
Exposing Hidden Performance

Opportunities in High Performance

GPU Applications

Benjamin Welton

Scalable Tools Workshop 2017

Granlibakken, Tahoe, NV

GPUs are difficult to use

Some of the reasons why include:

o Writing of efficient GPU kernels

o Identification of code suitable for the GPU

o Handling CPU – GPU interactions (data transfers,

synchronizations, launching kernels, etc).

o Integrating GPU code into existing CPU code

2Exposing Hidden Performance Opportunities in High Performance GPU Applications

Summary of Opportunities

o Synchronization
o Unnecessary synchronization with the GPU reducing CPU – GPU overlap

o Duplicate Data Transfers

o Unnecessary transfers of data between the GPU and CPU

o Missed Parallelization

o The conversion of “low benefit” GPU opportunities that result in substantial

performance improvements

o Just-in-time compilation of GPU code

o Incorrect compilation of an application resulting in inefficient generation of

native GPU code at runtime.

3Exposing Hidden Performance Opportunities in High Performance GPU Applications

GPUs are difficult to use

In the abstract, these opportunities are easy to

identify.

o And they are when viewed in isolation in small

programs.

In practice, these opportunities that seem simple

are difficult to identify in real world applications.

4Exposing Hidden Performance Opportunities in High Performance GPU Applications

Why are they hard to identify?

Size and complexity of the code base
o Difficult for a programmer to manually identify bad behavior across 100K+

LOC

Code evolving over time
o Changes to code bases introduce bad behavior in once innocent code

Use of independently developed libraries with GPU

functionality
o Each library is efficient locally but when combined in application result in

bad behavior not apparent to the developer

Have to support many different compute architectures

(OpenMP, CUDA, Phi, etc).
o Assumptions about usage are made which result in bad behavior when they

are not true

5Exposing Hidden Performance Opportunities in High Performance GPU Applications

Identification of Performance Opportunities

To start to answer this question we looked for

unobvious performance opportunities in real

applications.

o Identify what performance opportunities exist

o Determine their impact on application

performance

6Exposing Hidden Performance Opportunities in High Performance GPU Applications

Preliminary Results

7Exposing Hidden Performance Opportunities in High Performance GPU Applications

App Name App Type LOC Original

Runtime

(Min:Sec)

Percent

Reduction

Problems

Found

Hoomd-Blue MDS 112,000 08:36 37% ES

Qbox MDS 100,000 38:54 85% DD, IS

LAMMPS MDS 208,000 03:34 19% MP

cuIBM CFD 17,000 31:42 27% IS, JT

MDS = Molecular Dynamics Simulation CFD = Computational Fluid Dynamics

ES = Explicit Synchronization, IS = Implicit Synchronization

MP = Missed Parallelization, JT = JIT Compilation, DD = Duplicate Data Transfers.

Summary of Opportunities

o Synchronization
o Unnecessary synchronization with the GPU reducing CPU – GPU overlap

o Found in hoomd-blue (37%), QBox (~40%), and cuIBM (7%)

o Duplicate Data Transfers

o Unnecessary transfers of data between the GPU and CPU

o Found in QBox (~40%)

o Missed Parallelization

o The conversion of “low benefit” GPU opportunities that result in substantial

performance improvements

o Found in LAMMPs (19%)

o Just-in-time compilation of GPU code

o Incorrect compilation of an application resulting in inefficient generation of

native GPU code at runtime.

o Found in cuIBM (~20%).

8Exposing Hidden Performance Opportunities in High Performance GPU Applications

Characteristics of Opportunities

o Synchronization

o Synchronization causing a long delay on the CPU

o CPU computation being delayed unnecessarily

o No use of data from the GPU by the CPU

o Duplicate Data Transfers

o Duplicate data contained within the transfer

o Missed Parallelization

o Loops with long CPU runtimes

o A sequential memory access pattern for variables within the loop.

o Just-in-time compilation of GPU code

o Compatibility mismatch between the GPU code contained in the

application and the card it is run on.

9Exposing Hidden Performance Opportunities in High Performance GPU Applications

Characteristics Not Identified by Tools.

o Synchronization

o Synchronization causing a long delay on the CPU

o CPU computation being delayed unnecessarily

o No use of data from the GPU by the CPU

o Duplicate Data Transfers

o Duplicate data contained within the transfer

o Missed Parallelization

o Loops with long CPU runtimes

o A sequential memory access pattern for variables within the loop.

o Just-in-time compilation of GPU code

o Compatibility mismatch between the GPU code contained in the

application and the card it is run on.

10Exposing Hidden Performance Opportunities in High Performance GPU Applications

Detection Techniques Overview

To automatically identify the four performance

issues:

oWe must identify the characteristics applications

exhibit when they are present.

11Exposing Hidden Performance Opportunities in High Performance GPU Applications

12Exposing Hidden Performance Opportunities in High Performance GPU Applications

Synchronization

o CPU computation being delayed unnecessarily

Memory tracing combined with program slicing

o No use of data from the GPU by the CPU

Memory tracing combined with CPU profiling

Duplicate Data Transfers

o Duplicate data contained within the transfer

Content based data deduplication

Missed Parallelization

o A sequential memory access pattern for variables within the loop.

Memory tracing combined with CPU profiling.

Just-in-time compilation of GPU code

o Compatibility mismatch between the GPU code contained in the application

and the card it is run on.

Binary inspection at runtime.

We propose to identify these characteristics by:

Why do Applications Synchronize?

Synchronize to read the results of GPU

computation.

o Synchronization waits for all updates to shared data

to be written GPU.

Shared data is data that can accessed by the GPU.

o Shared memory pages between the CPU and GPU

and memory transfers from the GPU.

If we can determine that the CPU does not access

the results from the GPU, the synchronization is

unnecessary.

13Exposing Hidden Performance Opportunities in High Performance GPU Applications

A Synchronization Opportunity Exists When…

CPU computation is being delayed unnecessarily

o If some CPU computation after a synchronization

does not need GPU results to compute correctly.

No use of data from the GPU by the CPU

o If the CPU is not accessing GPU results, the CPU

does not need to synchronize.

If either of these characteristics is true, the

synchronization is unnecessary or misplaced.

.
14Exposing Hidden Performance Opportunities in High Performance GPU Applications

To identify these characteristics, we must obtain:

The amount of time the CPU is blocked at a

synchronization.

o Existing tools give us this information

The locations of GPU results (shared data) on the

CPU.

oUse memory tracing to obtain this information

The CPU instructions that access that data.

oUse memory tracing and program slicing to obtain

this information.

15Exposing Hidden Performance Opportunities in High Performance GPU Applications

Types of Synchronization Opportunities

We categorize synchronization opportunities into

three types.

1. When the CPU does not access shared data after

the synchronization (seen in cuIBM and QBox)

2. When the placement of the synchronization is far

from the first access of shared data by the CPU

(seen in QBox).

3. When CPU computation not dependent on GPU

data is delayed by a synchronization (seen in hoomd).

16Exposing Hidden Performance Opportunities in High Performance GPU Applications

Detection of Synchronization Opportunities

1. When the CPU does not access shared data after the

synchronization (seen in cuIBM and QBox)

o Synchronization is unnecessary since no CPU computation

requires GPU results to compute.

17Exposing Hidden Performance Opportunities in High Performance GPU Applications

Synchronization

CPU

CPU computation

with no GPU data

dependencies

Detection of Synchronization Opportunities

2. When the placement of the synchronization is far from

the first access of shared data by the CPU (seen in

QBox)

o Synchronization occurs too early before the results are

needed by the CPU.

18Exposing Hidden Performance Opportunities in High Performance GPU Applications

Synchronization

CPU

CPU computation

with no GPU data

dependencies

First use of data

modified by the

GPU

Detection of Synchronization Opportunities

3. When CPU computation not dependent on GPU data

is delayed by a synchronization (seen in hoomd).

o Moving the CPU computation in front of the synchronization

would reduce delay.

19Exposing Hidden Performance Opportunities in High Performance GPU Applications

Synchronization

CPU

CPU computation

with no GPU data

dependencies

Use of data

modified by

the GPU

Detection of Synchronization Opportunities

The first two types of synchronization opportunities will be identified

using profiling and memory tracing.

o We must identify if the CPU accesses GPU results and where those

accesses occur.

To do this we plan on:

1. Performing an initial profiling run of the application to identify

synchronizations with long delays.

2. In a separate profiling run, we will Identify the CPU computation

accessing shared data and where to move the synchronization

1. Identify the memory locations containing shared data on the CPU

2. Identify the instructions that access this data.

20Exposing Hidden Performance Opportunities in High Performance GPU Applications

Detection of Synchronization Opportunities

21Exposing Hidden Performance Opportunities in High Performance GPU Applications

We focus on synchronizations with

long delays because they slow down

execution the most.

1. Existing profilers are used to identify synchronizations

with long delays

CPU

Detection of Synchronization Opportunities

22Exposing Hidden Performance Opportunities in High Performance GPU Applications

2. We need to identify CPU computation accessing data

that can be modified by the GPU (shared data) and

where to move the synchronization

A. Identify where GPU results are stored in the CPU

B. Identify what CPU instructions access these locations

The first location to access shared data after the

synchronization will be the location where they

synchronization should be moved to.

Detection of Synchronization Opportunities

23Exposing Hidden Performance Opportunities in High Performance GPU Applications

2.A Identify where GPU results are stored in the CPU

o GPU results are only stored in locations the CPU explicitly

specifies via function call before the synchronization

o Intercepting these calls will give us the locations in CPU

memory that will contain GPU results.

Intercept all memory transfer and

sharing requests before the

synchronization

CPU

Detection of Synchronization Opportunities

24Exposing Hidden Performance Opportunities in High Performance GPU Applications

2.B Identify what CPU instructions access these locations

o Instrumenting load and store operations can identify the

instructions accessing shared data locations.

We would start load and store

instrumentation after the

synchronization returns.

CPU

The synchronization should be placed before the first

instruction accessing shared data

Detection of Synchronization Opportunities

The third type of synchronization opportunity requires

identifying CPU computation that does not need GPU

results to compute correctly.

1. Perform an initial profiling run on the application to

identify synchronizations with long delays.

2. In a separate profiling run, Identify the variables that

contain shared data.

3. Use program slicing with these variables to identify

instructions that may be affected by their values.

o Identifies the CPU computation that may require GPU data to

compute.

25Exposing Hidden Performance Opportunities in High Performance GPU Applications

Program Slicing

26Exposing Hidden Performance Opportunities in High Performance GPU Applications

CFG

cudaDeviceSynchronize()

CFG Edge

Elided Subgraph

If(shared data use)

We want to identify computation

that does not need GPU data to

compute correctly.

Specifically the number and size of

the nodes in green.

Node using

shared data

Node not

accessing

shared data

Program Slicing

27Exposing Hidden Performance Opportunities in High Performance GPU Applications

CFG

cudaDeviceSynchronize()

CFG Edge

Elided Subgraph

If(…)

After we have identified

synchronizations with long delay and

the variables containing shared data

we create a forward program slice.

Program Slicing

28Exposing Hidden Performance Opportunities in High Performance GPU Applications

CFG

cudaDeviceSynchronize()

CFG Edge

Elided Subgraph

If(…)

The forward program slice will

contain all instructions with

values that may depend on

those stored in shared data.

Program Slicing

29Exposing Hidden Performance Opportunities in High Performance GPU Applications

CFG

cudaDeviceSynchronize()

CFG Edge

Elided Subgraph

If(…)

We assume that the

synchronization modifies all

variables containing shared

data.

Thus the set of variables for

the slice is all variables

containing shared data.

Start the slice at the

synchronization

Program Slicing

30Exposing Hidden Performance Opportunities in High Performance GPU Applications

CFG

cudaDeviceSynchronize()

CFG Edge

Elided Subgraph

If(…)

Using existing program slicing

implementations, we create the

slice.

The nodes contained

within the slice are

those that may depend

on the values in shared

data

Program Slicing

31Exposing Hidden Performance Opportunities in High Performance GPU Applications

CFG

cudaDeviceSynchronize()

CFG Edge

Elided Subgraph

If(…)

We are really interested in the

nodes not contained in the slice

since they do not depend on

shared data.

If a large number of nodes

exist outside of the slice, a

synchronization opportunity

exists.

Computation can be moved in

front of the synchronization

Duplicate Data Transfers

o The characteristic we need to identify is:

o Duplicate data contained within the transfer

o A content based data deduplication approach will

be used to identify these transfers.

32Exposing Hidden Performance Opportunities in High Performance GPU Applications

Detection of Duplicate Data Transfers

The content based deduplication approach consists

of four steps:
1. Intercept the memory transfer requests using library

interposition.

2. We create a hash of the data being transferred.

3. Compare the hash to past transfers

4. If there is a match, we mark the transfer as a duplicate.

An initial profiling run of the application using this

deduplicator will be run to identify duplicate

transfers

33Exposing Hidden Performance Opportunities in High Performance GPU Applications

Correction of Duplicate Transfers

We cannot remove the duplicate transfers using

binary modification

oNo guarantee that the transfer will be a duplicate on

subsequent executions of the same call.

Our correction would perform content based data

deduplication on all transfers that were identified as

containing duplicates.

o If a duplicate is detected, we instruct the GPU to

make a local copy of the data.

o Saves a data transfer over the PCI-E bus.

34Exposing Hidden Performance Opportunities in High Performance GPU Applications

Open Questions/Issues

o Can we hash data fast enough for content based

deduplication to be feasible?

o Preliminary Results: Approximately 3% execution time

overhead from hashing (tensorflow using xxhash32)

o Can we determine if an identified duplicate

transfer is always a duplicate to eliminate the

need for a check on subsequent executions?

35Exposing Hidden Performance Opportunities in High Performance GPU Applications

Detection of Unobvious Parallelization

o Two characteristics are needed for an unobvious

parallelization opportunity to exist:

o Loops with long execution times

o A sequential memory access pattern for variables

accessed within the loop.

36Exposing Hidden Performance Opportunities in High Performance GPU Applications

o 20% of the execution time was spent in a single

loop that was not parallelized.

LAMMPS Performance Analysis

37Exposing Hidden Performance Opportunities in High Performance GPU Applications

for (int i = 0; i < nlocal; i++) {

if (mask[i] & groupbit) {

double dtfm;

dtfm = dtf / mass[type[i]];

+= dtfm *

+= dtfm *

+= dtfm *

}

}

v[i][0]

v[i][1]

v[i][2]

f[i][0];

f[i][1];

f[i][2];

This loop was not

parallelized because

GPUs do not perform

well when multi-level

pointers are present

Detection of Unobvious Parallelization

We want to identify if the memory access patterns

within long running loops are vectorizable.

38Exposing Hidden Performance Opportunities in High Performance GPU Applications

for (int i = 0; i < nlocal; i++) {

if (mask[i] & groupbit) {

double dtfm;

dtfm = dtf / mass[type[i]];

+= dtfm *

+= dtfm *

+= dtfm *

}

}

v[i][0]

v[i][1]

v[i][2]

f[i][0];

f[i][1];

f[i][2];

We want to know if

the memory access

within the loop are

favorable to

vectorization

Detection of Unobvious Parallelization

We will use load and store instrumentation to

identify vectorizable memory access patterns:

oWe will capture the addresses used to load and store

values to/from main memory.

o If a continuous region of memory can be formed from

these addresses, we consider the loop parallelizable.

39Exposing Hidden Performance Opportunities in High Performance GPU Applications

Open Questions/Issues

o How long of an execution time must a loop have before

it is considered favorable to convert to the GPU?

o Are there other characteristics that exist in unobvious

parallelization opportunities that may better help identify

their presence?

40Exposing Hidden Performance Opportunities in High Performance GPU Applications

Just-in-time Compilation

o We need to identify when an application has been

compiled with GPU code incompatible with the

device used.

41Exposing Hidden Performance Opportunities in High Performance GPU Applications

Just-in-time Detection

o We can detect a mismatch by comparing the GPU code

architectures present in the application with those

compatible with the card.

o On linux each GPU code architecture is stored in its own ELF

section of the application binary

o The ELF header contains a the name of the architecture the code is

compiled for.

o The architecture of the GPU card in use can be queried from

the device.

42Exposing Hidden Performance Opportunities in High Performance GPU Applications

Summary

o Our research focuses on the development of

techniques to detect and exploit GPU

performance opportunities

o We have so far identified four performance

opportunities in four applications

o We have proposed four solutions to detect and

automatically correct the performance

opportunities we have identified.

43Exposing Hidden Performance Opportunities in High Performance GPU Applications

