
EasyView: Bridging Software Developers
with Dynamic Program Analysis

Xu Liu
xliu88@ncsu.edu

Associate Professor, CS department
NC State University

ORNL JFA

mailto:xliu88@ncsu.edu

2

Diverse Performance Tools
For HPC

HPCToolkit, TAU, Caliper, Score-P, …
For cloud

Cloud Profiler, DynaTrace, …
For system

Perf, VTune, OProfile, uProf, NSight Compute, rocProfiler, …
For fine-grained analysis

Pin, Valgrind, NVBit, GTPin, DynamoRIO, …
For different languages

Pyinstrument, Scalene, cProfile for Python
Async-Profiler, JXPerf for Java
PProf for Go
…

3

But, There is a Gap
Tool developer’s perspective

Focus on different capabilities
Require efforts to implement redundant features: e.g., GUI

Tool user’s perspective
Have too many choices
Need expert knowledge, deep learning curve
Customize the analysis upon the diverse demands
Switch between tools and development environments

4

Efforts on Bridging the Gap
Unifying data collection

Linux timer
Linux Perf_events

Standardizing tools interface
PMPI, OMPT in HPC domain

But, one most important part missing: unified data analysis and
visualization framework

5

Our Approach: EasyView
EasyView bridges the gaps for analysis and visualization

EasyView features
Unify various profilers in a single framework
Integrate program analysis with development environment (IDE/browser)
Support various analyses

Benefits of EasyView
Facilitate performance data interpretation

Unified GUI, IDE integration
Analyze a program measured by different tools

Powerful analysis
Reduce tool development efforts on data analysis and visualization

6

EasyView Design Principles
Principles

Easy: easy to install and use
General: generalize data format with profiling IR
Insightful: support insightful analysis with various views
Efficient: provide smooth user experiences in exploring the data
Applicable: integrate into IDE or browser with web techniques
Extensible: support customized analysis
Intelligent: integrate ML models to aid analysis
Secure: process profiles locally

7

EasyView Overview
Back End

WebView

Middle EndFront End (Offline)

Decoders

Format Building APIs

Format Builder

PProfPerfBrowser
Profile

Applications

IDE/browser

WebView

IDE/browser

File Manager Editor Event Manager

EasyView Runtime

IR Loader
View Manager

Profiling
IR

Binary Json

8

EasyView Front End

Decoders

PProf browser

profile

perf, HPCtoolkit,

TAU, Pyinstrument …

 Bindings with C, C++, Python, Go, JS

Format building APIs

EasyView Profiling IR

https://github.com/Xuhpclab/drcctprof-databuilder

VsCode Extension Server VsCode Extension Client

9

EasyView Middle End Design

VsCode Runtime

 File Manager Binary

WebView
Runtime

Analysis

 Data Manager

IR Loader

 Profile Loader

Decoder

PProf format

IR format

Optimization for efficiency
Abandon JS (or TS) for computation-intensive processing

Use web assembly instead
Avoid passing data in json format
Apply many other optimizations for memory and computation efficiency

10

EasyView Back End
Vscode Extension Client

WebView

View View View

View Manager

Vscode Extension Server

Vscode Runtime
Editor Event Manager

Editor
Event

Editor
Event

Editor
Event

JSON

Vscode editor events
UI operations: highlights, codelens
File operations: code link, file open/close/switch
Other operations: hovers, popups

View

Flamegraph Tree Table Trace

Data View Manager

Rendering

Bridging Interface

11

Performance Evaluation
EasyView vs. PProf

Profile collected from a real industrial workload
Machine configuration

CPU: 3.8 GHz 8-Core Intel Core i7
Memory: 64 GB 2667 MHz DDR4
GPU: AMD Radeon Pro 5500 XT 8 GB

EasyView is far more efficient than PProf

13

Demo

14

Conclusions
EasyView, a powerful analysis and visualization tool

Bridge tool developers and users
Integrate into IDEs with mostly web front end techniques
Can be extended with various analysis
General, insightful, efficient, applicable

Side products of EasyView
Profiling format: compact and informative
Flame graph visualization component: fast

Research contributions
Prove that pure web front end techniques provide sufficient computation
power to analyze and visualize massive amounts of performance data

https://www.easyview.dev

15

On-Going Work
Back End

WebView

Middle EndFront End (Offline)

Decoders

Format Building APIs

Format Builder

PProfPerfBrowser
Profile

Applications

VsCode

WebView

VsCode

File Manager Editor Event Manager

EasyView Runtime

IR Loader
View Manager

Profiling
IR

Binary Json

15

Integrating ML techniques Supporting more views

Integrate EasyView in various environments

16

Code Summary for Single Function
Select a whole function

AI-Aided Analysis

