
1

www.bsc.es

Scalable Tools Workshop (Tahoe)

August 2017

Judit Gimenez (judit@bsc.es)

Is it me, or is it the machine?

2 2

Parallel efficiency model

Parallel efficiency = LB eff * Comm eff

Computation Communication

MPI_Recv

MPI_Send Do not blame MPI

 LB Comm

𝑳𝑩=1

Computation Communication

MPI_Send MPI_Recv

MPI_Send MPI_Recv Do not blame MPI

 LB µLB Transfer

Parallel efficiency = LB eff * Serialization eff * Transfer eff

3 3

My favorite default app for trainings: Lulesh 2.0

Easy to install and does not require large input files

Iterative behaviour, well balanced except one region due

to instructions unbalance

Requires a cube number of MPI ranks

 my target = 27 ranks; no nodes/sockets sized 27 :)

– No OpenMP

Expected problem: some extra unbalance due to the

unbalanced mapping

 - instructions +

M
P

I
ra

n
k
s

4 4

Same code, different behavior

Code Parallel efficiency Communication
efficiency

Load Balance
efficiency

lulesh@machine1 90.55 99.22 91.26

lulesh@machine2 69.15 99.12 69.76

lulesh@machine3 70.55 96.56 73.06

lulesh@machine4 83.68 95.48 87.64

lulesh@machine5 90.92 98.59 92.20

lulesh@machine6 73.96 97.56 75.81

lulesh@machine7 75.48 88.84 84.06

lulesh@machine8 77.28 92.33 83.70

lulesh@machine9 88.20 98.45 89.57

lulesh@machine10 81.26 91.58 88.73

Huge variability and worse than expected. Can I explain why?

Warning::: Higher parallel efficiency does not mean faster!

5 5

Same code, same machine… still different behaviors

Playing with both @ C
MPI / configuration

Parallel efficiency Communication
efficiency

Load Balance
efficiency

BullMPI / default 84.00 93.41 89.35

OpenMPI / default 79.45 98.35 80.73

OpenMPI / binding 82.10 95.08 86.35

BullMPI / binding 85.15 96.59 88.18

Playing with binding @ B
configuration

Parallel efficiency Communication
efficiency

Load Balance
efficiency

default 81.26 91.58 88.73

binding 75.10 97.44 77.07

Playing with MPI @ A
MPI

Parallel efficiency Communication
efficiency

Load Balance
efficiency

IMPI 85.65 95.09 90.07

MPT 70.55 96.56 73.06

6 6

The expected

Balance between nodes and across sockets

Less frequent than expected!

Parallel eff. 90.55%

 Comm 99.22%

 LB 91.26%

• Using 2 nodes x 2 sockets

• 3 sockets with 7 ranks, 1

socket with 6 ranks

small time unbalance

6 guys

with more

resources

7 7

The good

27 fits in a node

Alternate between sockets

 first socket

Small IPC variability in the 2 main

regions

Parallel eff. 90.92%

 Comm 98.59%

 LB 92.20%

8 8

The ugly

Same code! but now two trends (one per node)

Slow node significant lower IPC for

almost all the regions

Parallel eff. 69.15%

 Comm 99.12%

 LB 69.76%

But all nodes are equal!

9 9

The ugly

Clock frequency sanity check

Cluster Name Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 8

Avg. Duration 347038882 218366724 191517484 76087437 57184253

PAPI_L1_DCM 4253914 6369746 6360328 2195915 1540034

PAPI_L2_DCM 1647293 1984225 1864857 448603 258565

PAPI_L3_TCM 945265 1399329 1390967 160690 111273

PAPI_TOT_INS 881368852 880939731 881303626 275104547 274379604

PAPI_TOT_CYC 900031546 566347103 496687512 197363737 148307597

RESOURCE_STALLS:SB 257407726 154854806 106684134 74990020 38463538

RESOURCE_STALLS:ROB 3191720 3170735 2722761 2684869 562054

RESOURCE_STALLS:RS 43484959 63717139 63017342 38768779 32699838

Insight checking hardware counters differences

Guess: Memory problem – confirmed by sysadmin tests!

10 10

The unbalanced

Balance between nodes not between sockets

Balance between nodes 9 per node

Fill first a socket 6 + 3

What lulesh does

What the machine does running lulesh

Parallel eff. 79.45%

 Comm 98.35%

 LB 80.73%

11 11

The unbalanced

Two main regions suffer the penalty of

the different socket occupancy

Most frequent behaviour!

12 12

The bipolar

MPI modify the computing phases behavior!

MPT

IMPI

Parallel eff. 70.55%

 Comm 96.56%

 LB 73.06%

Parallel eff. 85.65%

 Comm 95.09%

 LB 90.07%

13 13

The bipolar

… because it can select a different mapping / binding

MPT IMPI

Histogram

of useful

duration

Process

mapping

“photo”

14 14

The undecided

Same number of instructions per iteration

showing a noisy behavior w.r.t time

… use to correspond to a system that does unnecessary
process migrations

Parallel eff. 77.28%

 Comm 92.33%

 LB 83.70%

15 15

The braking

But not always noise is caused by migrations

Parallel eff. 75.48%

 Comm 88.84%

 LB 84.06%

node id

16 16

The braking

Clue: the noise affects to all processes within a node

The OS of each node is reducing for a while the clock
frequency asynchronously!

17 17

Conclusions

As code developer, better not to assume machines will

do a good job running your code because you did a good

job programming your application

As performance analyst, do not assume where are the

bottlenecks, be open minded and equipped with flexible

tools (like Paraver ;)

 As Bruce Lee said “Be water my friend!”

