Noise-Resilient Performance Modeling of HPC Applications

TECHNISCHE UNIVERSITÄT DARMSTADT

Felix Wolf, Technical University of Darmstadt Scalable Tools Workshop 2022

Acknowledgement

TU Darmstadt

- Alexander Geiß
- Gustavo de Morais
- Marcus Ritter
- Johannes Wehrstein
- Felix Wolf
- [...]

ETH Zurich

- Alexandru Calotoiu
- Marcin Copik
- Torsten Hoefler
- [...]

FZ Jülich

- Nour Daoud
- Bernd Mohr
- [...]

KIT

- Larissa Schmidt
- [...]

DFG FNSNF

Performance model

Formula that expresses a relevant performance metric as a function of one or more execution parameters

Empirical performance modeling

Challenges

Run-to-run variation / noise

Cost of the required experiments

How to deal with noisy data

- Introduce prior into learning process
 - Assumption about the probability distribution generating the data

Performance model normal form (PMNF)

6/21/22 | Technical University of Darmstadt, Germany | Felix Wolf | 9

÷ max. 14,40 d Color Info 図図 Y-axis \$ Value: 160.00 1.923x10-05 Parameter: 0

Graph Limits

p

X-axis

Available at: https://github.com/extra-p/extrap

✓ Show model

Extra-P 4.0

22134

9

34

q

\$

\$

٥

*

Model median

x=-11119.5 , y=1.18296 , z=519.466

max. 39321.60

38

\$

Generate models

Noise-resilient performance modeling [Ritter et al., IPDPS'21]

- Performance measurements
 frequently affected by noise
- Regression struggles with increased amounts of noise – especially w/ more parameters

 Neural networks are resilient to noise – when noise is part of their training

Adapted from: https://developer.nvidia.com/blog/ai-can-nowfix-your-grainy-photos-by-only-looking-at-grainy-photos/

DNNs often better at guessing models in the presence of noise

Parameter selection

[Copik et al, PPoPP'21]

- The more paramters the more experiments
- Modeling parameters without performance impact is harmful

Case study – LULESH & MILC Influence of program parameters

TECHNISCHE UNIVERSITÄT DARMSTADT

LULESH	Total	р	size	regions	iters	balance		cost	p, size
Functions	349	2	40	15	1	1		2	40
Loops	275	2	78	29	1	1		2	78
MILC	Total	p	size	trajecs	warms steps	nrest. niter	mass, beta nfl.	u0	p, size
Functions	621	54	53	12	9	6	1	4	56
Loops	874	187	161	39	31	15	1	7	196

6/21/22 | Technical University of Darmstadt, Germany | Felix Wolf | 14

How many data points do we really need?

TECHNISCHE UNIVERSITÄT DARMSTADT

Performance Detective – Automatic deduction of cheap and accurate performance models [Schmidt et al, ICS 2022]

- Problem Current heuristic sampling strategy too expensive
- Contribution Use PerfTaint to deduce minimum set of experiments
- Case studies show same model accuracy at reduced cost

Performance Detective (2)

- Parameters that influence computation linearly
 - Instead of repeating measurements, set parameter influencing the computation linearly to >= 5
- Strike out configurations aimed at finding interactions between parameters that do not interact

Refine prior based on noise-resilient metrics

[de Morais et al., work in progress]

Single parameter

$$f_{bb}(x) = \sum_{k=1}^{n_1} c_k \cdot p^{i_k} \cdot \log_2^{j_k}(x)$$

(basic block based model)
(basic block based model)
(basic block based model)
$$f(x) = \sum_{k=1}^{n_2} c_k \cdot p^{i_k} \cdot \log_2^{j_k}(x)$$

(time based model)

Multiple parameters

$$f_{\rm bb}(x_1, \dots, x_m) = \sum_{k=1}^{n_3} c_k \prod_{l=1}^{m_3} x_l^{i_{kl}} \cdot \log_2^{j_{kl}}(x_l)$$

(basic block based model)

Search space to (i, j)

$$f(x_1, \dots, x_m) = \sum_{k=1}^{n_4} c_k \prod_{l=1}^{m_4} x_l^{i_{kl}} \cdot \log_2^{j_{kl}}(x_l)$$

(time based model)

Basic block

- Code sequence with no branches (except input and output) where all the instructions are executed sequentially
- Roughly constant execution time modulo noise
 - Good unit of effort
 - Number of basic blocks executed is reproducible

- Converts C/C++ source code to Intermediate Representation (IR)
- Allows automatic instrumentation, analyses, and optimizations of source codes on the IR level

C/C++ code to IR representation:

Basic block instrumentation w/ Score-P

- Static analysis: shows the number of functions, basic blocks and instructions present in the code
- Dynamic analysis: runs the code and counts the basic blocks as they are executed

Selected papers

Торіс	Bibliography
Foundation (single model paramter)	Alexandru Calotoiu, Torsten Hoefler, Marius Poke, Felix Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes. SC13 .
Foundation (multipler model paramters)	Alexandru Calotoiu, David Beckingsale, Christopher W. Earl, Torsten Hoefler, Ian Karlin, Martin Schulz, Felix Wolf: Fast Multi-Parameter Performance Modeling. IEEE Cluster 2016.
Noise resilience	Marcus Ritter, Alexander Geiß, Johannes Wehrstein, Alexandru Calotoiu, Thorsten Reimann, Torsten Hoefler, Felix Wolf: Noise-Resilient Empirical Performance Modeling with Deep Neural Networks. IPDPS 2021 .
Taint-based performance modeling	Marcin Copik, Alexandru Calotoiu, Tobias Grosser, Nicolas Wicki, Felix Wolf, Torsten Hoefler: Extracting Clean Performance Models from Tainted Programs. PPoPP 2021 .
Performance detective	Larissa Schmid, Marcin Copik, Alexandru Calotoiu, Dominik Werle, Andreas Reiter, Michael Selzer, Anne Koziolek, Torsten Hoefler: Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models. ICS 2022 .

Thank you!

6/21/22 | Technical University of Darmstadt, Germany | Felix Wolf | 23