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Is it me, or is it the machine? 
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Parallel efficiency model 

 

Parallel efficiency = LB eff * Comm eff 

 

 

 

 

 

 

Computation Communication 

MPI_Recv 

MPI_Send Do not blame MPI 

 

 

 

        LB       Comm 

𝑳𝑩=1 

Computation Communication 

MPI_Send MPI_Recv 

MPI_Send MPI_Recv Do not blame MPI 

 

 

 

 LB    µLB  Transfer 

Parallel efficiency = LB eff * Serialization eff * Transfer eff 
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My favorite default app for trainings: Lulesh 2.0  

Easy to install and does not require large input files 

Iterative behaviour, well balanced except one region due 

to instructions unbalance 

 

 

 

 

 

Requires a cube number of MPI ranks  

       my target = 27 ranks; no nodes/sockets sized 27 :) 

– No OpenMP 

Expected problem: some extra unbalance due to the 

unbalanced mapping 
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Same code, different behavior 

Code Parallel efficiency Communication 
efficiency 

Load Balance 
efficiency 

lulesh@machine1 90.55 99.22 91.26 

lulesh@machine2 69.15 99.12 69.76 

lulesh@machine3 70.55 96.56 73.06 

lulesh@machine4 83.68 95.48 87.64 

lulesh@machine5 90.92 98.59 92.20 

lulesh@machine6 73.96 97.56 75.81 

lulesh@machine7 75.48 88.84 84.06 

lulesh@machine8 77.28 92.33 83.70 

lulesh@machine9 88.20 98.45 89.57 

lulesh@machine10 81.26 91.58 88.73 

Huge variability and worse than expected. Can I explain why? 

Warning::: Higher parallel efficiency does not mean faster! 
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Same  code, same machine… still different behaviors 

Playing with both @ C 
MPI / configuration 

Parallel efficiency Communication 
efficiency 

Load Balance 
efficiency 

BullMPI / default 84.00 93.41 89.35 

OpenMPI / default 79.45 98.35 80.73 

OpenMPI / binding 82.10 95.08 86.35 

BullMPI / binding 85.15 96.59 88.18 

Playing with binding @ B 
configuration 

Parallel efficiency Communication 
efficiency 

Load Balance 
efficiency 

default 81.26 91.58 88.73 

binding 75.10 97.44 77.07 

Playing with MPI @ A 
MPI  

Parallel efficiency Communication 
efficiency 

Load Balance 
efficiency 

IMPI 85.65 95.09 90.07 

MPT 70.55 96.56 73.06 
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The expected 

 

 

 

 

 

Balance between nodes and across sockets 

Less frequent than expected! 
 

 

Parallel eff. 90.55% 

 Comm  99.22% 

 LB  91.26% 
 

 

 

• Using 2 nodes x 2 sockets  

• 3 sockets with 7 ranks, 1 

socket with 6 ranks  

small time unbalance 
 

 
6 guys 

with more 

resources 
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The good 

27 fits in a node 

 

 

 

 

Alternate between sockets 
 

 first socket 

Small IPC variability in the 2 main 

regions 
 

Parallel eff. 90.92% 

 Comm  98.59% 

 LB  92.20% 
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The ugly 

Same code! but now two trends (one per node) 

 

 

 

 
Slow node   significant lower IPC for 

almost all the regions 
 

Parallel eff. 69.15% 

 Comm  99.12% 

 LB  69.76% 
 

 

 

But all nodes are equal! 
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The ugly 

Clock frequency sanity check 

 

 

 

 

Cluster Name Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 8 

Avg. Duration 347038882 218366724 191517484 76087437 57184253 

PAPI_L1_DCM 4253914 6369746 6360328 2195915 1540034 

PAPI_L2_DCM 1647293 1984225 1864857 448603 258565 

PAPI_L3_TCM 945265 1399329 1390967 160690 111273 

PAPI_TOT_INS 881368852 880939731 881303626 275104547 274379604 

PAPI_TOT_CYC 900031546 566347103 496687512 197363737 148307597 

RESOURCE_STALLS:SB 257407726 154854806 106684134 74990020 38463538 

RESOURCE_STALLS:ROB 3191720 3170735 2722761 2684869 562054 

RESOURCE_STALLS:RS 43484959 63717139 63017342 38768779 32699838 

Insight checking hardware counters differences 

 

 

 

 

Guess: Memory problem – confirmed by sysadmin tests!  
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The unbalanced 

Balance between nodes not between sockets 

 

 

 

 

Balance between nodes  9 per node 

Fill first a socket 6 + 3 
 

What lulesh does 

What the machine does running lulesh 

Parallel eff. 79.45% 

 Comm  98.35% 

 LB  80.73% 
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The unbalanced 

Two main regions suffer the penalty of 

the different socket occupancy 
 

Most frequent behaviour! 
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The bipolar 

MPI modify the computing phases behavior! 

MPT 

IMPI 

Parallel eff. 70.55% 

 Comm  96.56% 

 LB  73.06% 
 

 

 

Parallel eff. 85.65% 

 Comm  95.09% 

 LB  90.07% 
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The bipolar 

… because it can select a different mapping / binding 

 

 

MPT IMPI 

Histogram 

of useful 

duration 

Process 

mapping 

“photo” 
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The undecided 

 

 

 

 

 

Same number of instructions per iteration 

showing a noisy behavior w.r.t time 

… use to correspond to a system that does unnecessary 
process migrations 

 

 

Parallel eff. 77.28% 

 Comm  92.33% 

 LB  83.70% 
 

 

 



15 15 

The braking 

But not always noise is caused by migrations 

 

 

 

 

Parallel eff. 75.48% 

 Comm  88.84% 

 LB  84.06% 
 

 

 

node id 
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The braking 

Clue: the noise affects to all processes within a node 

 

 

 

 

The OS of each node is reducing for a while the clock 
frequency asynchronously! 

 

 



17 17 

Conclusions 

 

As code developer, better not to assume machines will 

do a good job running your code because you did a good 

job programming your application 

 

As performance analyst, do not assume where are the 

bottlenecks, be open minded and equipped with flexible 

tools (like Paraver ;) 

 

 

 As Bruce Lee said “Be water my friend!” 

 

 

 

 

 

 

 

 

 


