23

Added parallelism using CilkPlus constructs

source 
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

24

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database

Ongoing work
• Improving measurement
• Improving attribution to source
• Accelerating analysis with multithreaded parallelism
Next Steps

Accelerating Data Analysis
• Problem

— need massive parallelism to analyze large-scale measurements
— MPI-everywhere is not the best way to use Xeon Phi

• Approach
— add thread-level parallelism to hpcprof-mpi

– threads collaboratively process multiple performance data files

25

hpcprof-mpi with Thread-level Parallelism
• Add thread-level parallelism with OpenMP

— program structure where the opportunity for an asynchronous
task appears deep on call chains is not well suited for CilkPlus

26

MPI thread (OpenMP master)

MPI thread (OpenMP master)

OpenMP worker threads

OpenMP worker threads

hpcprof-mpi with Thread-level Parallelism
• Add thread-level parallelism with OpenMP

— program structure where the opportunity for an asynchronous
task appears deep on call chains is not well suited for CilkPlus

27

merge profiles using a parallel
reduction tree

hpcprof-mpi with Thread-level Parallelism
• Add thread-level parallelism with OpenMP

— program structure where the opportunity for an asynchronous
task appears deep on call chains is not well suited for CilkPlus

28

update traces asynchronously

hpcprof-mpi with Thread-level Parallelism
• Add thread-level parallelism with OpenMP

— program structure where the opportunity for an asynchronous
task appears deep on call chains is not well suited for CilkPlus

29

compute thread metrics locally
using a global variable

hpcprof-mpi with Thread-level Parallelism
• Add thread-level parallelism with OpenMP

— program structure where the opportunity for an asynchronous
task appears deep on call chains is not well suited for CilkPlus

30

accumulate metric values locally
into a global variable

source 
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

31

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database

Ongoing work
• Improving measurement
• Improving attribution to source
• Accelerating analysis with multithreaded parallelism
Next Steps

Next Steps
• Integrate hpcstruct and perf_events improvements into trunk

• Data-centric measurement with perf_events

• Continue work with Wisconsin on parallelization of hpcstruct

• Work with OpenMP community to finalize OMPT and OpenMP 5
— test and validate new LLVM OMPT host-side implementation
— integrate OMPT support for libomptarget into LLVM trunk

• Finish OpenMP 5 and CUDA support in HPCToolkit

• Improve support for measurement and analysis at scale
— reduce file counts
— improve multithreaded parallel analysis

• Explore GUI enhancements to improve developer workflows

• Add support for top-down models for architecture analysis

32

